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Abstract: Projective vision research has recently

received a lot of attention and has claimed some important

results in current literature. In this paper, we present a

compilation of tools that we have created to allow further
research into the field. Not only can experienced projective

vision researchers use these tools, but they also have use as

a visual learning aid for those just undertaking the task of

learning projective vision. We will discuss tools for

computing interest points, correspondence matching,

computing the fundamental matrix, computing the trilinear

tensor, and our intent for future releases of the Projective

Vision Toolkit(PVT).

Keywords: Projective Vision, Model Building, Computer

Vision

1 Introduction

Uncalibrated computer vision is a topic that has gathered

much interest in that last decade [1,2], with a lot of work

being done in the last four years. The goal is to produce

information about a scene without the aid of calibrated

sensors, ultimately to produce a valid 3D model. There

have been several systems implemented [3,4,5] that claim

to automatically produce these models from an

uncalibrated image sequence, yet none have been made

publicly available.

We have identified the following basic steps in building a
geometric model of a scene from an image sequence:

1 Corner Finding

2 Corresponding Corner Matching

3 Localized Filtering of Matches

4 Computing the Fundamental Matrix

5 Finding Triple Correspondences

6 Computing the Tensor

7 Auto Calibration

8 Building a Metric Model (Valid up to a scale factor)

Currently the projective vision toolkit (PVT) allows us to
perform steps 1 through 6. We have modularized the tools

so that any step of the process can be easily replaced with

experimental or more capable software. Although we

have not completed the entire process, there is still a lot

we can currently do with the PVT. Some applications are

covered in a later section titled Current Uses.

Rather than only implementing known existing algorithms,

we have also made additions and improvements over

existing implementations. The primary benefit that PVT

offers is having an entire collection of tools available that

work together. However, beyond being just a compellation

of necessary tools and known algorithms, our software also

has the following features:

• Handles a variety of common file formats (JPG, BMP,

GIF, PNG, PPM, PGM)

• Robust corner detection

• Handles larger baselines in the correspondence

matcher

• Uses localized filtering to prune incorrect

correspondences

• Computes projective and affine fundamental matrices

as well as planar warps

• Automatic computation of triple correspondences

• It is the only publicly available software that computes

the trilinear tensor

These features represent the beginning of our commitment

to creating an invaluable tool for projective vision research.

In order to understand the benefits of the toolkit

completely, a basic background in projective vision and

multi-view geometry is necessary. We continue with this

background information in the next section. Readers who

already have such a background are referred to section 3. A
more complete tutorial can be found at:

http://www.scs.carleton.ca/~awhitehe/PVT/tutorial/

2 Projective Paradigm

To explain the basic ideas behind the projective paradigm,

we must first define some notation. We work in
homogeneous coordinates, which are defined as an

augmented vector created by adding one as the last

element. Any projection of a point (in the Euclidean

coordinate system) M = [X, Y, Z,1] T to the image plane m

= [x,y,1] T can be described using simple linear algebra.

sm = PM

Where s is an arbitrary scalar, P is a 3 by 4 projection

matrix, and m = [x, y, 1] T is the projection of this 3D point

onto the 2D camera plane.



If the camera is calibrated, then the calibration matrix C,

containing the internal parameters of this camera (focal

length, pixel dimensions, etc.) is known. Having this

information we can generate the actual 2D image

coordinates using this calibration matrix C. Using raw

pixel co-ordinates, as opposed to actual 2D coordinates

means that we are dealing with an uncalibrated camera

system.

Consider the space point, M = [X, Y, Z, 1] T, and its image

in two different camera locations;
m1 = [x1, y1, 1] T and m2 = [x2, y2, 1] T. Then the well-

known epipolar constraint is:

m1
T

E m2 = 0

where

E = t × R.

where t is the translational motion between the 3D camera

positions, and R is the rotation matrix. The essential

matrix can be computed from a set of correspondences
between two different camera positions [12]. This

computational process is considered to be very error

prone, but in fact a simple pre-processing data

normalization step improves the accuracy and produces a

reasonable result [13].

