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ABSTRACT 

 

Escort tugs operate at high yaw angles in order to produce forces to steer and stop the 

vessel they are escorting in an emergency. In this paper, RANS predictions of forces and 

flow patterns around the hull of an escort tug model are compared with experimental data. 

Two alternative meshing strategies were used, one using tetrahedral elements with 

triangular faces and one using hexahedral elements with quadrilateral faces.  

 

Experiments were carried out with and without the low aspect ratio fin that is typical of 

many escort tugs. Lift and drag forces were measured experimentally for yaw angles from 

15 to 45 degrees. Flow measurements around the tug at 45 degrees yaw were obtained 

using a stereoscopic particle image velocimetry (PIV) system.  

 

The results from each CFD simulation were compared to the measured flow patterns 

using a numerical procedure that led to a quantitative measure of the accuracy of the 

predicted results. The analysis of the flow patterns indicated that the main features of the 

flow were predicted, and that on average, the predicted velocity magnitudes were within 

10% of the measured values. Neither mesh approach had a significant effect on the 

accuracy of the flow pattern predictions. The hexahedral mesh gave more accurate force 

predictions that the tetrahedral mesh. Forces were predicted by the CFD code with this 

mesh to within 5 % of the experimentally obtained values.  

 

 

 

1. INTRODUCTION 

 

Classical ship hydrodynamics focuses on ships moving forward in a straight line, or 

turning slowly under the action of a foil like rudder in calm water. These are generally 
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considered to be the design conditions, and the ‘off-design’ conditions, where these 

assumptions are no longer valid have seldom been studied. An escort tug is a vessel 

where ‘off-design’ hydrodynamics are an essential part of the ship’s operational profile 

(Allan & Molyneux, 2004). In this situation, the tug’s hull and propulsion system are 

positioned to create a hydrodynamic force, which is used to bring a loaded oil tanker 

under control in an emergency. The tug is attached to a towline at the stern of the tanker, 

and by using vectored thrust, it is held at a yaw angle of approximately 45 degrees. The 

maximum practical speed of operation for escort tugs is about 10 knots. The designs of 

escort tugs to date have been developed from practical experience and model experiments 

to measure lift and drag forces. A full understanding of the flow has not been developed, 

and it is unlikely that escort tugs can be developed to their full potential without this 

knowledge.  

 

One method of trying to understand the flow around a hull with a large angle of attack 

(yaw angle) is to use computational fluid dynamics (CFD). The basic equations of fluid 

motion can be combined with the hull geometry and some assumptions about the 

turbulence in the flow to give mathematical predictions of the pressure on the hull surface 

and the flow vectors within the fluid. Very little numerical analysis has been carried out 

on the hydrodynamics of hull shapes designed to operate at large yaw angles, and so the 

accuracy of CFD in these situations is unknown.  

 

An earlier study of the ability of a commercial Reynolds Averaged Navier-Stokes 

(RANS) CFD code to predict flow patterns around a Series 60 CB=0.6 hull with yaw 
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(Molyneux and Bose, 2007) concluded that there was very little difference in the 

predicted flow patterns between an unstructured mesh made from tetrahedral elements 

and a structured mesh made from hexahedral elements, when each was compared with 

experiment data. The Series 60 hull was not designed for large angles of attack to the 

flow and there was no force data available for the hull above 10 degrees of yaw, so the 

comparison was incomplete.  

 

It was recommended (Molyneux & Bose, 2007) that the conclusions on the best meshing 

strategy for the Series 60 hull should be checked using hull forms designed to operate at 

yaw angles over 30 degrees. This paper extends the comparison of forces and flow 

patterns calculated using tetrahedral and hexahedral CFD meshing strategies to a hull 

shape designed specifically to operate in ‘off-design’ conditions given by yaw angles up 

to 45 degrees. Some conclusions are made on the effectiveness of commercial RANS 

based CFD codes within the design process for ship hulls that are required to operate at 

large yaw angles.  

 

 

2. MODEL EXPERIMENTS TO MEASURE HYDRODYNAMIC FORCES 

 

The hull used for the experiments was an example of a modern escort tug hull developed 

by Robert Allan Ltd. of Vancouver, B. C (Allan et al. 2000). The hull is shown in Figures 

1 and 2.  
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Figure 1, Body plan for tug model, used in PIV experiments. 
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Figure 2, Profile view of tug, with fin and propulsion cage 
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A summary of the model geometry is given in Table 1. For this series of experiments the 

model was always moving with the fin (when fitted) going forwards (although the ship is 

actually going astern based on conventional definitions of bow and stern). This situation 

results from the fact that escort tugs have evolved from tractor tugs, which under normal 

operations sail with the propulsion system at the forward end of the hull. For effective 

escort mode at high speed, the tug operates in ‘indirect mode’, which is astern by the 

conventional definition.  

