
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

12th International Conference on Computer Supported Cooperative Work in
Design (CSCWD 2008) [Proceedings], pp. 258-263, 2008-04-16

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=ee1ef45f-a36d-4604-858c-d457cec03459

https://publications-cnrc.canada.ca/fra/voir/objet/?id=ee1ef45f-a36d-4604-858c-d457cec03459

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A New tree similarity measuring methodology and its application to

ontology comparison
Xue, Y.; Wang, C.; Ghenniwa, H.; Shen, W.

http://irc.nrc-cnrc.gc.ca

A n e w t r e e s i m i l a r i t y m e a s u r i n g m e t h o d o l o g y
a n d i t s a p p l i c a t i o n t o o n t o l o g y c o m p a r i s o n

 N R C C - 5 0 2 8 0

X u e , Y . ; W a n g , C . ; G h e n n i w a , H . H . ; S h e n , W .

 A version of this document is published in / Une version de ce document se trouve dans:

Proceedings of the 12
th
 International Conference on Computer Supported Cooperative

Work in Design (CSCWD 2008), Xi’an, P.R. China, April 16-18, 2008, pp. 258-263

The material in this document is covered by the provisions of the Copyright Act, by Canadian laws, policies, regulations and international
agreements. Such provisions serve to identify the information source and, in specific instances, to prohibit reproduction of materials without
written permission. For more information visit http://laws.justice.gc.ca/en/showtdm/cs/C-42

Les renseignements dans ce document sont protégés par la Loi sur le droit d'auteur, par les lois, les politiques et les règlements du Canada et
des accords internationaux. Ces dispositions permettent d'identifier la source de l'information et, dans certains cas, d'interdire la copie de
documents sans permission écrite. Pour obtenir de plus amples renseignements :

http://lois.justice.gc.ca/fr/showtdm/cs/C-42

http://irc.nrc-cnrc.gc.ca/
http://laws.justice.gc.ca/en/C-42/index.html
http://lois.justice.gc.ca/fr/showtdm/cs/C-42

A New Tree Similarity Measuring Methodology and its Application to

Ontology Comparison

Yunjiao Xue, Chun Wang, Hamada H. Ghenniwa, Weiming Shen
Department of Electrical and Computer Engineering, The University of Western Ontario, London, ON, Canada

yxue24@uwo.ca, cwang28@uwo.ca, hghenniwa@eng.uwo.ca, wshen@uwo.ca

Abstract

This paper extends the classical tree similarity

measuring methodology and proposes a definition for

cost of tree transformation operations based on the

importance of each concept in the entire concept

structure and similarity between individual concepts in

a knowledge context. We apply the proposed

methodology to ontology comparison where different

ontologies for the same domain are represented as

trees and their similarity is required to be measured.

We show that the proposed methodology can facilitate

the initiation of ontology integration and ontology trust

evaluation.

Keywords: Tree Similarity, Measuring, Transformation

Cost, Ontology Comparison, Collaborative Design.

1. Introduction

An ontology specifies a conceptualization of a

domain in terms of concepts and their relationships [9].

Ontology can create an agreed-upon vocabulary for

sharing knowledge, exchanging information, and

eliminating ambiguity. It plays a very important role in

the area of Collaborative Design [1].

In practice, it is not common that a shared ontology

be provided for a specific domain. Contrarily, usually

different communities build their own ontologies that

are heterogeneous in terms of structure, syntax, and

semantics, even committing to the same

conceptualization of that domain. Therefore, ontology

integration [6] is developed to address this

heterogeneity.

In some cases the ontologies need to be compared to

support initialization of ontology integration and

ontology trust evaluation. An ontology can be viewed

as a knowledge structure, and one commonly used form

is that of a tree structure. Much os the research on

comparing trees uses editing cost from one tree to

another to measure the similarity of two trees [2].

Classical methods focus on structural and geometrical

characteristics of trees, mainly considering the number

of nodes affected by editing operations [3, 7]. However,

in a knowledge context where trees are used to model

concept structures, in addition to structural

characteristics of the trees, more attention must be paid

to concepts represented by the internal tree nodes.

Therefore, besides the number of edited nodes,

positions and conceptual similarities of the affected

nodes also have to be considered.

