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Abstract 
 

This paper extends the classical tree similarity 

measuring methodology and proposes a definition for 

cost of tree transformation operations based on the 

importance of each concept in the entire concept 

structure and similarity between individual concepts in 

a knowledge context. We apply the proposed 

methodology to ontology comparison where different 

ontologies for the same domain are represented as 

trees and their similarity is required to be measured. 

We show that the proposed methodology can facilitate 

the initiation of ontology integration and ontology trust 

evaluation. 

 

Keywords: Tree Similarity, Measuring, Transformation 

Cost, Ontology Comparison, Collaborative Design. 

 

 

1. Introduction 
 

An ontology specifies a conceptualization of a 

domain in terms of concepts and their relationships [9]. 

Ontology can create an agreed-upon vocabulary for 

sharing knowledge, exchanging information, and 

eliminating ambiguity. It plays a very important role in 

the area of Collaborative Design [1]. 

In practice, it is not common that a shared ontology 

be provided for a specific domain. Contrarily, usually 

different communities build their own ontologies that 

are heterogeneous in terms of structure, syntax, and 

semantics, even committing to the same 

conceptualization of that domain. Therefore, ontology 

integration [6] is developed to address this 

heterogeneity.  

In some cases the ontologies need to be compared to 

support initialization of ontology integration and 

ontology trust evaluation. An ontology can be viewed 

as a knowledge structure, and one commonly used form 

is that of a tree structure. Much os the research on 

comparing trees uses editing cost from one tree to 

another to measure the similarity of two trees [2]. 

Classical methods focus on structural and geometrical 

characteristics of trees, mainly considering the number 

of nodes affected by editing operations [3, 7]. However, 

in a knowledge context where trees are used to model 

concept structures, in addition to structural 

characteristics of the trees, more attention must be paid 

to concepts represented by the internal tree nodes. 

Therefore, besides the number of edited nodes, 

positions and conceptual similarities of the affected 

nodes also have to be considered. 

The similarity of two concept structures is based on 

the similarity of their member concepts. The similarity 

of two individual concepts can be relatively easily 

estimated by domain experts. As an example, based on 

common sense, concepts “People” and “Human” are 

often regarded as referring to the same meaning, i.e. 

their similarity degree is 1. On the other hand, concept 

“Faculty” is not always exactly referring to the same 

thing as “Professor”. Roughly speaking, a similarity 

degree can be assigned to these two concepts, say, 0.9. 

Some researches have also proposed various methods 

of determining conceptual similarity between individual 

concepts in a knowledge context [4, 5].  

Determining the similarity of various structures 

containing many concepts is fairly complicated. For 

instance, given the following three trees in Figure 1 

(which are modeling the concept structure about 

university domain and are developed by different 

people) where relationships between concepts are 

identical (“part-of” in this example) and a list 

describing the similarity of individual concept pairs 

(e.g. sim(People, Human) = 1 and sim(Faculty, 

Professor) = 0.9) which can be provided by domain 

experts, how can we determine what extent they are 

similar to each other and which two are more similar? 

 

T1

T2

T3

University

Department

Student Residence People Research Center

Registered Student Faculty
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Organization

Library Department

Research Center

Human
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University

Library School

Department Professor

Registered Student

Undergraduate Graduate

 
 Figure 1. An example of multiple trees for one domain. 

 

Our work extends classical tree editing operations. 

We propose four types of transformation operations 

which can map one concept tree into another, and 

provide definitions for the cost of each operation 

considering the number of affected nodes, the scale of 

the node set, the conceptual significance of affected 

nodes, and the conceptual similarity of the node pairs 

(each node representing one concept) in a knowledge 



context. The degree of tree similarity is measured 

according to the tree transformation cost. This 

methodology can be applied to ontology comparison to 

support ontology integration in cases where different 

ontologies for the same domain can be represented as 

trees. 

The rest of this paper is organized as follows. In 

section 2 we analyze previous work in related topics, 

and then in section 3 we present basic definitions of our 

work. Section 4 and 5 discuss tree transformation 

operations and their costs in detail. A case study in 

ontology comparison is discussed in section 6. Finally 

section 7 concludes the whole paper and proposes our 

future work. 

