
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the 1st IEEE Conference on Industrial Informatics, 2003

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=eabf67a6-ff64-4e47-9130-77ab405561a6

https://publications-cnrc.canada.ca/fra/voir/objet/?id=eabf67a6-ff64-4e47-9130-77ab405561a6

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A Security Framework for Collaborative Distributed System Control at

the Device-Level
Xu, Y.; Korba, Larry; Wang, L.; Hao, Q.; Shen, W.; Lang, S.

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l'information

A Security Framework for Collaborative Distributed
System Control at the Device-Level *

Xu, Y., Korba, L., Wang, L., Hao, Q., Shen, W., Lang, S.
August 2003

* published in the Proceedings of the 1st IEEE Conference on Industrial Informatics. Banff,
Alberta, Canada. August 2003. NRC 46501.

Copyright 2003 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

A Security Framework for Collaborative
Distributed System Control at the Device-Level

Yuefei Xu, Larry Korba
Institute for Information Technology

National Research Council Canada, Ottawa, ON, Canada
[Yuefei.Xu | Larry.Korba] @nrc.gc.ca

Lihui Wang, Qi Hao, Weiming Shen, Sherman Lang

Integrated Manufacturing Technology Institute
National Research Council Canada, London, ON, Canada

[Lihui.Wang | Qi.Hao | Weiming.Shen | Sherman.lang] @nrc.gc.ca

Abstract

In today’s globalized business world, outsourcing,

joint ventures, and cross-border collaborations have led
to work environments that are geographically distributed
across organizational and national boundaries. There are
critical research needs to develop highly secured
collaborative work environments and security solutions
for deployment, configuration, monitoring, and device
control of interoperating services. This paper presents a
well-shaped security framework for distributed system
control with a focus on device-level system control,
monitoring and services re-configuration in open and
dynamic environments. The characteristics of portability,
reconfigurability, interoperability, and interchangeability
of these new environments are considered as key factors
to produce new security risks and challenges. By adopting
Public Key cryptography, software agent and XML
binding technologies, the major security problems of
authenticity, integrity, confidentiality, and safe execution
are addressed in this framework. The core modules for
secure task delivery and execution are presented in detail.

Keywords: Security Framework, Computer-Supported
Cooperative Work; Software Portability, Interoperability,
Reconfigurability, Interchangeability, Collaborative
Distributed System Control; IEC61499

1. Introduction

With the growing globalization and decentralization of
businesses, the boundary between what is “inside” and

“outside” of an organization is blurring. Businesses and
interaction are now happening across traditional physical
boundaries. The decentralization of organizations has
become a major impact to the traditional business model.
Services and resources are distributed everywhere and
sourced anywhere through global supply chains. For
example, in the area of e-manufacturing, product design,
processing planning and manufacturing have shifted
rapidly from within one factory to global networks. To
cope with this trend, a collaborative environment with
interactive design, scheduling, monitoring, and control
capabilities is essential for any factory to increase its
competitiveness and profitability.

However, how to keep all activities under control in an
open and dynamic environment is still a very challenging
question. The challenge is much larger when one
considers the distributed low-level tasks, services,
machines, devices and processes involved in such a
system. Even for modern factories with PLCs
(Programmable Logical Controllers), their status and
processes are all kept in closed environments and are
separated from outside networks. As well their status and
operations are hard to predicate and control from a remote
site. This situation has created a barrier to forming new
collaborations with the moving global supply chains and
other activities. Recently, there are strong needs in
industry to add portability, operability, configurability,
and other features to current industrial control systems, so
that: 1) control tasks or components can be designed and
exchanged between different vendors; 2) different devices
can be operated, monitored and communicated with
outside and each other; 3) different devices can be re-
configured remotely to respond unanticipated events.