The matrix E encodes the epipolar geometry between the

two camera positions. If the calibration matrix C is not

known, then the uncalibrated version of the essential

matrix is the fundamental matrix F and the epipolar

constraint still holds.

m1
T

F m2 = 0

The fundamental matrix can also be characterized in terms

of the essential matrix and the camera calibration matrices

F = C1
-T

EC2
-1

This makes it clear that the fundamental matrix contains

the information about the calibration matrices and the

camera motion.

The fundamental matrix can be computed directly from a

set of correspondences by a modified version of the

algorithm used to compute the essential matrix. A side

effect of computing the essential matrix is the 3D location

of the corresponding points. This is also true with the

fundamental matrix, but these 3D coordinates are found in

a projective space. The camera position is also found

when computing F, but again, only in a projective space.

There are fewer invariants in a projective space than a

Euclidean space, but there are still many useful invariants
such as co-linearity and co-planarity. Having camera

calibration simply enables us to easily move from a

projective space into a Euclidean space. We are not,

however, limited to being in the projective space. We can

still easily move to a metric space which only differs from

the Euclidean space by a scale factor.

While the fundamental matrix relates the geometry of two

views, there is a similar but more elegant concept for three

views called the trilinear tensor. Assume that we see the

point M = [X, Y, Z, 1] T in three camera views, and that 2D

coordinates of its projections are m1 = [x1, y1; 1] T , m2 =

[x2, y2, 1] T, and m3 = [x3, y3, 1] T In addition, with a slight

abuse of notation, we define mi as the i'th element of m1.
It has been shown that there is a 27 element quantity called

the trifocal tensor ℑℑℑℑ relating the pixel coordinates of the
projection of this 3D point in the three images [1].

Individual elements of ℑℑℑℑ are labeled ℑℑℑℑijk, where the
subscripts vary in the range of 1 to 3. If the three 2D co-

ordinates (m1, m2, and m3) truly correspond to the same 3D

point, then the following four trilinear constraints hold

m3ℑℑℑℑi13mi - m3m2'ℑℑℑℑi33mi - m2ℑℑℑℑi31mi - ℑℑℑℑi11mi = 0

m3ℑℑℑℑi13mi - m3m2ℑℑℑℑi33mi - m2ℑℑℑℑi32mi - ℑℑℑℑi12mi = 0

m3ℑℑℑℑi23mi - m3m2ℑℑℑℑi33mi - m2ℑℑℑℑi31mi - ℑℑℑℑi21mi = 0

m3ℑℑℑℑi23mi - m3m2'ℑℑℑℑi33mi - m2ℑℑℑℑi32mi - ℑℑℑℑi22mi = 0

In each of these four equations i ranges from 1 to 3, so that

each element of m is referenced. The trilinear tensor was

previously known only in the context of Euclidean line

correspondence [14], and the generalization to projective

space is recent [15, 1]. The estimate of the tensor is more

numerically stable than the fundamental matrix, since it

relates quantities over three views, and not two.
Computing the tensor from its correspondences is

equivalent to computing a projective reconstruction of the

camera position and of the corresponding points in 3D

projective space. One very useful characteristic of the

tensor is image transfer (also called image reprojection).

Given any two of m1, m2, and m3, and the tensor ℑℑℑℑ that
describes the geometry between the three images, one can

compute where the third point must be.

The fundamental matrix and trilinear tensor can be

calculated directly from pixel co-ordinates, and have many

important and useful characteristics. We believe that there

are four reasons for the recent rapid advances in the
projective framework.

1. Basic theoretical work defining the fundamental

matrix, trilinear tensor and their characteristics.

2. Simple and reliable linear algorithms for

computing these quantities from a set of 2D

image correspondences.

3. Robust random sampling algorithms for filtering

noisy and inaccurate correspondences.

4. A suite of algorithms for doing auto-calibration

using only the projective camera positions.

This combination of advances has made it possible,

theoretically, to create a 3D model using VRML of a scene

from an image sequence.



3 Description of the Toolkit

We now describe the details of the process that takes an

image sequence and computes various projective vision

information such as correspondences, fundamental

matrices and tensors. In doing so, we highlight the
changes and additions that we have made over what are

described in the literature.