 

2. Related Work 

 
Research on comparing tree structures has a long 

history in many fields. Tree patter matching is one of 

the often used methods. For example, some researches 

explored the algorithm of matching pattern discovery in 

XML query [13, 14] whereas they did not focus on the 

cost of matching. Another domain of using tree pattern 

matching is compiling where matching cost is defined 

through tree-rewriting rules and instruction types [15]. 

Some researches have discussed the topic of tree 

editing and its cost (edit distance) [7, 8, 3]. However, 

these researches are mainly focused on finding matches 

based on pure structure or geometry perspective 

without considering the conceptual semantics of the 

tree nodes in a knowledge context. 

Maedche et al conducted in-depth research of the 

similarity between ontologies [16]. In their research 

context, an ontology has a tree structure that is 

modeling a concept taxonomy. A methodology was 

developed to measure the similarity between ontologies 

based on the notions of lexicon, reference functions, 

and semantic cotopy. This method is based on an 

assumption that the same terms are used in different 

ontologies for concepts but their relative positions may 

vary. However, in many real ontologies different terms 

will be adopted to construct the concept taxonomies, 

although some of them have similar semantics. In these 

cases computing taxonomic overlap is not fully 

applicable and lexical level comparison becomes almost 

inapplicable. Furthermore, this research did not take the 

structural characteristics of trees into consideration. 

Li et al conducted similar research on measuring the 

similarity of ontology models (represented as tree) 

based on tree structure mapping [17]. They proposed a 

mapping method that combines the similarity of the 

inner structure of concepts in different ontologies and 

the language similarity of concepts. The similarity of 

concepts is computed from some lexical databases like 

WordNet [4]. However, such a generic semantic 

similarity calculating algorithm is not perfectly 

applicable in domain-based concept systems. 

Furthermore, Li’s work did not handle cases of 

crossing-layer mappings, which is common in tree 

mapping where similar terms may be placed in various 

layers of the trees. 

Summarizing, to the best of our knowledge, no 

research has been fully done to measure similarity of 

trees based on both structure comparing and concept 

comparing. 

 

3. Tree Definition for Concept Structure 
 

Tree comparing has been studied in many 

researches. These researches are mainly focused on 

finding matches based on pure structure or geometry 

perspective (e.g. [7, 8]) without considering the 

conceptual semantics of the tree nodes in a knowledge 

context. 

We extend traditional definition of trees for the sake 

of modeling concept structures. The formal definition is 

given below: 

Definition 1: Concept Tree. An (unordered labeled) 

Concept Tree is a six-tuple T = (V, E, LV, root(T), D, M) 

where V is a finite set of nodes, E is a set of edges 

satisfying that E⊂V×V which implies an irreflexive and 

antisymmetric relationship between nodes, LV is a set of 

lexicons (terms) for concepts used as node labels, 

root(T)∈V is the root of the tree, D is the domain of 

discourse,  and M is an injective mapping from V to LV, 

M: V→L
V ensuring that each node has a unique label. 

For convenience, we simply call each term in LV a 

concept with an agreement of their semantics. 

A concept tree is acyclic and directed. If (u, v)∈E, 

we call u a parent of v and v a child of u, denoted as u = 

parent(v) or v = child(u). The set of all children of node 

u is denoted as C(u). For two nodes u1, u2∈V, if (u1, u2) 

∈ E* holds, then we call u1 an ancestor of  u2 and u2 a 

descendant of u1. The set of all descendants of node u is 

named D(u). 

Definition 2: Conceptual Similarity Measure. A 

conceptual similarity measure is a set of 

mapping from two lexicon sets L

21 ,
VV

LL
S

V1, LV2 used in different 

concept trees to the set of real numbers R, : 

L

21 ,
VV

LL
S

V1×LV2→R, in which each mapping denotes the 

conceptual similarity between two concepts represented 

by these two lexicons. R has a range of (0, 1].  is 

semantically reflexive and symmetric, i.e. for l

21 ,
VV

LL
S

1∈LV1 

and l2∈ LV2 we have (l
21 ,

VV
LL

S 1, l1) = 1 and (l
21 ,

VV
LL

S 1, 

l2) = (l
21 ,

VV
LL

S 2, l1). For convenience, we simply use w = 

s(l1, l2) to refer to the number value of conceptual 

similarity between two concepts from two trees T1 and 

T2. Intuitively, the larger w is, the closer the two 

concepts are and w = 1 means two concepts are actually 

synonymous. 