The similarity of two concept structures is based on

the similarity of their member concepts. The similarity

of two individual concepts can be relatively easily

estimated by domain experts. As an example, based on

common sense, concepts “People” and “Human” are

often regarded as referring to the same meaning, i.e.

their similarity degree is 1. On the other hand, concept

“Faculty” is not always exactly referring to the same

thing as “Professor”. Roughly speaking, a similarity

degree can be assigned to these two concepts, say, 0.9.

Some researches have also proposed various methods

of determining conceptual similarity between individual

concepts in a knowledge context [4, 5].

Determining the similarity of various structures

containing many concepts is fairly complicated. For

instance, given the following three trees in Figure 1

(which are modeling the concept structure about

university domain and are developed by different

people) where relationships between concepts are

identical (“part-of” in this example) and a list

describing the similarity of individual concept pairs

(e.g. sim(People, Human) = 1 and sim(Faculty,

Professor) = 0.9) which can be provided by domain

experts, how can we determine what extent they are

similar to each other and which two are more similar?

T1

T2

T3

University

Department

Student Residence People Research Center

Registered Student Faculty

University

Organization

Library Department

Research Center

Human

Professor Student

University

Library School

Department Professor

Registered Student

Undergraduate Graduate

 Figure 1. An example of multiple trees for one domain.

Our work extends classical tree editing operations.

We propose four types of transformation operations

which can map one concept tree into another, and

provide definitions for the cost of each operation

considering the number of affected nodes, the scale of

the node set, the conceptual significance of affected

nodes, and the conceptual similarity of the node pairs

(each node representing one concept) in a knowledge

context. The degree of tree similarity is measured

according to the tree transformation cost. This

methodology can be applied to ontology comparison to

support ontology integration in cases where different

ontologies for the same domain can be represented as

trees.

The rest of this paper is organized as follows. In

section 2 we analyze previous work in related topics,

and then in section 3 we present basic definitions of our

work. Section 4 and 5 discuss tree transformation

operations and their costs in detail. A case study in

ontology comparison is discussed in section 6. Finally

section 7 concludes the whole paper and proposes our

future work.

2. Related Work

Research on comparing tree structures has a long

history in many fields. Tree patter matching is one of

the often used methods. For example, some researches

explored the algorithm of matching pattern discovery in

XML query [13, 14] whereas they did not focus on the

cost of matching. Another domain of using tree pattern

matching is compiling where matching cost is defined

through tree-rewriting rules and instruction types [15].

Some researches have discussed the topic of tree

editing and its cost (edit distance) [7, 8, 3]. However,

these researches are mainly focused on finding matches

based on pure structure or geometry perspective

without considering the conceptual semantics of the

tree nodes in a knowledge context.

Maedche et al conducted in-depth research of the

similarity between ontologies [16]. In their research

context, an ontology has a tree structure that is

modeling a concept taxonomy. A methodology was

developed to measure the similarity between ontologies

based on the notions of lexicon, reference functions,

and semantic cotopy. This method is based on an

assumption that the same terms are used in different

ontologies for concepts but their relative positions may

vary. However, in many real ontologies different terms

will be adopted to construct the concept taxonomies,

although some of them have similar semantics. In these

cases computing taxonomic overlap is not fully

applicable and lexical level comparison becomes almost

inapplicable. Furthermore, this research did not take the

structural characteristics of trees into consideration.

Li et al conducted similar research on measuring the

similarity of ontology models (represented as tree)

based on tree structure mapping [17]. They proposed a

mapping method that combines the similarity of the

inner structure of concepts in different ontologies and

the language similarity of concepts. The similarity of

concepts is computed from some lexical databases like

WordNet [4]. However, such a generic semantic

similarity calculating algorithm is not perfectly

applicable in domain-based concept systems.

Furthermore, Li’s work did not handle cases of

crossing-layer mappings, which is common in tree

mapping where similar terms may be placed in various

layers of the trees.

Summarizing, to the best of our knowledge, no

research has been fully done to measure similarity of

trees based on both structure comparing and concept

comparing.

3. Tree Definition for Concept Structure

Tree comparing has been studied in many

researches. These researches are mainly focused on

finding matches based on pure structure or geometry

perspective (e.g. [7, 8]) without considering the

conceptual semantics of the tree nodes in a knowledge

context.