 

 

Table 1, Summary of principle particulars, escort tug 

 

Appendage option Hull only Hull and fin

Lwl, m 38.19 38.19 

Bwl, m 14.2 14.2 

T (max), m 3.8 6.86 

Displacement, 

tonnes S.W. 

1276 1276 

Lateral area, m
2
 125.4 157.1 

 

 

Experiments to measure hull forces were carried out in the Ice Tank of the National 

Research Council’s Institute for Ocean Technology (Molyneux, 2003).  The objective of 

these tests was to measure hydrodynamic forces and moments created by the hull and the 

appendages on a 1:18 scale model of the ship. The range of ship speeds was from 4 to 12 

knots (with model speeds based on Froude length scaling). Yaw angle was varied 

between zero and 105 degrees, which covered the full range likely to be encountered 

during escort operation.  The results of these experiments allowed basic force data for 
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different hull configurations to be compared, in much the same way as a resistance 

experiment can give a measure of merit for different hulls at zero yaw angle. The test 

method was very similar to that proposed by earlier researchers (Hutchison et al., 1993). 

The fin was at the upstream end of the hull, for all cases when it was fitted. The hull 

remained in the same orientation when the fin was removed.  

 

The models were fixed at the required yaw angle and measurements were made of surge 

force, sway force and yaw moment using a Planar Motion Mechanism (PMM). The load 

measurement system was connected to the tug on an axis along its centreline, at the height 

of the towing staple on the tug. The model was free to roll about the axis through the 

towing staple, and free to pitch and heave. Pitch angle, roll angle, heave amplitude and 

carriage speed were measured, in addition to the surge force Fx and sway force Fy. The 

model being tested on the PMM frame is shown in Figure 3.  

 

A small negative value of yaw angle (usually five or ten degrees) was used to check the 

symmetry of the results, and if necessary make a small correction to yaw angle to allow 

for any small misalignment of the model on the PMM frame. Prior to each days testing, 

the PMM system was checked using a series of static pulls which included surge only, 

sway only and combined surge and sway loads. Also individual data points were tared 

using data values for transducers obtained with the model stationary before the 

experiment began.  
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Figure 3, Model tested on PMM (10 knots) 

 

 

 

Forces and moments were measured in the tug-based coordinate system and non-

dimensionalized using the coefficients given below  

 

25.0 VA

F
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F
C

L

y

q ρ
=

 
 
 

Cq is the force coefficient normal to the tug centerline (sway) and Cl is the force 

coefficient along the tug’s centerline (surge). AL is the underwater lateral area of the hull 

and fin (if the fin was fitted), ρ is the density of the water (kg/m
3
) and V is the speed of 

the ship (m/s).  
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When the measured force values were non-dimensionalized, the results for all speeds 

reduced to small variations about a mean value of the coefficient (Molyneux, 2003). This 

implied that free surface wave effects are small for the range of speeds typically found in 

escort tug operation.  This observation simplified the CFD predictions since only the hull 

below the design waterline needs to be considered, and the free surface effects can be 

ignored.  

 

 

3. CFD PREDICTIONS OF HYDRODYNAMIC FORCES  

The surfaces used to construct the 1:18 scale physical model (Molyneux, 2003) were 

trimmed to the nominal waterline. The trimmed surfaces were imported as IGES files and 

cleaned up using the utilities available within GAMBIT (Fluent Inc., 2005a), the program 

used for creating the meshes. Dimensions for the surfaces were originally given in inches 

at model scale. The mesh was re-scaled in FLUENT  (Fluent Inc., 2005b) to have units of 

metres, model scale and an origin at the leading edge of the waterline for the hull. All 

dimensions given in this report are metres, model scale.  

 

A rectangular ‘tank’ was constructed around the hull. This had to be a compromise 

between being large enough that the boundaries had little effect on the results, and small 

enough that it converged to a solution in a reasonable time.  The same domain size was 

used for tetrahedral and hexahedral meshing strategies. Both meshes were created using 

GAMBIT 2.1. The final mesh dimensions are given in Table 2. The same basic mesh 
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geometry was used for the hull with and without the fin, and so views are shown for the 

case with the fin only.  

 

 

Table 2, Summary of mesh dimensions 

 

xmax xmin ymax ymin z max zmin 

m m m m m m 

7.974 -2.059 4.318 -4.318 0.000 -2.159 

 

 

 

 

3.1 Tetrahedral Mesh 

 

For the tetrahedral mesh, two volumes were created around the hull. The inner volume, 

close to the hull had a constant mesh size at all the boundaries. The outer volume had 

larger mesh elements at the outer surface than at the inner surface. The geometry for the 

tetrahedral mesh is shown in Figure 4 for the mesh on the hull surface and the nominal 

waterline. The total number of elements within the mesh was 2,170,899.  
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Figure 4, Tetrahedral mesh for escort tug hull 
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Figure 5, Hexahedral mesh for escort tug hull 
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3.3 Hexahedral Mesh 

 

The surface file used to create the hexahedral mesh was the same as the one used for the 

tetrahedral mesh. For the hexahedral mesh the additional step of creating new surfaces so 

that the hull could be defined completely in four-sided elements was required. This was 

done within Gambit.  