In the past few years, a number of research projects
have been formed to address these problems. Significant
projects include NIIIP in the USA [1]. The goal of this
project is to develop open industry software protocols that
can make software interoperation possible between
manufacturers and their suppliers. The latest Cimplicity
from GE Fanuc Automation (USA) allows users to view
their factory’s operational processes through an XML-
based WebView screen, including all alarms on every
Cimplicity system on the network [2]. To bring legacy
machine tools on-line, e-Manufacturing Network Inc.
(Canada) introduced its ION Universal Interface and
CORTEX Gateway. In 1999, Hitachi Seiki (Japan)
introduced FlexLink to its turning and machining centers,
making possible to do in-process gauging, machine
monitoring, and cycle-time analysis. Since 1998, Mazak
(Japan) has operated its high-tech Cyber Factory concept
at its headquarters in Oguchi, Japan. The fully
networkable Mazatrol Fusion controls allow Mazak
machines to communicate over wireless networks for
applications including real-time machine tool monitoring
and diagnostics. MetaMorph II [3] introduced a hybrid
agent-based mediator-centric architecture to integrate
partners, suppliers, and customers in a dynamic
manufacturing environment. At the same time, the
Internet and World Wide Web have been widely used as a
medium for exchanging information and are expanding to
industrial control areas.

Despite all these accomplishments, the available
systems are either for off-line simulation or for
monitoring only. Most systems require a specific
application to be installed instead of a standard interface,
like a web browser. The requirement of specific
application has limited the systems’ portability. Advanced
system design, scheduling, and execution functionality
remains isolated from the collaborative processes. To be
more competitive, users are now demanding integrated
solutions for these requirements.

More seriously, with system control and information
processing continuing to move towards open,
reconfigurable and interactive environments, existing
traditional security methods, like user name, password
approach are not sufficient. Portability, configurability,
interoperability, and interchangeability produce new
security risks and challenges. The security mechanisms
that are fully compatible with the demands of open and
dynamic situations are critical for the safety and the
functionality of collaborative systems.

This paper explores the security mechanisms for
collaborative distributed systems control in open and
dynamic environments. In section 2, we analyze the
distributed system control model and respective security
requirements. In section 3, a security framework for
collaborative distributed control is proposed to address
how distributed devices can be accessed securely by

mobile tasks, which travel within untrustworthy networks.
Section 4 presents the core modules of Security Control
Gateway for meeting the security challenges of
authenticity, integrity, confidentiality, and safe execution.
Section 5 presentes the security mechanisms of two
schemes. Before the conclusions in Section 7, we outline
our implementation considerations in Section 6.

2. Distributed System Control Models

As we mentioned in Section 1, there have been many
efforts towards increasing the portability, interoperability,
configurability, interchangeability and other collaborative
features of new distributed systems. Most significantly,
the International Electro-technical Commission (IEC)
Function Block (FB) specification (IEC 61499) is an
effort to standardize these efforts. This specification
provides an architectural and modeling approach for
distributed Industrial Process Measurement and Control
Systems (IPMCS) [4]. It also offers a series of reference
models to cover the whole control system life cycle,
including system planning, design, implementation,
validation, operation and maintenance.

According to IEC61499 for disturbed IPMCS, a
distributed system control is defined as a collection of
devices interconnected and communicating with each
other by means of one or more communication networks,
as shown in Figure 1.

Communication network(s)

Controlled process

Device 2 Device 3 Device 4Device 1

Application A

Appl. C

Application B

Figure 1 – Distributed System Model

A function performed by the control system is modeled
as an application which may reside in a single device,
such as application C in Figure 1, or may be distributed
among several devices, such as applications A and B in
Figure 1. For instance, an application may consist of one
or more control loop in which input sampling is
performed in one device, control processing is performed
in another, and output conversion in a third.

According to the guidelines given in IEC 61499-4, the
mainly implemented features specified in its compliance
profile are illustrated in Figure 2. These features are:

§ Portability: exchanges of software (control tasks)
between software tools and suppliers are supported;

§ Configurability: devices from multiple vendors can
be configured by different software tools from
multiple suppliers;

§ Interoperability: devices from different vendors can
operate with each other;

§ Interchangeability: devices and resources from one
vendor can exchange with the devices and resources
from another vendor.