We extend traditional definition of trees for the sake

of modeling concept structures. The formal definition is

given below:

Definition 1: Concept Tree. An (unordered labeled)

Concept Tree is a six-tuple T = (V, E, LV, root(T), D, M)

where V is a finite set of nodes, E is a set of edges

satisfying that E⊂V×V which implies an irreflexive and

antisymmetric relationship between nodes, LV is a set of

lexicons (terms) for concepts used as node labels,

root(T)∈V is the root of the tree, D is the domain of

discourse, and M is an injective mapping from V to LV,

M: V→L
V ensuring that each node has a unique label.

For convenience, we simply call each term in LV a

concept with an agreement of their semantics.

A concept tree is acyclic and directed. If (u, v)∈E,

we call u a parent of v and v a child of u, denoted as u =

parent(v) or v = child(u). The set of all children of node

u is denoted as C(u). For two nodes u1, u2∈V, if (u1, u2)

∈ E* holds, then we call u1 an ancestor of u2 and u2 a

descendant of u1. The set of all descendants of node u is

named D(u).

Definition 2: Conceptual Similarity Measure. A

conceptual similarity measure is a set of

mapping from two lexicon sets L

21 ,
VV

LL
S

V1, LV2 used in different

concept trees to the set of real numbers R, :

L

21 ,
VV

LL
S

V1×LV2→R, in which each mapping denotes the

conceptual similarity between two concepts represented

by these two lexicons. R has a range of (0, 1]. is

semantically reflexive and symmetric, i.e. for l

21 ,
VV

LL
S

1∈LV1

and l2∈ LV2 we have (l
21 ,

VV
LL

S 1, l1) = 1 and (l
21 ,

VV
LL

S 1,

l2) = (l
21 ,

VV
LL

S 2, l1). For convenience, we simply use w =

s(l1, l2) to refer to the number value of conceptual

similarity between two concepts from two trees T1 and

T2. Intuitively, the larger w is, the closer the two

concepts are and w = 1 means two concepts are actually

synonymous.

Conceptual similarity between two concepts can be

given by domain experts or calculated based on some

linguistic analysis methods. For instance, Mitra et al use

a linguistic matcher to assign a similarity score to a pair

of similar concepts [11]. For example, given the strings

“Department of Defense” and “Defense Ministry”, the

match function returns match(Defense, Defense) = 1.0

and match(Department, Ministry) = 0.4, then it

calculates the similarity between the two strings are:

s(“Department of Defense”, “Defense Ministry”) = (1 +

0.4)/2 = 0.7.

For l1∈LV1 and l2∈ LV2, if there is no definition for

l1 and l2 in the measure, we view l1 and l2 as totally

different concepts. Such a concept pair will not be

considered when two concept trees are being compared.

4. Tree Transformation Operations and

Transformation Cost

Tree transformation operations can map one tree T

into another, T’, as are defined below.

4.1. Deleting node v (denoted as delete(v))

If v≠root(T), then V’ = V – {v}, E’ = E – {(u, v) | u

= parent(v)} – {(v, vc) | vc ∈ C(v)} + {(u, vc) | u =

parent(v) ∧ vc ∈ C(v)}, LV’ = LV – {M(v)}, and M’ = M –

{(v, M(v))}.

It must be noted that when deleting one node,

besides eliminating that node from the tree, we still

need to make its children nodes new direct children

nodes of its parent node, which is different from

deleting a sub-tree.

If v = root(T), the result of deleting is a forest {T[vc]

| vc∈C(v)}. In a concept tree the root is usually a very

general concept like “object”, therefore we assume that

all trees have a common root concept and restrict that

the root is never allowed to be deleted.

4.2. Inserting node v under node u (denoted as

insertu(v))

We have

V’ = V + {v}, E’ = E + {(u, v)} + {(v, uc) | uc∈C’(u)}

– {(u, uc) | uc∈C’(u)}, LV’ = LV + {lv}, and M’ = M + {(v,

lv)}, where lv is the lexicon assigned to the new node v,

and C′(u) ⊆ C(u) meaning that some children nodes of

u are changed to be children of the new node v. The

elements contained in C’(u) is determined by the

context when performing the editing operation.

4.3. Re-labeling node v (denoted as

relabellv→lv’(v))

This is a particular operation in labeled tree. Re-

labeling of v with label lv is to assign v a new label lv
’,

keeping positions of all nodes unchanged. We have LV’

= LV – {lv} + {lv
’} and M’ = M – {(v, lv)} + {(v, lv

’)}.