 

Again the mesh was divided into two regions. One region was close to the hull surface, 

and one was sufficiently far from the hull surface that flow conditions were not changing 

significantly. The hull and fluid volume were defined using a more elaborate system of 

construction planes along the length of the hull, especially close to the bow and the stern. 

Once the inner mesh was successfully defined, the cells in the planes were extruded to the 

inlet, outlet and bottom wall boundaries. The mesh was symmetrical about the centreline 

of the ship. The total number of elements within the mesh was 986,984, which was less 

than one half of the number used for the tetrahedral mesh. The hexahedral mesh is shown 

in Figure 5, for the hull surface and the nominal free surface.  

 

3.4 CFD Solver 

 

For both meshes the boundary conditions were set as velocity inlets on the two upstream 

faces, and pressure outlets at the two downstream faces. The upper and lower boundaries 

were set as walls with zero shear force. The hull surface was set as a no-slip wall 

boundary condition.   
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The CFD solver used was FLUENT 6.1.22. Uniform flow entered the domain through a 

velocity inlet on the upstream boundaries and exited through a pressure outlet on the 

downstream boundaries. Flow speed magnitude was set at 0.728 m/s, which corresponded 

to 6 knots at 1:18 scale, based on Froude length scaling. The fluid used was fresh water.  

 

The angle between the incoming flow and the hull (yaw angle) was set by adjusting the 

boundary conditions, so that the velocity at the inlet planes had two components. The 

cosine component of the angle between the steady flow and the centreline of the hull was 

in the positive x direction for the mesh and the sine component in the positive y direction. 

The pressure outlet planes were set so that the backflow pressure was also in the same 

direction. The advantage of this approach was that one mesh could be used for all the yaw 

angles. Yaw angles from 10 degrees to 45 degrees were simulated.  

 

The selection of the turbulence model was based on discussions with experienced users of 

Fluent and other CFD codes (Rhee 2005, Turnock, 2006,). The turbulence model used 

was a κ−ω model with the default parameters given in Table 3. Turbulence intensity and 

turbulent viscosity ratios were set at 1% and 1 respectively. The flow was solved for the 

steady state case. The non-dimensional residual for each of the solution variables 

(continuity, x, y and z velocity components, κ and ω) were set to 10
-3

 (default values). All 

flow conditions reported came to a solution within these tolerances. Results were 

presented as forces acting on the hull (including the fin if it was present) and as flow 

vectors within the fluid.  
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Table 3, Parameters for κ−ω turbulence model 

 
*

∞α  1.0 

∞α  0.52 

0α  0.111 

*

∞β  0.09 

iβ  0.072 

βR  8 

*ζ  1.5 

0tM  0.25 

TKE Prandl number 2 

SDR Prandl number 2 

 

 

 

4. COMPARISON OF CFD PREDICTIONS WITH EXPERIMENT DATA: 

FORCE COEFFICIENTS  

 

 

4.1 Hull Only 

 

Force components and non-dimensional coefficients derived from the results of the CFD 

simulations for the tug hull (without the fin) are given for the tetrahedral and hexahedral 

meshes in Table 4. The results of the simulations are compared with the experiments in 

Figure 6.  
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Table 4, Comparison of CFD predictions of hydrodynamic forces,  

tug with no fin 

 

 

   ρ 998.2 kg/m
3
  

   AL 0.387 m
2
  

Tetrahedral 

mesh       

Yaw angle V, Surge Sway Cq Cl 

# 

iterations 

deg.  m/s N N    
10 0.728 5.916 8.761 0.086 0.058 170 

20 0.728 5.535 17.298 0.169 0.054 195 

35 0.728 4.262 31.25 0.305 0.042 225 

45 0.728 2.921 40.415 0.394 0.029 233 

       
Hexahedral 

mesh       

Yaw angle V, m/s Surge Sway Cq Cl 

# 

iterations 

deg.  m/s N N    

10 0.728 7.198 10.262 0.100 0.070 75 

20 0.728 6.79 20.524 0.200 0.066 82 

35 0.728 5.326 36.589 0.357 0.052 93 

45 0.728 3.751 47.735 0.466 0.037 103 

 

 

When the force coefficients derived from experimental measurements were compared to 

the values predicted by CFD, the hexahedral mesh gave the most accurate predictions for 

the tug with no fin. The average discrepancy between the predicted side force component 

and the measured value was 6 percent and the maximum discrepancy was 13 per cent. 