Figure 2. Implemented features of IEC61499

In an open distributed system, distributed devices may
communicate and interact with each other. Each device is
controlled dynamically by mobile tasks, expressed by
Function Block codes, which may travel across open and
untrustworthy networks. In these processes, any change to
the devices, software modules or tasks may result in
potentially hazardous conditions. Such changes include
new function addition or modification, data/software
transfer, remote diagnosis and maintenance amongst
others. The open environment and dynamic processes
bring new challenges to the system. Significantly, security
risks may come from the network, data storage, operating
platform, and application modules. Compared with the
traditional control systems, running in closed trust
environments, the new scenario has the following security
challenges:
a). Authenticity: Active device nodes should access only

trusted, reliable code from vendors whatever the
transmission modes or forms, and the preservation
manner;

b). Integrity: Active code must be ensured that it is not
changed while traveling across open networks;

c). Confidentiality: Valuable code and data must be
protected from malicious attackers or competitors;

d). Execution Safety: Each active device has
independent local task execution protection policies
and the respective support mechanisms.

3. Security Framework for Collaborative
Distributed System

We have designed a security framework collaborative
distributed control to address the security challenges
discussed in section 2. The framework is illustrated in
Figure 3.

There are three logical domains in this framework:
client domain, task repository domain, and low-level
control device domain. Each entity in different domains is
geographically distributed and connected through
networks (LAN or WAN). For an open collaborative
distributed system, the above domains and its distributed
entities may run in open and unsecured network, like the
Internet.

On the client side, a user may hold one or more
credential, which certifies that s/he has some granted
rights to request some services under limited conditions.
For example, before an operator wants to query the status
of a device, the operator must provide a proof (credential)
signed by the device’s administrator or others who have
the delegation authority. Depending on a user’s priorities
and responsibilities, s/he may request different services,
like application design, device monitoring, device
operation, or system re-configuration. The outputs and
requests are all signed and encrypted by respective
Security Agents (SA).

On the repository side, there are task repositories
which store task components (IEC61499 Function Block
components). These task components contain different
application functions (i.e. PID Control) and come from
different suppliers. These repositories may be distributed
across several physical locations, but also connected by
networks. Each repository maintains a series of policies
(not shown in Figure 3 due to space limitations), which
provide detailed security requirements. Only requests
compatible with these policies can be served.

On the device side, there are a series of Security
Control Gateways, with several local devices beneath
them. By default, each Security Control Gateway and its
associated devices are considered to be within one trust
boundary. This means there is no security risk between
entities in one trust boundary.

Considering this framework, suppose that an operator
wishes to reconfigure some application on a running
device. The typical remote task re-configuration process
is described briefly as follows:
• First, the operator chooses control tasks by checking

and retrieving task components from different
repositories.

• The reconfiguration command is sent to the
corresponding Security Control Gateway with
appropriate credentials.

• Request and Credentials are collected and checked
against the security policy in the Security Control
Gateway.

• If the request and credentials are not compatible with
the security policy, the request will be rejected. It is
possible that the operator turns to seek more
credentials to support his/her request, or coordinate
with the device administrator on some adjustments of
the gateway policy.

• If the policy is satisfied, Request and Task Code are
delivered to Gateway securely.

• The Gateway executes the corresponding request.
Some additional actions, such as logging and altering
are also executed according to its security policy
requirements.

4. Security Control Gateway

In the above framework, the Security Control Gateway
plays a very important role in mediating outside request
and internal control actions. It guarantees the secure task
delivery and execution of low-level control processes.
The architecture of this gateway is show in Figure 4. The
main components are:
• Security Agent: For incoming dataflow, it checks the

authenticity and integrity of the data. Then it decrypts
dataflow and form XML data, which may contain
requests and task codes. For outgoing dataflow, it
signs and encrypts outgoing XML data and delivery

results. Details on the mechanisms are discussed in
the next section.