Conceptual similarity between two concepts can be 

given by domain experts or calculated based on some 

linguistic analysis methods. For instance, Mitra et al use 

a linguistic matcher to assign a similarity score to a pair 

of similar concepts [11]. For example, given the strings 

“Department of Defense” and “Defense Ministry”, the 

match function returns match(Defense, Defense) = 1.0 

and match(Department, Ministry) = 0.4, then it 

calculates the similarity between the two strings are: 

s(“Department of Defense”, “Defense Ministry”) = (1 + 

0.4)/2 = 0.7. 

For l1∈LV1 and l2∈ LV2, if there is no definition for 

l1 and l2 in the measure, we view l1 and l2 as totally 

different concepts. Such a concept pair will not be 

considered when two concept trees are being compared. 

 

4. Tree Transformation Operations and 

Transformation Cost 
 

Tree transformation operations can map one tree T 

into another, T’, as are defined below. 

 

4.1. Deleting node v (denoted as delete(v)) 

 

If v≠root(T), then V’ = V – {v}, E’ = E – {(u, v) | u 

= parent(v)} – {(v, vc) | vc ∈ C(v)} + {(u, vc) | u = 

parent(v) ∧ vc ∈ C(v)}, LV’ = LV – {M(v)}, and M’ = M – 

{(v, M(v))}.  

It must be noted that when deleting one node, 

besides eliminating that node from the tree, we still 

need to make its children nodes new direct children 

nodes of its parent node, which is different from 

deleting a sub-tree. 

If v = root(T), the result of deleting is a forest {T[vc] 

| vc∈C(v)}. In a concept tree the root is usually a very 

general concept like “object”, therefore we assume that 

all trees have a common root concept and restrict that 

the root is never allowed to be deleted. 

 

4.2. Inserting node v under node u (denoted as 

insertu(v)) 

 
We have 

V’ = V + {v}, E’ = E + {(u, v)} + {(v, uc) | uc∈C’(u)} 

– {(u, uc) | uc∈C’(u)}, LV’ = LV + {lv}, and M’ = M + {(v, 

lv)},  where lv is the lexicon assigned to the new node v, 

and C′(u) ⊆ C(u) meaning that some children nodes of 

u are changed to be children of the new node v. The 

elements contained in C’(u) is determined by the 

context when performing the editing operation. 

 

4.3. Re-labeling node v (denoted as 

relabellv→lv’(v)) 

 
This is a particular operation in labeled tree. Re-

labeling of v with label lv is to assign v a new label lv
’, 

keeping positions of all nodes unchanged. We have LV’ 

= LV – {lv} + {lv
’} and M’ = M – {(v, lv)} + {(v, lv

’)}. 

 

4.4. Moving node v to be under node u (denoted 

as moveu(v)) 

 
This is an extended operation in knowledge context 

that is not defined in classical tree editing operation 

sets. From Figure 2 we see that in the case of a pure 

structured tree (a) and (b) two operations delete(E) and 

insertB(E) can be performed to convert (a) to (b). 

However, when mapping a concept tree to another we 

cannot simply delete a node and then insert it since the 

concept represented by the node’s label already exists 

in the tree. 

B

(a)

(b)

(c) (d)

(e)

A

B C

D

E

A

B C

DE

University

Employee School

Department

Professor

University

Employee School

DepartmentProfessor

University

Employee School

Department

 
Figure 2. A case for moving operation.  

 

More specifically, in Figure 2 two trees (c) and (d) 

put the concept “Professor” in different positions and 

by moving node “Professor” to be under “Employee” 

we transform (c) to (d), instead of deleting “Professor” 

and then inserting it back (from (c) to (e) then (e) to 

(d)). 

The moving operation regulates that E’ = E + {(u, 

v)} + {(v, uc) | uc∈C’(u)} + {(parent(v), vc) | vc∈C(v)} – 

{(parent(v), v)} – {(v, vc) | vc∈C(v)} – {(u, uc) | 

uc∈C’(u)}, where C′(u) ⊆ C(u) meaning that some 

children of node u are changed to be children of the 

node v based on the operation context. 