The largest discrepancy between measured and predicted values occurred at 60 degrees of 

yaw.  For the tetrahedral mesh the predicted forces are consistently under predicted by an 

average of 18 percent when compared to the measured values, with the maximum 

discrepancy being 24 per cent.  

 

14 



 

For the longitudinal force component, which was much smaller than the side force 

component at the operating yaw angles, the tetrahedral mesh had an average discrepancy 

of 1 percent and the hexahedral mesh had an average discrepancy of 4 percent.  

 

Comparisons of the forces were made on the basis of the difference between the measured 

and predicted value of the force component non-dimensionalized by the total measured 

force ((Fx
2
+Fy

2
)

0.5
).  
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Figure 6, Comparison of CFD predictions for force coefficients with experiment values, 

hull only 
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4.2 Hull & Fin 

 

Force components and non-dimensional coefficients derived from the results of the CFD 

simulations for the combined hull and fin are given for the tetrahedral and hexahedral 

meshes in Table 5. The results of the simulations are compared with the experiments in 

Figure 7.  

 

Table 5, Comparison of CFD predictions of hydrodynamic forces, tug with fin 

 

   ρ 998.2 kg/m
3
  

   A 0.4849 m
2
  

Tetrahedral 

Mesh       
Yaw angle,  Speed,  Surge, Total sway, Cq Cl # iterations

deg m/s N N    

10 0.728 5.878 20.856 0.162 0.046 224 

20 0.728 3.752 42.822 0.334 0.029 259 

30 0.728 1.22 65.079 0.507 0.010 284 

35 0.728 0.418 75.998 0.592 0.003 293 

40 0.728 -0.127 84.03 0.655 -0.001 310 

45 0.728 1.146 86.53 0.674 0.009 428 

       
Hexahedral 

Mesh       
Yaw angle,  Speed,  Surge, Total sway, Cq Cl # iterations

deg m/s N N    

10 0.728 7.712 21.346 0.166 0.060 89 

20 0.728 6.173 45.906 0.358 0.048 102 

30 0.728 3.721 72.174 0.562 0.029 115 

35 0.728 2.065 84.407 0.658 0.016 119 

40 0.728 0.523 94.16 0.733 0.004 128 

45 0.728 -0.556 100.707 0.784 -0.004 145 
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Figure 7, Comparison of CFD predictions for force coefficients with experiment values, 

hull and fin 

 

 

The experimental force data for the hull and fin condition was not available, since this 

was not a condition required for the original project. All of the experiments with a fin 

included the protective cage. The effect of the cage was estimated from the complete data 

set by subtracting the force components for the cage (estimated from the hull only 

condition and the hull and cage condition) from the hull, fin and cage condition. 

 

The same observations about the accuracy of the predicted forces apply to the tug with a 

fin as for the tug without the fin, but the differences between the results with different 
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meshes are smaller. The hexahedral mesh resulted in predicted forces that were typically 

within 5 percent of the measured values, and never more than 10 percent different, 

whereas for the tetrahedral mesh, the typical agreement was within 7 percent and the 

maximum discrepancy was within 12 per cent. The force coefficients predicted from the 

hexahedral mesh were all within 5 percent of the experiment data for yaw angles between 

30 and 40 degrees and within 10 percent at 45 degrees. The forces predicted by the 

tetrahedral mesh over this range were typically within 10 percent of the measured forces 

over the same range of yaw angle, but were consistently under predicted relative to the 

measured values. The force coefficients predicted by the hexahedral mesh were a good 

mean fit to the measured values up to 35 degrees of yaw, but above that the forces 

predicted by CFD are over predicted relative to the measured values.  

 

The predicted normal force (pressure) and tangential force (viscous) components acting 

on the tug hull (fitted with the fin) from the hexahedral mesh are given in Table 6. These 

data show that as the yaw angle was increased, the proportion of viscous force to total 

force decreased. At zero yaw, the viscous force was approximately 25% of the total force, 

whereas at 10 degrees yaw, this had dropped to 9%, and at 30 degrees yaw it had dropped 

to 2%. At high yaw angles very little error in the forces at the hull would be expected by 

ignoring the viscous forces completely. One important element of including the viscosity 

forces within the fluid is to ensure the formation of vortices within the flow. It is 

important to check the predicted fluid flow patterns as well as the resulting forces.  
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Table 6, Comparison of pressure and viscous forces acting on tug and fin (hexahedral 

mesh) 

 

Yaw Pressure Viscous Total  Viscous/Total

Angle Force Force Force   

Degrees N N N   

      

0 6.07 2.06 8.13  0.254 

10 22.11 1.93 22.73  0.085 

20 46.08 1.71 46.32  0.037 

30 72.16 1.45 72.27  0.020 

40 94.05 1.14 94.16  0.012 

50 102.91 0.88 103.11  0.008 

 

 

 

 

5.5 CFD PREDICTIONS OF FLOW PATTERNS AT 45 DEGREES YAW  

 