4.4. Moving node v to be under node u (denoted

as moveu(v))

This is an extended operation in knowledge context

that is not defined in classical tree editing operation

sets. From Figure 2 we see that in the case of a pure

structured tree (a) and (b) two operations delete(E) and

insertB(E) can be performed to convert (a) to (b).

However, when mapping a concept tree to another we

cannot simply delete a node and then insert it since the

concept represented by the node’s label already exists

in the tree.

B

(a)

(b)

(c) (d)

(e)

A

B C

D

E

A

B C

DE

University

Employee School

Department

Professor

University

Employee School

DepartmentProfessor

University

Employee School

Department

Figure 2. A case for moving operation.

More specifically, in Figure 2 two trees (c) and (d)

put the concept “Professor” in different positions and

by moving node “Professor” to be under “Employee”

we transform (c) to (d), instead of deleting “Professor”

and then inserting it back (from (c) to (e) then (e) to

(d)).

The moving operation regulates that E’ = E + {(u,

v)} + {(v, uc) | uc∈C’(u)} + {(parent(v), vc) | vc∈C(v)} –

{(parent(v), v)} – {(v, vc) | vc∈C(v)} – {(u, uc) |

uc∈C’(u)}, where C′(u) ⊆ C(u) meaning that some

children of node u are changed to be children of the

node v based on the operation context.

Definition 3. Transformation Cost. Each

transformation operation Op on tree T is mapped to a

real number which is defined as the transformation cost

of the operation and denoted as γ(Op). The

transformation cost reflects the extent of change it

makes to the tree.

If OP = {Op1, Op2, …, Opk} is an transformation

sequence, then the transformation cost of the sequence

is defined as ∑ =

=
=

||

1
)()(

OPi

i iOpOP γγ .

Definition 4. Tree Transformation Cost and

Similarity Index. If OP is a transformation sequence

mapping a tree T1 to another tree T2, then the tree

transformation cost of T1 and T2 is defined as

γ(T1→T2) = min{γ(OP) | OP is a transformation

sequence mapping T1 to T2 }.

Also, we define similarity index of two trees T1 and

T2 as

 γ (T1, T2) = min{γ (T1→T2), γ (T2→T1)}.

It is a measure representing the degree to which two

trees are similar to each other. The higher the tree

transformation cost and similarity index is, the less

similar the two trees are and vice versa.

5. Computing of Transformation Cost

In a tree transforming process we need to count the

total cost of all transformation operations. A tree

transforming process that maps tree T1 into T2 based on

 contains the following tasks:
21 ,

VV
LL

S

(1) Compute the set of nodes to be deleted, D, in

T1.

D = {u | u∈V1 ∧ M1(u)∉LV2 ∧ ¬∃s(M1(u),

l2)∈ (l
21 ,

VV
LL

S 2∈LV2)}. That is, the nodes which labels

are appearing in T1 but T2 and have no conceptual

similarity with any labels in T2 defined.

(2) Compute the set of nodes to be inserted into

T1, I.

I = {v | v∈V2 ∧ M2(v)∉LV1 ∧ ¬∃s(l1,

M2(v))∈ (l
21 ,

VV
LL

S 1∈LV1)}. That is, the nodes which

labels are appearing in T2 but T1 and do not have

conceptual similarity definition with any labels in T1.

(3) Try every possible combination of the deletion

and insertion operations and find the minimal cost.

(4) Compute the set of nodes to be moved within

T1 itself, M, and move them.
M = {u | u∈V1 ∧ (M1(u)∈LV2 ∧ M1(parent(u))≠M2(parent(M2

-1(M1(u)))) ∧

¬∃s(M1(parent(u)), M2(parent(M2
-1(M1(u)))))∈) ∨ (∃s(M

21 ,
VV

LL
S 1(u), l2)∈

 (l
21 ,

VV
LL

S 2∈LV2)) ∧ M1(parent(u))≠M2(parent(M2
-1(l2))) ∧ ¬∃s(M1(parent(u)),

M2(parent(M2
-1(l2)))) ∈)}. That is, the nodes that are

appearing in both T

21 ,
VV

LL
S

1 and also in T2, or which labels

have conceptual similarity with labels defined in T2, but

which parents are neither the same nor similar.