 

Definition 3. Transformation Cost. Each 

transformation operation Op on tree T is mapped to a 

real number which is defined as the transformation cost 

of the operation and denoted as γ(Op). The 

transformation cost reflects the extent of change it 

makes to the tree. 

If OP = {Op1, Op2, …, Opk} is an transformation 

sequence, then the transformation cost of the sequence 

is defined as ∑ =

=
=

||

1
)()(

OPi

i iOpOP γγ . 

Definition 4. Tree Transformation Cost and 

Similarity Index. If OP is a transformation sequence 

mapping a tree T1 to another tree T2, then the tree 

transformation cost of T1 and T2 is defined as 



γ(T1→T2) = min{γ(OP) | OP is a transformation 

sequence mapping T1 to T2 }. 

Also, we define similarity index of two trees T1 and 

T2 as 

 γ (T1, T2) = min{γ (T1→T2), γ (T2→T1)}. 

It is a measure representing the degree to which two 

trees are similar to each other. The higher the tree 

transformation cost and similarity index is, the less 

similar the two trees are and vice versa. 

 

5. Computing of Transformation Cost 
 

In a tree transforming process we need to count the 

total cost of all transformation operations. A tree 

transforming process that maps tree T1 into T2 based on 

 contains the following tasks: 
21 ,

VV
LL

S

(1) Compute the set of nodes to be deleted, D, in 

T1.  

D = {u | u∈V1 ∧ M1(u)∉LV2 ∧ ¬∃s(M1(u), 

l2)∈ (l
21 ,

VV
LL

S 2∈LV2)}. That is, the nodes which labels 

are appearing in T1 but T2 and have no conceptual 

similarity with any labels in T2 defined. 

(2) Compute the set of nodes to be inserted into 

T1, I.  

I = {v | v∈V2 ∧ M2(v)∉LV1 ∧ ¬∃s(l1, 

M2(v))∈ (l
21 ,

VV
LL

S 1∈LV1)}. That is, the nodes which 

labels are appearing in T2 but T1 and do not have 

conceptual similarity definition with any labels in T1. 

(3) Try every possible combination of the deletion 

and insertion operations and find the minimal cost. 

(4) Compute the set of nodes to be moved within 

T1 itself, M, and move them. 
M = {u | u∈V1 ∧ (M1(u)∈LV2 ∧ M1(parent(u))≠M2(parent(M2

-1(M1(u)))) ∧ 

¬∃s(M1(parent(u)), M2(parent(M2
-1(M1(u)))))∈ )   ∨ (∃s(M

21 ,
VV

LL
S 1(u), l2)∈ 

 (l
21 ,

VV
LL

S 2∈LV2)) ∧ M1(parent(u))≠M2(parent(M2
-1(l2))) ∧ ¬∃s(M1(parent(u)), 

M2(parent(M2
-1(l2)))) ∈ )}. That is, the nodes that are 

appearing in both T

21 ,
VV

LL
S

1 and also in T2, or which labels 

have conceptual similarity with labels defined in T2, but 

which parents are neither the same nor similar. 

(5) After the deleting, inserting, and moving 

operations performed on T1, T1 now has the same 

structure with T2, but still has some nodes with different 

labels (implying different conceptual semantics). The 

final task is to compute the set of nodes to be re-

labeled, R, and re-label them. R = {u | u∈V1 ∧ 

M1(u)∉LV2 ∧ ∃s(M1(u), l2)∈  (l
21 ,

VV
LL

S 2∈LV2)}. That is, 

the nodes that are appearing in both T1 and T2 with 

different labels, but the labels have conceptual 

similarity between them. 

Let OP be the editing sequence containing 

operations in the above tasks, the transforming cost is 

computed as follows (using pure operation names): 

The cost of each transformation operation is a key 

issue for the measuring. The cost is affected by the 

level that a node resides in the tree structure, the scale 

of the set of nodes, the number of descendants of a 

node, and the similarity of two concepts attached to two 

nodes. For example, first, a node at a higher layer 

contains richer semantics than a lower node does, or, 

the concept it represents is more significant for the 

domain than a lower one does. Therefore, when a node 

u is at a higher layer, the effect to the concept tree of 

deleting u or inserting a new node under u is larger than 

that of deleting or inserting a node at a lower layer. 