 

Particle Image Velocimetry experiments were carried out to measure the flow around the 

same tug model at speeds of 0.5 and 1.0 m/s, with a yaw angle of 45 degrees (Molyneux 

& Bose, 2007). Measurements were made within a plane, normal to the direction of the 

incoming flow, at two locations on the hull. One location was a plane that intersected 

with the midship section on the upstream side of the hull, and the second location was a 

plane that intersected the midship section on the downstream side of the hull. These 

planes are shown in relation to the CFD grid (for the hexahedral mesh) and the flow 

direction in Figure 8. The PIV experiments were carried out on the upstream side of the 

hull for the hull without the fin, and on the downstream side of the hull, with and without 

the fin.  
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Figure 8, Planes used for comparing predicted flow patterns with PIV measurements 

 

 

As the grid for the CFD simulations had been created using ship-based coordinates, it was 

necessary to use the transformations given below, to convert the coordinates and vectors 

within the CFD simulations to the same flow based coordinate system as the PIV 

experiments.  
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where; 

xf and yf are in the flow based coordinates 

xs and ys are in the ship based coordinates  

θ is the angle between the flow direction and the ship based coordinates.  

As the transformation about the vertical axis was purely rotation, the third axis (z in the 

experiment notation) was unchanged. 

 

The CFD predictions of flow vectors within the plane and contours of velocity through 

the plane for the three regions where PIV experiments were carried out are shown below.  

Figures 9 and 10 show the upstream bilge, Figures 11 and 12 show the downstream bilge, 

with the fin removed and Figures 13 and 14 show the downstream bilge with the fin 

present. In each pair of figures, the first figure shows results for the tetrahedral mesh and 

the second shows results for the hexahedral mesh. Each prediction was made for an 

undisturbed flow speed of 0.5 m/s.  

 

One notable difference between the results given by the two meshes was that the 

hexahedral mesh showed a contour of 0.55 m/s, which extended under the hull, whereas 

this contour is missing from the results with the tetrahedral mesh.  
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5.1 Upstream Side, Without Fin 
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Figure 9, Flow vectors for tetrahedral mesh 

 

 

Figure 10, Flow vectors for hexahedral mesh
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5.2 Downstream Side, Without Fin 
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Figure 11, Flow vectors for tetrahedral mesh 
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Figure 12, Flow vectors for hexahedral mesh
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5.3 Downstream Side, With Fin 
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Figure 13, Flow vectors for tetrahedral mesh 
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Figure 14, Flow vectors for hexahedral mesh
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 6. QUANTITATIVE COMPARISON OF FLOW PATTERNS PREDICTED BY 

CFD AGAINST MEASURED PIV DATA 

 

A numerical method was developed for comparing measured flow pattern data with the 

flow patterns predicted using CFD (Molyneux & Bose, 2007). This data compared the 3-

dimensional flow vectors measured in experiments with CFD predictions for the same 

components over a common plane. This section describes the results of the same analysis 

applied to the PIV experiments on the escort tug (Molyneux et al., 2007) with the CFD 

predictions for the same flow conditions described above.  

 

The CFD data was reduced to a plane larger than the area covered by the measurements, 

but smaller than the complete plane within the CFD simulations. Each velocity 

component (Vx, Vy, Vz) was plotted as a contour over the reduced plane. In the PIV 

experiments two measurement grids were used. One was a fine grid, based on the PIV 

analysis for a single PIV window. The second grid was a coarser grid of 20mm squares 

that was used when all the PIV windows were combined and average flow vectors 

calculated for the complete measurement area. It was the coarse grid that was used for 

comparison with the CFD results.  

 

The in-plane velocity components (Vy, Vz) were combined into vectors. The difference 

between the vectors derived from the PIV experiments and the CFD simulations on the 

same y, z coordinate locations was calculated, using the expression 
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cfdterror VVV −= exp  

 

 

and graphed to show the errors in velocity magnitude and direction.  

 

 

The following parameters were also used as part of the numerical evaluation of the 

difference between the experiment values and the CFD predictions: 

 

cfdtz
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The results of the numerical analysis for the six flow conditions are shown in Figures 15 

to 26, and summarized in Tables 7 to 12.  