(5) After the deleting, inserting, and moving

operations performed on T1, T1 now has the same

structure with T2, but still has some nodes with different

labels (implying different conceptual semantics). The

final task is to compute the set of nodes to be re-

labeled, R, and re-label them. R = {u | u∈V1 ∧

M1(u)∉LV2 ∧ ∃s(M1(u), l2)∈ (l
21 ,

VV
LL

S 2∈LV2)}. That is,

the nodes that are appearing in both T1 and T2 with

different labels, but the labels have conceptual

similarity between them.

Let OP be the editing sequence containing

operations in the above tasks, the transforming cost is

computed as follows (using pure operation names):

The cost of each transformation operation is a key

issue for the measuring. The cost is affected by the

level that a node resides in the tree structure, the scale

of the set of nodes, the number of descendants of a

node, and the similarity of two concepts attached to two

nodes. For example, first, a node at a higher layer

contains richer semantics than a lower node does, or,

the concept it represents is more significant for the

domain than a lower one does. Therefore, when a node

u is at a higher layer, the effect to the concept tree of

deleting u or inserting a new node under u is larger than

that of deleting or inserting a node at a lower layer.

Second, the more nodes a tree has, the less the effect

will be when one node is deleted or inserted. That is,

the larger the concept tree is, the less different it will be

if it gets one new concept or loses one old concept.

Third, a node with more descendants will cause greater

change to the tree structure if it is deleted, or greater

change if a node gets more descendants after it is

inserted. Finally, the more similar the two concepts are,

the less the cost will be to change one into another one.

According to the research of [1, 9] and our own

observations, we introduce the following cost

computing algorithms:

 Deleting cost.

||

|)(|1)()(
))((

V

vDvdepthTheight
vdelete

++−
=γ ,

where v is a non-root node, height(T) is a function

calculating the height of tree T, depth(v) calculates the

depth of node v, and |D(v)| is the number of descendants

of node v (including its direct children and indirect

offspring). Intuitively, depth(root(T)) = 1, and depth(v)

> 1 iff v is not the root. If v is a leaf node, D(v) = ∅ and

|D(v)| = 0. When v is a leaf node at the lowest level

(height(T) = depth(v)), deleting v will cause the

minimal effect to the tree and γ(delete(v)) = 1/|V|. Note

that here V refers to the original node set before the

deletion.

 Inserting cost.

||

|)(|1)()(
))((

V

vDudepthTheight
vinsertu

++−
=γ ,

where |D(v)| is the number of descendants that v gets

after it is inserted. Note that here V refers to the original

node set before the insertion. When u is at the lowest

layer, inserting a new node v under u will result in the

minimal cost γ(insertu(v)) = 1/|V|.

 Moving cost.

||

2||
))](())(([

2

1
))((

V

V
vinsertvdeletevmove uu

−
×+= γγγ

, where |V|>2 (the tree has a root and at least two non-

root node) and u ≠ parent(v). Note that here insertu(v) is

performed on a tree without node v. In this definition

we consider both deleting and inserting operations

because the moving operation does generate effects

similar to deleting and inserting, although not exactly

the same. The factor 1/2 adjusts the cost of operations

since the node is not truly deleted and inserted into the
}))(())(())(())((min{)(21 ∑∑∑∑

∈∈∈∈

→ +++=
RiMiIiDi

TT irelabelimoveiinsertideleteOP γγγγγ

tree. Another factor (|V| - 2)/|V| adjusts the cost again to

ensure that in an extreme case where v is the only node

other than the root, its moving cost should be 0

(actually it cannot be moved) and when the number of

nodes in the tree grows, the effect of the moving

operation to the tree structure turns weaker.

 Re-labeling cost.

This cost is heavily dependent on the similarity of

two labels (concepts). Re-labeling cost is different from

deleting cost, inserting cost, or moving cost since the

re-labeling operation does not result in change of a tree

structure. The cost is heavily dependent on the

similarity of two labels (concepts). Kouylekov et al [12]

proposed a definition for substitution of two similar

words w1, w2 as γ(insert(w2))×(1 – sim(w1, w2)) where

insert(w2) is the cost of inserting w2 and sim(w1, w2) is

the similarity between w1 and w2. This definition does

not take the deletion of the original word into

consideration, therefore when two words have no

conceptual similarity the cost of substitution becomes

the cost of insertion, neglecting the implicit deleting

operation. In our work we give a more comprehensive

definition.