Second, the more nodes a tree has, the less the effect 

will be when one node is deleted or inserted. That is, 

the larger the concept tree is, the less different it will be 

if it gets one new concept or loses one old concept. 

Third, a node with more descendants will cause greater 

change to the tree structure if it is deleted, or greater 

change if a node gets more descendants after it is 

inserted. Finally, the more similar the two concepts are, 

the less the cost will be to change one into another one. 

According to the research of [1, 9] and our own 

observations, we introduce the following cost 

computing algorithms: 

 Deleting cost. 

||

|)(|1)()(
))((

V

vDvdepthTheight
vdelete

++−
=γ , 

where v is a non-root node, height(T) is a function 

calculating the height of tree T, depth(v) calculates the 

depth of node v, and |D(v)| is the number of descendants 

of node v (including its direct children and indirect 

offspring). Intuitively, depth(root(T)) = 1, and depth(v) 

> 1 iff v is not the root. If v is a leaf node, D(v) = ∅ and 

|D(v)| = 0. When v is a leaf node at the lowest level 

(height(T) = depth(v)), deleting v will cause the 

minimal effect to the tree and γ(delete(v)) = 1/|V|. Note 

that here V refers to the original node set before the 

deletion. 

 Inserting cost. 

||

|)(|1)()(
))((

V

vDudepthTheight
vinsertu

++−
=γ , 

where |D(v)| is the number of descendants that v gets 

after it is inserted. Note that here V refers to the original 

node set before the insertion. When u is at the lowest 

layer, inserting a new node v under u will result in the 

minimal cost γ(insertu(v)) = 1/|V|. 

 Moving cost. 

||

2||
))](())(([

2

1
))((

V

V
vinsertvdeletevmove uu

−
×+= γγγ

, where |V|>2 (the tree has a root and at least two non-

root node) and u ≠ parent(v). Note that here insertu(v) is 

performed on a tree without node v. In this definition 

we consider both deleting and inserting operations 

because the moving operation does generate effects 

similar to deleting and inserting, although not exactly 

the same. The factor 1/2 adjusts the cost of operations 

since the node is not truly deleted and inserted into the 
}))(())(())(())((min{)(21 ∑∑∑∑

∈∈∈∈

→ +++=
RiMiIiDi

TT irelabelimoveiinsertideleteOP γγγγγ



tree. Another factor (|V| - 2)/|V| adjusts the cost again to 

ensure that in an extreme case where v is the only node 

other than the root, its moving cost should be 0 

(actually it cannot be moved) and when the number of 

nodes in the tree grows, the effect of the moving 

operation to the tree structure turns weaker. 

 Re-labeling cost. 

This cost is heavily dependent on the similarity of 

two labels (concepts). Re-labeling cost is different from 

deleting cost, inserting cost, or moving cost since the 

re-labeling operation does not result in change of a tree 

structure. The cost is heavily dependent on the 

similarity of two labels (concepts). Kouylekov et al [12] 

proposed a definition for substitution of two similar 

words w1, w2 as γ(insert(w2))×(1 – sim(w1, w2)) where 

insert(w2) is the cost of inserting w2 and sim(w1, w2) is 

the similarity between w1 and w2. This definition does 

not take the deletion of the original word into 

consideration, therefore when two words have no 

conceptual similarity the cost of substitution becomes 

the cost of insertion, neglecting the implicit deleting 

operation. In our work we give a more comprehensive 

definition. 

Let the similarity measure between two concepts lv1, 

lv2 which are attached to node v be s, 0≤s≤1, we define: 

)1())](())(([))(( )(21
svinsertvdeletevrelabel vparentll vv

−×+=→ γγγ
    We analyze two extreme cases: if s = 1, then re-

labeling will only result in literal replacing without any 

loss of information, therefore the re-labeling cost is 0; if 

s = 0 (i.e., the two concepts are totally different), the re-

labeling operation is equivalent to deleting v and 

inserting v again, the transformation cost is γ(delete(v)) 

+ γ(insertparent(v)(v)). In other cases, the cost will be 

between these two boundaries. 