 

In each set of results, the first figure shows errorV (magnitude and direction), the second 

shows ErrorVx and the table summarizes the results. All results presented are based on the 

measured or predicted values of the flow speed, and have units of m/s for magnitude and 

radians for direction. The numerical analysis and visualization of the error between the 

experimental values and the CFD predictions was carried out using Igor (Wavemetrics 

Inc., 2005). This is a general-purpose computer program for data analysis and 

presentation. 
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6.1 Upstream side, without fin, tetrahedral mesh 

 

Table 7, Summary of error in CFD prediction 

 Average 

Standard 

Deviation Minimum Maximum Range 

In-plane      

Error Vy -0.001 0.068 -0.346 0.134 0.480 

Error Vz -0.005 0.023 -0.085 0.162 0.247 

Error 2d 0.042 0.059 0.001 0.347 0.345 

      

Through plane     

Error Vx -0.066 0.035 -0.238 0.137 0.375 

      

Error 3d 0.086 0.058 0.019 0.347 0.328 
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Figure 15, In-plane error, magnitude and direction 

 

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

z,
 m

-1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7

y, m

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

E
rro

r V
x

 
Figure 16, Through plane error, magnitude 
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6.2 Upstream side, without fin, hexahedral mesh 

 

Table 8, Summary of error in CFD prediction 

 Average 

Standard 

Deviation Minimum Maximum Range 

In-plane      

Error Vy 0.001 0.061 -0.282 0.136 0.418 

Error Vz 0.001 0.023 -0.064 0.142 0.205 

Error 2d 0.038 0.053 0.001 0.282 0.281 

      

Through plane     

Error Vx -0.069 0.041 -0.300 0.115 0.415 

      

Error 3d 0.085 0.060 0.018 0.372 0.354 
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Figure 17, In-plane error, magnitude and direction 
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Figure 18, Through plane error, magnitude 
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6.3 Downstream side, without fin, tetrahedral mesh 

 

Table 9, Summary of error in CFD prediction 

 Average 

Standard 

Deviation Minimum Maximum Range 

In-plane      

Error Vy 0.012 0.035 -0.072 0.174 0.246 

Error Vz 0.005 0.024 -0.048 0.064 0.112 

Error 2d 0.037 0.024 0.002 0.175 0.172 

      

Through plane     

Error Vx -0.034 0.050 -0.137 0.187 0.324 

      

Error 3d 0.070 0.027 0.007 0.221 0.215 
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Figure 19, In-plane error, magnitude and direction 
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Figure 20, Through plane error, magnitude 
 

29 



 

6.4 Downstream side, without fin, hexahedral mesh 

 

Table 10, Summary of error in CFD prediction 

 Average 

Standard 

Deviation Minimum Maximum Range 

In-plane      

Error Vy 0.013 0.040 -0.052 0.200 0.252 

Error Vz 0.001 0.022 -0.045 0.063 0.108 

Error 2d 0.039 0.028 0.002 0.200 0.198 

      

Through plane     

Error Vx -0.040 0.055 -0.110 0.206 0.316 

      

Error 3d 0.078 0.028 0.012 0.219 0.207 
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Figure 21, In-plane error, magnitude and direction 
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Figure 22, Through plane error, magnitude 
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6.5 Down stream side, with fin, tetrahedral mesh 

 

Table 11, Summary of error in CFD prediction 

 Average 

Standard 

Deviation Minimum Maximum Range 

In-plane      

Error Vy -0.005 0.043 -0.131 0.240 0.371 

Error Vz 0.020 0.033 -0.094 0.114 0.208 

Error 2d 0.049 0.032 0.002 0.254 0.252 

      

Through plane     

Error Vx -0.062 0.068 -0.185 0.307 0.492 

      

Error 3d 0.100 0.044 0.010 0.397 0.388 
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Figure 23, In-plane error, magnitude and direction 
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Figure 24, Through plane error, magnitude 
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6.6 Down stream side, with fin, hexahedral mesh 

 

Table 12, Summary of error in CFD prediction 

 Average 

Standard 

Deviation Minimum Maximum Range 

In-plane      

Error Vy 0.007 0.048 -0.128 0.278 0.406 

Error Vz 0.021 0.034 -0.116 0.116 0.232 

Error 2d 0.051 0.037 0.000 0.290 0.290 

      

Through plane     

Error Vx -0.088 0.052 -0.200 0.278 0.478 

      

Error 3d 0.113 0.039 0.034 0.388 0.354 
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Figure 25, In-plane error, magnitude and direction 
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Figure 26, Through plane error, magnitude 
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7. DISCUSSION OF EXPERIMENTAL RESULTS 

 

 

7.1 Through Plane Velocity Components 

 

Table 13 shows a summary of the non-dimensional errors in the through plane velocity 

components for each of the locations around the tug. In this table, the non-dimensional 

parameter Erroru (which is the error in the through-plane velocity component) was 

calculated from Tables 7 to 12 by non-dimensionalizing the values of ErrorVx with the 

free stream flow speed.  