• XML-Binder Agent: This agent is responsible for
unmarshaling/marshaling XML data to/from Java
Objects. For incoming XML data, it unmarshals
XML data to runtime objects and generates OS-
supported schedulable tasks (i.e. threads). The
generated OS tasks are sent to the Admission Agent.
For outgoing information, e.g. when the Execution
Agent has feedback corresponding to the request, the
respective feedback objects are marshaled to XML
data and sent to the Security Agent to sign and be
sent out. In these processes, because only those tasks
compatible with predefined XML schema can be

Encrypted
Monitoring
Data

Security Agent

System Monitor

Browser (IE)

Encrypted
Design
Codes,
Modules

Security Agent

Designer

Browser (IE)

Encrypted
Commands,
Status Data

Security Agent

System Operator

Browser (IE)

Encrypted
Configuration
Commands

Security Agent

System Operator
(re-configuration)

Browser (IE)

Task
Components
Library #m

Security
Agent (SA)

Library #n

Task
Components
Library #x

Security Agent
(SA) Library #y

SA

SA Encrypted
Codes, Data

Encrypted
Codes, Data

Figure 3. Security Framework for Collaborative Distributed Industrial Control

Client Domain

Repository
 Domain

Security Control
Gateway 2

Security Control
Gateway 1

Devices-2A Devices-2C

Devices-2B
Devices-2D

Devices-1A Devices-1C

Devices-1B
Devices-1D

Device Domain

unmarshaled or marshaled, this module contributes
the execution safety partially.

• Admission Agent: When a new OS Task (i.e. thread)
is created, the Admission Agent will check whether it
is available to be executed according to the admission
policy. For example, an admission policy specifies
how much of the processor (CPU) bandwidth is
reserved for real-time, If there is insufficient
processor bandwidth available, the new OS Task will
be refused to register in the Task Queue.

This Admission Agent keeps the control process
running safely by only allowing the entry of those OS
Tasks that are compatible with its policies. This
module is an important part of the Gateway. It
guarantees the predictability of the distributed low-
level control.

• Queue Agent: When an OS Task passes the
admission test, an OS Task ID will be assigned to it.
The task will then be put into the Task Queue. The
first task in the queue is always waiting for execution
in the next scheduling period.

The Queue Agent maintains the queuing policy for
ordering queried tasks. Specified rules can be set, for
example, the rule of “earliest deadline first” is used
as the most appropriated ordering rule for real-time
device control.

Using different rules can constitute different task
queues that are suitable for different types of devices
and task control requirements. For example, the task
queuing policy may be set according to the following
factors:
o Priority of each task
o Task entry time
o Fairness-guarantee that each waiting task will

have a ‘fair’ opportunity to run
o Desired completion time of each task

• Schedule Agent: the Schedule Agent is responsible
for controlling the execution of a task. It gets the first
ordered task from the task queue and uses the API of
device to begin the real execution of that task on
specified devices.

5. Security Mechanisms for Security Agent

In the distributed control network, distributed devices
are controlled dynamically by mobile tasks, which may
travel within untrustworthy networks. The Security Agent
addresses three main security requirements: Authenticity,
Integrity, and Confidentiality.

In the collaborative framework, each of the individuals
including clients, repositories, and security control
gateways has a unified key pair: a public key and a
private key. A designated authority provides both of
these. The public key is used as the identification of the
key holder. The private key is used to form a signature on
the credential and request and other cryptographic
functions. This key is a key secret to the individual.

Before a task is delivery to other parties, it must be
signed by the sender to identify the task and also secure
its integrity or contents as well. Two schemes are
provided with the latter one provide the protection of
content confidentiality.

Scheme 1. Authenticity and Integrity

Figure 5 illustrates the process of the Scheme 1,
including signature and verification process. It provides
authenticity and integrity. The hash value of the original
message is formed by hashing algorithm, which means a
one-way transformation of a string of characters into a
usually shorter fixed-length value. Then only the hash
value of the message is signed in this scheme, which
avoids the time-consuming process to sign large message.
The original message is sent with the signature. The
receiver verifies the signature by decrypting the hash with
the sender's public key and matching it with the hash
generated against the received message.
The basic protocol is described as:

o The sender creates the hash value (a) of the
original message

Runtime Environment (JVM/OS)