3.1 Corner Finding

The first step in the process is to find a set of corners or

interest points in each image. These are the points where

there is a significant change in image gradient in both the

x and y directions. We use the public domain SUSAN

operator for this function [16]. Rather than setting a

corner threshold, we supply an option to return a fixed
number of corners. This tends to stabilize the results when

the images have different contrast and brightness because

the proper threshold is selected automatically. We find

that having around 800 corners returned from this tool

provides ideal input for the subsequent steps. In the future

we plan to make the required number of corners a function

of the average image gradient.

3.2 Corner Matching

The next step is to match corners between adjacent

images. A local window around each corner is correlated
against all other corner windows in the adjacent image

that are within a certain working window. The size of the

working window represents an upper bound on the

maximum disparity between adjacent images. Any corner

pair between two adjacent images that pass a minimum

correlation threshold and falls within the working

window, is a potential match. All potential matches must

pass a symmetry test which is define as:

Two corners p and q pass the symmetry test if and only if:

• The highest correlation score for p is the corner q

• The highest correlation score for q is the corner p

The symmetry test reduces the number of possible

matches significantly and forces the remaining matches to

be one-to-one, but there may be no matches found for a

given corner. The total number of possible matches

between images is therefore less than or equal to the total

number of corner points. Typically, there are only 200 to

500 acceptable matches between 800 pairs of corners.

Without the symmetry test constraint there are far more
matches; but these matches are much less reliable.

We have improved the capability for handling wider

baseline images. We set this upper bound for the working

window to be around 1/3 to 1/2 of the image dimensions.

We found that it is sometimes useful to relax the

symmetry test and to accept the n best matches (usually in

the order of 4). Even in this case we still require that the

results be symmetric, that is that each of these matches

actually be one of the n best in a symmetric fashion.

3.3 Localized Filtering of Corner Matches

The next step is to perform some type of local filter on

these matches. The idea is that just by looking at the local

consistency of a match relative to its neighbors it is

possible to prune many false matches. This is not always

done in the literature, but is sensible, since the

computational cost of using a local filter is low. One
possible approach used to prune matches is to use

relaxation [11]. We use a simpler relaxation-like process to

prune false matches, one based on the concept of disparity

gradient.

Corner points that are close together in the left image

should have similar disparities, and the disparity gradient

is a measure of this similarity. Thus, the smaller the

disparity gradient, the more the two correspondences are in

agreement and vice-versa. We have globalized the

comparison so that we compute the disparity gradient of
each corner match with respect to every other corner

match. The sum of all these disparity gradients is a

measure of how much this particular correspondence

agrees with its neighbors. We iteratively remove matches

until they all satisfy the condition that the match with

maximum disparity gradient sum is within a small factor

(usually 2) of the match with minimum disparity gradient

sum. Using this simple disparity gradient heuristic we are

able to remove significant numbers of bad corner matches

at a very low computational cost.

3.4 Computing the Fundamental Matrix

The next step is to use these filtered matches to compute

the fundamental matrix. This process must be robust, since

it can not be assumed that all of the correspondences are

correct, even after filtering! Robustness is achieved by

using concepts from the field of robust statistics, in

particular, random sampling. Random sampling is a

"generate and test process" in which a minimal set of

correspondences required to compute a unique

fundamental matrix, are randomly chosen [6, 8, 9, 17, 7,

11]. A fundamental matrix is then computed from this
minimal set. The set of all corners that satisfy this

fundamental matrix is called the support set. The random

sampling process returns the fundamental matrix with the

largest support set.

While this fundamental matrix is correct, it is not

necessarily the case that every correspondence that

supports the fundamental matrix is valid. This can occur,

for example, with a checkerboard pattern when the

epipolar lines are aligned with the checkerboard squares.

In such a case, the correctly matching corners can not be
reliably found using only epipolar lines (i.e. computing

only the fundamental matrix). This type of ambiguity can

only be dealt with by computing the trilinear tensor.