 

Table 13, Non-dimensional values of Erroru 

 

Flow region Tetrahedral 

mesh 

Hexahedral 

mesh 

Upstream, no fin -0.133 -0.138 

Down stream, no fin -0.068 -0.080 

Downstream, with fin -0.124 -0.175 

 

 

 

From these values it can be seen that the value of Erroru is consistently negative. This 

means that the flow component from the CFD predictions was consistently higher than 

the observed values in the experiments. The difference was consistent with the values of 

the wake from the seeding rake used for these experiments (Molyneux et al., 2007a), 

which was seen to be between 10 and 12 percent of the free stream flow. It was expected 

that the wake from the seeding rake was reducing the flow speed, relative to the case 

when the rake was not present. It was also shown that the rake had negligible effect on the 

in-plane flow measurements, so comparison between the CFD simulations and the PIV 

experiments should be focussed on the in-plane flow patterns.  
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7.2 In-plane Velocity Components 

Three numerical values were picked to compare the PIV experiments with the tetrahedral 

and hexahedral meshes. These were the mean value and standard deviation of Error2D and 

the fraction of the data where the error between the CFD predictions and the experiments 

(for the in-plane flow components) were within 10% of the free stream speed. The values 

were non-dimensionalized based on the free stream speed of 0.5 m/s. The results are 

given in Tables 14 to 16.  

 

Table 14, Non-dimensional mean, Error2D 

 

Flow region Tetrahedral 

mesh 

Hexahedral 

mesh 

Upstream, no fin 0.083 0.076 

Down stream, no fin 0.074 0.078 

Downstream, with fin 0.097 0.101 

 

 

 

Table 15, Non-dimensional standard deviation, Error2D 

 

Flow region Tetrahedral 

mesh 

Hexahedral 

mesh 

Upstream, no fin 0.117 0.107 

Down stream, no fin 0.049 0.055 

Downstream, with fin 0.064 0.074 

 

 

 

Table 16, Fraction of data set where Error2D was within 10% of free stream speed 

 

Flow region Tetrahedral 

mesh 

Hexahedral 

mesh 

Upstream, no fin 0.827 0.840 

Down stream, no fin 0.820 0.785 

Downstream, with fin 0.623 0.598 

These tables show that there was very little effect of the mesh type on the accuracy of the 

predicted flow patterns, when compared to the observed flow patterns from the PIV 
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experiments. The hexahedral mesh had a small advantage on the upstream side of the tug 

model, but on the downstream side, the tetrahedral mesh had a slight advantage. In 

general, the best predictions were for the upstream side of the tug and the worst 

predictions were for the downstream side of the tug, with the fin. This was to be expected 

since the downstream side of the flow was much more unsteady (Molyneux et al., 2007b).  

 

For the flow on the upstream side of the hull (Figures 17 and 19), both meshes gave 

similar errors, with the worst predictions of flow vectors close to the hull and the 

accuracy of the predictions improving as the distance from the hull increased.  PIV 

measurements close to the hull will likely be the most difficult to obtain accurately, 

because the hull, even when painted black, reflects the light and a bright band is seen in 

the pictures of the particles where the laser beam cuts the hull. Even though the analysis 

software includes a filter to reduce this effect, the experiment results obtained in this 

region may be subject to error.  

 

On the downstream side of the hull without the fin, (Figures 21 and 23) the highest errors 

were seen on the underside of the hull, just before the corner of the bilge, and on the top 

of the vortex caused by the flow separation at the bilge. In the region under the hull, the 

CFD did not predict the observed speed of the flow, especially for the tetrahedral mesh. 

In this case the predicted flow was almost stationary, whereas the PIV measurements 

showed it was not. The hexahedral mesh gave slightly smaller error in this region.  

The other area where the predicted flow did not match the observed flow was on the 

downstream side of the hull, between the bottom of the hull and the waterline. This was 
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the region where the strongest flow velocities occurred. These high velocities were the 

result of the vortex caused by the flow separation off the corner of the bilge. Again the 

hexahedral gave smaller errors in this region but the difference was not significant 

relative to the tetrahedral mesh.  

 

When the fin was present (Figures 23 and 25) and the very large vortex was generated, 

the worst comparison between the experiment data and the CFD predictions occurred 

close to the hull on the downstream side between the bottom of the hull and the waterline, 

and under the hull. Both meshes showed relatively small errors in the flow around the 

vortex, but the hexahedral mesh gave relatively poor prediction of the flow patterns close 

to the waterline, compared with the tetrahedral mesh.  

 

Based on the numerical analysis, both meshes gave similar predictions of the flow 

patterns around the hull of an escort tug with a yaw angle of 45 degrees, and neither 

approach had a significant advantage in any of the conditions investigated.  