Hardware

Encrypted Dataflow

Admission
Agent

Admission
Policy

Queue
Agent Queue

Policy

 Execution
 Agent

Schedule
Policy

XML-Binder Agent

Admit

Queue

Refuse

Schedule

Sign, Encrypt

Unmarshall

Security Agent

Security Decode

Marshall

Feedback

Figure 4. Architecture of the Security Control Gateway

o The hash value is encrypted with sender’s private
key

o The message and the encrypted hash value are
sent to the receiver

o The receiver decrypts the encrypted hash value
with the sender's public key

o The sender creates the hash value (b) of the
original message

o Receiver verifies by comparing the hash value
(a) it received and the hash values it created (b).

Figure 5. Scheme 1-Authenticity and Integrity

Scheme 2. Authenticity, Integrity and Confidentiality

Scheme 1 does not guarantee confidentiality since the
message is sent as plaintext. To further guarantee
confidentiality, instead of sending the plaintext message,
the message is encrypted with the receiver’s public key.
The process is illustrated in Figure 6.

Figure 6. Scheme 2-Authenticity, Integrity and Confidentiality

6. Implementation Consideration of the
Security Control Gateway

For distributed device-level control, most applications
and requests contain rigid time constraints. Therefore, all

the specified behaviors must be predictable, which means
the execution and associated transaction process must be
guaranteed to complete without violating the given time
constraints. The security control gateway must also
respond “fast enough” as defined by the characteristics of
the request. Furthermore, the security control gateway
should have the abilities to support time-critical execution
of some request tasks. To support these abilities,
appropriate scheduling mechanisms are critical for the
implementation of the security control gateway.

The common real-time scheduling approaches for
time-critical applications can be divided into two types:
cyclic execution scheduling and preemptive scheduling.
The preemptive scheduling is the ideal mechanism for the
implementation of the security control gateway.

For prototyping, we consider Java Virtual Machine
(JVM) to be the platform of the implementation. The
main reasons are:
(1) Java has desirable features of portability, safety, and

wide availability.
(2) Java incorporates thread and related concurrency

constructs. Especially, Java intrinsically provides
methods to support “preemptive” operations, where a
thread can be preempted by the Java runtime to
another thread.

(3) Java threads can potentially execute on more than
one separate processor, as could be the case under
Solaris or Windows NT running on a multiprocessor
platform. Thus, the Java thread interface allows the
system to take advantage of all available resources.

(4) The Java thread model provides means to
synchronize tasks that may run at different speeds.
This has special meaning for time-sensitive tasks.

As a virtual Operating System platform, combining
with the advantages of its multi-threading model, JVM
became our first choice for implementing the security
control gateway. Furthermore, for product development,
we are considering Real-time Java Operation Systems as
the system kernel to implement the Security Control
Gateway. More details will be reported in latter
publications.

7. Conclusion and future work

Facing open and dynamic environments, an effective
security framework is critical for the control of distributed
collaborative systems and devices. The architecture and
mechanisms we propose here are designed to solve the
security challenges involved in control system design,
configuration, operation, monitoring, and maintenance
through open networks. By combining cryptographic
functions, agent technologies, and XML data binding
technologies, we address four major security problems of
authenticity, integrity, confidentiality, and execution
safety.

Sender
Private
 Key

Original Message

Encryption

HASH

Digital
Signature

Hashing
Algorithm

Sender

Decrypted Message

Verification

HASH

Hashing
Algorithm

Sender
Public Key

Receiver

Decryp-
tion

HASH Text

Receiver
Public
 Key

Receiver
Private
 Key

Original Message

Encryption

HASH

Digital
Signature

Hashing
Algorithm

Sender
Private
 Key

Sender

Original Message

Verification

HASH

Hashing
Algorithm

Sender
Public Key

Receiver

Decryp-
tion

HASH Text

Security of distributed system control is a multifaceted
issue touching multiple disciplines, domains, departments
and even cultures. For different industrial application
domains, security problems may have to be considered
differently. For example, for the control of PLC devices
in safety-related Medical Systems, special requirements
like IEC 601-1-4 should be considered.