Let the similarity measure between two concepts lv1,

lv2 which are attached to node v be s, 0≤s≤1, we define:

)1())](())(([))(()(21
svinsertvdeletevrelabel vparentll vv

−×+=→ γγγ
 We analyze two extreme cases: if s = 1, then re-

labeling will only result in literal replacing without any

loss of information, therefore the re-labeling cost is 0; if

s = 0 (i.e., the two concepts are totally different), the re-

labeling operation is equivalent to deleting v and

inserting v again, the transformation cost is γ(delete(v))

+ γ(insertparent(v)(v)). In other cases, the cost will be

between these two boundaries.

6. Application on Ontology Comparison

In the situations where two trees should be compared

not only based on their geometrical structures but also

concept hierarchy implicated by their structures, our

methodology can be applied to measure their similarity

in a knowledge context. The integration of ontologies is

among such situations. In ontology integration, we

consider the following two tasks that require ontology

comparison to be crucial:

(1) Before starting the integration, find from the

original candidate ontologies one that is much more

similar to most of others (meaning that it is possibly a

better one) and take it as a foundation to initialize the

integration.

(2) Or, after the integration process is finished,

compare the global ontology obtained with the original

candidate ontologies to find the best one among them

that is the most similar to the integrated result, i.e., to

evaluate the trustability of original candidate

ontologies.

Both the above two tasks require some way to

measure the similarity of different ontologies

(composed by concepts and relationships, therefore

bearing structural characteristic), other than just the

similarity of two individual concepts.

In many cases an ontology can be organized into a

tree structure where each node presents one concept,

semantics of relationships between concepts are

identical (e.g. “part-of”), and each concept is related to

only parent concept [10]. Our methodology is able to

help evaluate similarity among different ontologies.

Figure 1 shows three simplified ontologies for the

university domain. Given that a set of measures

describing the similarity of some concept pairs is

defined:

 s(People, Human) = 1;

 s(Registered Student, Student) = 1, and

 s(Faculty, Professor) = 0.9.

One transformation sequence mapping T1 to T2

causes the following costs:

(1) γ(delete(Student Residence)) = 2/7 = 0.29;

(2) γ(insertUniversity(Organization)) = 4/6 = 0.67

(making Department a child node of

Organization);

(3) γ(insertOrganization(Library)) = 2/7 = 0.29;

(4) γ(moveOrganization(Research Center)) = (1/2)((1/4) +

(2/7))(6/8) = 0.20;

(5) γ(relabelPeople→Human(People)) = 0;

(6) γ(relabelRegistered Student→Student(Registered Student)) =

0;

(7) γ(relabelFaculty→Professor(Faculty)) = 0.041.

Finally, the entire tree transformation cost is 1.491.

We have to point out that compared with the deleting,

inserting, and moving costs, the re-labeling operation

has a minimal effect on the tree, therefore its cost is

much smaller than the cost of the other three types.

Usually there are various ways to map one tree into

another with different costs. For instance, in the

university case, if both “Department” and “Research

Center” are made child nodes of “Organization” when

inserting “Organization”, the inserting cost will change

to 0.83, and there will be no moving cost, therefore the

entire matching cost becomes 1.451.

The following Table 1 summarizes the

transformation cost and similarity index between three

trees:

Table 1. Transformation cost and similarity index.

Tree

Pair
Transformation Cost

Similarity

Index

γ(T1→T2) γ(T2→T1) γ (T1, T2) T1, T2
1.227 1.034 1.034

γ(T1→T3) γ(T3→T1) γ (T1, T3) T1, T3
2.839 2.614 2.614

γ(T2→T3) γ(T3→T2) γ (T2, T3) T2, T3
2.128 2.039 2.039

Since T2 is closer to both T1 and T3, it is better to be

used as a foundation for integration.

On the other hand, if T2 is the result of integration

based on T1 and T3, T1 can be claimed more trustable

since it is closer to the common ontology (T2) in terms

of both structure and knowledge contained in its

structure.

7. Conclusion and Future Work

In this work we extend classical similarity measuring

methodology based on tree editing operations to make it

more applicable to trees that are modeling concept

structures. We propose definitions on tree

transformation operations and transformation costs,

based on how the similarity of two concept structures

can be measured. We apply this methodology to

ontology comparison where different ontologies of one

domain can be represented as trees and relationships

between concepts are identical. By discovering

similarity between ontologies we are able to choose the

best one from all the candidates and make it the

foundation of the integration. Also the trustability of

these ontologies can be evaluated.