 

6. Application on Ontology Comparison 
 

In the situations where two trees should be compared 

not only based on their geometrical structures but also 

concept hierarchy implicated by their structures, our 

methodology can be applied to measure their similarity 

in a knowledge context. The integration of ontologies is 

among such situations. In ontology integration, we 

consider the following two tasks that require ontology 

comparison to be crucial: 

(1) Before starting the integration, find from the 

original candidate ontologies one that is much more 

similar to most of others (meaning that it is possibly a 

better one) and take it as a foundation to initialize the 

integration. 

(2) Or, after the integration process is finished, 

compare the global ontology obtained with the original 

candidate ontologies to find the best one among them 

that is the most similar to the integrated result, i.e., to 

evaluate the trustability of original candidate 

ontologies. 

Both the above two tasks require some way to 

measure the similarity of different ontologies 

(composed by concepts and relationships, therefore 

bearing structural characteristic), other than just the 

similarity of two individual concepts. 

In many cases an ontology can be organized into a 

tree structure where each node presents one concept, 

semantics of relationships between concepts are 

identical (e.g. “part-of”), and each concept is related to 

only parent concept [10]. Our methodology is able to 

help evaluate similarity among different ontologies. 

Figure 1 shows three simplified ontologies for the 

university domain. Given that a set of measures 

describing the similarity of some concept pairs is 

defined: 

 s(People, Human) = 1; 

 s(Registered Student, Student) = 1, and 

 s(Faculty, Professor) = 0.9. 

One transformation sequence mapping T1 to T2 

causes the following costs: 

(1) γ(delete(Student Residence)) = 2/7 = 0.29; 

(2) γ(insertUniversity(Organization)) = 4/6 = 0.67 

(making Department a child node of 

Organization); 

(3) γ(insertOrganization(Library)) = 2/7 = 0.29; 

(4) γ(moveOrganization(Research Center)) = (1/2)((1/4) + 

(2/7))(6/8) = 0.20; 

(5) γ(relabelPeople→Human(People)) = 0; 

(6) γ(relabelRegistered Student→Student(Registered Student)) = 

0; 

(7) γ(relabelFaculty→Professor(Faculty)) = 0.041. 

Finally, the entire tree transformation cost is 1.491. 

We have to point out that compared with the deleting, 

inserting, and moving costs, the re-labeling operation 

has a minimal effect on the tree, therefore its cost is 

much smaller than the cost of the other three types.  

Usually there are various ways to map one tree into 

another with different costs. For instance, in the 

university case, if both “Department” and “Research 

Center” are made child nodes of “Organization” when 

inserting “Organization”, the inserting cost will change 

to 0.83, and there will be no moving cost, therefore the 

entire matching cost becomes 1.451. 

The following Table 1 summarizes the 

transformation cost and similarity index between three 

trees: 

 
Table 1. Transformation cost and similarity index. 

Tree 

Pair 
Transformation  Cost 

Similarity 

Index 

γ(T1→T2) γ(T2→T1) γ (T1, T2) T1, T2
1.227 1.034 1.034 

γ(T1→T3) γ(T3→T1) γ (T1, T3) T1, T3
2.839 2.614 2.614 

γ(T2→T3) γ(T3→T2) γ (T2, T3) T2, T3
2.128  2.039 2.039 

 



Since T2 is closer to both T1 and T3, it is better to be 

used as a foundation for integration.  

On the other hand, if T2 is the result of integration 

based on T1 and T3, T1 can be claimed more trustable 

since it is closer to the common ontology (T2) in terms 

of both structure and knowledge contained in its 

structure. 

 

7. Conclusion and Future Work 
 

In this work we extend classical similarity measuring 

methodology based on tree editing operations to make it 

more applicable to trees that are modeling concept 

structures. We propose definitions on tree 

transformation operations and transformation costs, 

based on how the similarity of two concept structures 

can be measured. We apply this methodology to 

ontology comparison where different ontologies of one 

domain can be represented as trees and relationships 

between concepts are identical. By discovering 

similarity between ontologies we are able to choose the 

best one from all the candidates and make it the 

foundation of the integration. Also the trustability of 

these ontologies can be evaluated. 

In our next step we will extend the tree structure to a 

graph which can model more complex concepts and 

relationships. New definitions for graph transformation 

operation and transformation cost are to be explored. 

Meanwhile, more types of relationships among 

concepts have to be considered, which requires further 

considerations on the semantics of the relationships. 
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