At the same time, there are other important issues to be
investigated to extend the research on the proposed
framework. For example, considering the limited
resources and capabilities for low-level device control,
lightweight security mechanisms form an important
aspect to be addressed in our research. The trust
mechanisms between different entities (clients,
repositories, smart devices) are also under investigation
and will be reported in later publications. As well, a
detailed security analysis of the effectiveness is under
development in our research group.

Reference

[1] Vision of the National Industrial Information Infrastructure

Protocols (NIIIP),1999. http://www.niiip.org/vision.html.
[2] Waurzyniak, P. Electronic Intelligence in Manufacturing,

SME Manufacturing Engineering, Vol.127, No.3, pp.44-67.
2001.

[3] Shen, W., Xue, D., and Norrie, D. H. An Agent-Based
Manufacturing Enterprise Infrastructure for Distributed
Integrated Intelligent Manufacturing Systems. Proceedings
of PAAM'98, London, UK. 1998

[4] IEC TC65/WG6. Function Blocks for Industrial-Process
Measurement and Control Systems. IEC-TC65/WG6
Committee.2000

[5] Adelson, B. Developing Strategic Alliances: A Framework
for Collaborative Negotiation in Design, Research in
Engineering Design, Vol.11, pp.133-144. 1999

[6] Bussmann, S. “An agent-oriented architecture for holonic
manufacturing control”, In: Proceedings of the 1st Int.
Workshop on Intelligent Manufacturing Systems, EPFL,
Lausanne, Switzerland, 1998.

[7] Caldwell, N. M. and Rodgers, P. A. WebCADET:
Facilitating Distributed Design Support, IEE Colloquium
on Webbased Knowledge Servers, London, U.K., pp.9/1-
9/4. 1998.

[8] Morad, N. and Zalzala, A. Genetic Algorithms in Integrated
Process Planning and Scheduling, Journal of Intelligent
Manufacturing, No.10, pp.169-179. 1999.

[9] NCMS. Factory-Floor Internet: Promising New
Technology or Looming Security Disaster Manufacturing
In Depth, National Center for Manufacturing Sciences,
November. 2001.

[10] Shen, W., Brooks, C., Li, Y., Lang, S. and Wang, L. XML-
based Message Services for Internet Based Intelligent Shop
Floors, Proceedings of SPIE Conference on Internet-Based
Enterprise Integration and Management, pp.135-144. 2001

[11] Shen, W., Lang, S., Korba, L., Wang, L., and Wong, B.
Reference Architecture for Internet Based Intelligent Shop
Floors. Proceedings of SPIE, Vol.4208, pp.63-71. 2000

[12] Smith, C. S. and Wright, P. K. (1996). CyberCut: A World
Wide Web Based Design-to-Fabrication Tool, Journal of
Manufacturing Systems, Vol.15, No.6, pp.432-442.

[13] Sun, J., Zhang, Y. F. and Nee, A. Y. C. (2001). A
Distributed Multi-agent Environment for Product Design
and Manufacturing Planning, International Journal of
Production Research, Vol.39, No.4, pp.625-645.

[14] Wang, L. and Norrie, D. H. (2001). Process Planning and
Control in a Holonic Manufacturing Environment, Journal
of Applied Systems Studies, Vol.2, No.1, pp.106-126.

[15] Wang, L., Wong, B., Shen, W. and Lang, S. Java 3D-
Enabled Cyber Workspace, Communications of the ACM,
Vol.45, No.11, pp.45-49. 2002

[16] Y. Xu, D. H. Norrie, Real-time Task Control Model for
Holonic Systems, Agents 2001 Workshop on Holons:
Autonomous and Cooperative Agents for Industry,
Montreal, Canada, May 29, 2001. 7.

[17] Y. Xu, R. Brennan, et al, A Genetic Algorithm-based
Approach to Holon Virtual Clustering, in Proceedings of
World Multiconference on Systemics, Cybernetics and
Informatics (SCI'2000), Vol. III, pp. 380-385, Orlando,
Florida, USA, July 23-26, 2000.