In our next step we will extend the tree structure to a

graph which can model more complex concepts and

relationships. New definitions for graph transformation

operation and transformation cost are to be explored.

Meanwhile, more types of relationships among

concepts have to be considered, which requires further

considerations on the semantics of the relationships.

8. References

[1] W. Shen, D. H. Norrie and J. A. Barthes, “Multi-Agent

Systems for Concurrent Intelligent Design and

Manufacturing”, Taylor & Francis, 2001.

[2] M. Guegan and N. Hernandez, “Recognizing Textual

Parallelisms with Edit Distance and Similarity Degree”,

Proceedings of EACL 2006, The Association for

Computer Linguistics, Trento, Italy, April 3-7, 2006.

[3] J. Allali and M. Sagot, “Novel Tree Edit Operations for

RNA Secondary Structure Comparison”, Proceedings of

IWABI 2004, Bergen, Norway, September 17-21, 2004, pp.

412-425.

[4] M. Warin, H. Oxhammark and M. Volk, “Enriching An

Ontology with WordNet based on Similarity Measures”,

Proceedings of the MEANING-2005 Workshop, Trento,

Italy, February, 2005.

[5] J. Han and M. Kamber, “Data Mining: Concepts and

Techniques”, The Morgan Kaufmann Series in Data

Management Systems, Jim Gray, Series Editor. Morgan

Kaufmann Publishers, August 2000.

[6] S. Pinto, A. Gómez-Pérez and J. P. Martins, “Some Issues

on Ontology Integration”. Proceedings of IJCAI1999

Workshop on Ontologies and Problem Solving Methods,

1999.

[7] S. Guda, H. V. Jagadish, N. Koudas, D. Srivastava and T.

Yu, “Approximate XML Joins”, Proceedings of ACM

SIGMID, 2002.

[8] J. Jin, B. K. Sarker, V. C. Bhavsar, H. Boley and L. Yang,

“Towards a Weighted-Tree Similarity Algorithm for RNA

Secondary Structure Comparison”, Proceedings of HPC Asia

2005, IEEE Computer Society, pp. 639-644, 2005.

[9] N. Guarino, “Understanding, Building and Using

Ontologies”, International Journal of Human-Computer

Studies, 46(2/3) (1997), pp. 293-310.

[10]M. Cho, H. Kim and P. Kim, “A New Method for

Ontology Merging based on Concept using WordNet”,

Proceedings of ICACT 2006, Volume 3, pp. 1573-1576,

2006.

[11]P. Mitra and G. Wiederhold, “Resolving Terminological

Heterogeneity in Ontologies”, Proceedings of the

ECAI’02 Workshop on Ontologies and Semantic

Interoperability, 2002.

[12]M. Kouylekov and B. Magnini, “Recognizing Textual

Entailment with Tree Edit Distance Algorithms”,

Proceedings of the PASCAL Challenges Workshop on

Recognising Textual Entailment, Southampton, UK, 2005.

[13]J. T. Yao and M. Zhang, “A Fast Tree Pattern Matching

Algorithm for XML Query”, Proceedings of International

Conference on Web Intelligence (WI 2004), 2004, pp.

235-241.

[14]N. Bruno, D. Srivastava and N. Koudas, “Holistic Twig

Joins: Optimal XML Pattern Matching”, Proceedings of

SIGMOD, 2002, pp. 310-321.

[15]A. V. Aho, M. Ganapathi and S. W. K. Tjiang, “Code

Generation Using Tree Matching and Dynamic

Programming”, ACM Transactions on Programming

Languages and Systems, Vol. 11, Issue 4 (October 1989),

pp. 491-516.

[16]A. Maedche and S. Staab, “Measuring Similarity between

Ontologies”, Proceedings of the 13th International

Conference on Knowledge Engineering and Knowledge

Management, Ontologies and the Semantic Web. Lecture

Notes in Computer Science, Vol. 2473 (2002), pp. 251-

263.

[17]S. Li, H. Hu and X. Hu, “An Ontology Mapping Method

Based on Tree Structure”, Proceedings of the Second

International Conference on Semantics, Knowledge, and

Grid (SKD’06), Guilin, Guangxi, China, 2006, pp. 87-88.