3.5 Finding Triple Correspondences

We compute the trilinear tensor putative correspondence

list (triple correspondences) from the correspondences that

form the support set of two adjacent fundamental matrices

in the image sequence. Consider three images, i, j and k

and their fundamental matrices Fij and Fjk. Each of these

matrices has a set of supporting correspondences, which

we call SFij and SFjk. Say a particular correspondence

element of SFij is (xi, yi, xj, yj) and similarly an element of
SFjk is (xj, yj, xk, yk). Now if these two supporting

correspondences overlap, that is if (xj ; yj) in SFij equals

(xj ; yj ) in SFjk then the triple created by concatenating

them as a member of CTijk, the set of triple

correspondences that a potential members of the support

set of the tensor ℑℑℑℑijk. This process is performed using all
sets of adjacent images in the sequence. With the set of

putative triple correspondence, we can now continue by

computing the trilinear tensor.

3.6 Computing the Tensor

Here we again employ the random sampling algorithms.

We use a randomly selected set of correspondences to

compute the tensor with the largest support. The result is

the tensor ℑℑℑℑijk, and a set of triples (corresponding corners
in the three images) that actually support this tensor,

which we call Sℑℑℑℑijk. As before, we provide more than a
single mechanism for computing the tensor, by offering a

variety of methods for use and review.

3.7 Visualizing the Results

Using the toolkit, we have gone from a set of images i, j, k

and computed a set of corner points Ci; Cj, and Ck; to a

set of matches Mij , and Mjk; to a set of filtered matches

DMij , and DMjk; to a pair of fundamental matrices Fij,
Fjk and their support sets SFij and SFjk; to a set of

computed triple correspondence Cℑijk, to a tensor ℑijk

with support Sℑijk. Note that the cardinality of the
supporting matches always decreases, but the confidence

that each match is correct increases. The entire process

begins with many putative matches, and refines these to a

few high confidence matches. The final matches that

support the tensor (Sℑijk), range in cardinality from 20 to
100, and in practice, have a very high probability of being

correct.

After all the computations are complete, we still find

ourselves with a large amount of data. The toolkit

provides a mechanism to visually display each of the

supports sets, along with motion vectors and

correspondences. The tool will also allow you to perform
epipolar and tensor transfers at runtime.

4 Current Uses

As mentioned previously, the toolkit is ideal for work in

uncalibrated computer vision. But this does not preclude

its use in the world of calibrated vision. Numerous

examples have show that generating correspondences in
the projective domain is an easy task when using the

toolkit.

Figure 1: Correspondences automatically found by PVT

Should calibration information be available, it can be used

to compute the 3D camera positions from these

correspondences. Such results have been demonstrated

experimentally on a number of examples [18] where the

triple correspondences are chained together and used as

input to the Photomodeler[10] program. This has
produced a Euclidean reconstruction of multiple camera

positions while greatly reducing the effort of selecting the

correspondences manually.

Not only can the toolkit be used in practical applications, it

is also useful as a teaching tools for learning concepts in

projective geometry. Having the ability to compare and

contrast algorithms, as well as being able to visualize the

results, helps to reduce some of the complexities new

students often face when learning the essentials of



projective vision. The modularity of the toolkit makes it

possible to experiment with new algorithms while

maintaining a consistent and reliable interface for the rest

of the process.

5 Future Additions

It is our intention to provide all the necessary tools to

complete the model building process. To this effect, in

future versions we hope that PVT will include:

• Video support with automatic frame extraction

• Auto-calibration routine to find at least the focal

length

• Projective Vision Tutorial that uses the toolkit as a

teaching aid

• Model building tools to create VRML worlds

6 Conclusions

We have developed a modular system that is capable of

using the projective vision paradigm to automatically find

correspondence points in an image sequence. It has
shown its immediate use in the field of photogrammetry,

and as an academic learning tool. We have implemented

robust corner detection, handle larger baselines in the

correspondence problem, introduced localized filtering,

computes projective and affine fundamental matrices as

well as planar warps, and automatically compute triple

correspondences. As well, to our knowledge this is the

only publicly available software that computes the

trilinear tensor. We have also provided a mechanism to

view the results that the toolkit produces.

We invite you to download the toolkit and try it on your
own image sequences. The toolkit is available on a

variety of platforms including Windows 95/NT, Linux,

SGI, and Solaris. Further documentation, as well as many

examples are available at:

http://www.scs.carleton.ca./~awhitehe/PVT
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