 

The non-dimensional values for the errors between the PIV experiments and the CFD 

predictions for the escort tug at 45 degrees yaw are compared to the Series 60 model at 35 

degrees yaw (Molyneux & Bose, 2007) in Table 17 for the tetrahedral mesh and Table 18 

for the hexahedral mesh. These tables show that the accuracy of the CFD predictions for 

the escort tug was better than for the Series 60 model, and the CFD predictions showed 

less variation with the type of the mesh.  
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Table 17, Comparison of errors in velocity magnitude for in-plane vectors, Series 60 and 

escort tug, tetrahedral mesh 

 

 

Parameter Series 60, CB=0.6 

Yaw angle 35 

degrees,  

Midship section 

Escort tug, no fin 

Yaw angle 45 

degrees, 

Midship section 

Escort tug, with fin 

Yaw angle 45 

degrees, 

Midship section 

Errorv 0.091 0.024 -0.01 

Errorw 0.013 0.010 0.040 

Error2D 0.241 0.070 0.098 

  

 

 

Table 18, Comparison of errors in velocity magnitude for in-plane vectors, Series 60 and 

escort tug, hexahedral mesh 

 

Parameter Series 60, CB=0.6 

Yaw angle 35 

degrees,  

Midship section 

Escort tug, no fin 

Yaw angle 45 

degrees, 

Midship section 

Escort tug, with fin 

Yaw angle 45 

degrees, 

Midship section 

Errorv 0.053 0.027 0.014 

Errorw 0.049 0.003 0.042 

Error2D 0.164 0.078 0.102 

  

 

 

These differences may be due to the significant differences in the hull shapes between the 

escort tug and the Series 60 hull. The escort tug was proportionally much wider 

(L/B=2.69) and shallower (B/T=3.74) compared to the Series 60 hull with L/B=7.5 and 

B/T=2.5. The flow on the downstream side of the escort tug (between the waterline and 

the keel) was proportionally faster than the flow on the downstream side of the Series 60 

hull, while the flow over the bottom was approximately the same. As a result, there was 

less of a shear force gradient on the tug and so when the vortex forms from the 

downstream bilge corner it is not as strong as the vortex on the Series 60 model.  

37 



 

8. RECOMMENDATIONS FOR FURTHER STUDY 

 

There are some improvements that could be made to the CFD mesh that might improve 

the level of prediction of the forces and flow patterns. The first major refinement would 

be to include the free surface waves generated by the hull. This was ignored from the 

current meshes on the basis that the effect of the free surface on the forces measured in 

the model experiments was seen to be small. The free surface of the water will distort and 

may affect the flow patterns close to the surface. This effect will become more noticeable 

as yaw angles and flow speeds increase.  

 

Another refinement would be to make the mesh elements smaller in key areas of the flow. 

The most likely areas for refinement are where vortices are generated in the flow. The 

most noticeable vortices observed in the PIV experiments were around the downstream 

bilge for the hull without the fin, and the large vortex generated by the fin when it was 

fitted. A refined mesh could be generated and the results compared with the single 

measurement window PIV data (Molyneux et al. 2007), instead of the coarser data 

spacing that was used for the complete data set.  

 

9. CONCLUSIONS 

 

A commercial RANS Computational Fluid Dynamics (CFD) code was used to predict the 

forces generated by an escort tug hull, and the same hull fitted with a low aspect ratio fin, 

over the typical operating range of yaw angles, from 10 to 60 degrees. Two types of mesh 
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were used. One type was a tetrahedral mesh, consisting of elements with four, three sided 

faces. The other type was a hexahedral mesh, consisting of elements made of six four 

sided faces. The most accurate force predictions were obtained using the mesh made 

entirely of hexahedral elements. This mesh gave force predictions that on average were 

within 5-6 % of measured values for the same flow conditions, and never exceeded 10%. 

The number of elements for the hexahedral mesh was less than one half of the number in 

the tetrahedral mesh, which resulted in a faster solution time.   

 

The flow patterns around the hull predicted by both meshes at 45 degrees yaw were 

compared to PIV measurements taken at two planes around the hull. A subjective 

comparison of the results indicated that the hexahedral mesh gave slightly better 

predictions of the flow patterns, especially for the flow conditions across the bottom of 

the hull. A numerical analysis comparing the two meshes over the complete measurement 

region indicated that the differences were very localized and numerically very small. The 

average difference between the measured and predicted in-plane flow velocity vector 

magnitudes was between 8 and 10 per cent.  

 

When the data for forces and flow patterns were combined, the best approach for creating 

a CFD simulation of an escort tug operating at a large yaw angle was to use a hexahedral 

mesh. Earlier CFD studies on the Series 60 (Molyneux & Bose, 2007) indicated that 

neither meshing approach had a significant advantage, but this conclusion was based 

principally on flow data and only included force measurements at 10 degrees of yaw. The 

different shape of the hull for the escort tug may have an effect on the accuracy of the 
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predictions for different meshes, since this hull was wide and shallow with a high degree 

of curvature, whereas the Series 60 was relatively narrow with very sharp waterlines in 

the bow and stern. This narrow entrance angle for the Series 60 hull creates a vortex, 

which is generated from the keel at the bow and moves towards the downstream side of 

the hull. For the escort tug, the fin is the only thing creating a large vortex, and the flow 

remains attached to the hull, even on the down stream side.   
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