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ABSTRACT

Domed cavities are found in many building applications such as conventional skylights and 

tubular daylighting devices.  Heat transfer through domed cavities is thus an important parameter 

for evaluating the energy performance rating of such skylight systems, and in calculating the 

heating and cooling loads of buildings.  Although there have been many studies on the 

convective heat transfer in related geometries, there is a limited information on natural 

convective heat transfer in domed cavities with planar inner surfaces. In a previous study by the 

authors, a numerical modeling was conducted on natural laminar convective heat transfer in 

horizontal high-profile domed cavities with planar inner surfaces.  In this paper, the pervious 

study is extended to investigate the natural convective heat transfer in horizontal low-profile 

spherical cavities with planar inner surfaces.  The bounding surfaces are subject to uniform 

temperature conditions. The numerical model is based on the finite element method.  The results 

show that for different boundary temperature conditions, the airflow in the cavities is mono-

cellular and reaches steady state conditions for both cold and hot weather conditions.  The 

numerical results are used to develop practical correlations for the Nusselt number in terms of 

Rayleigh number. 

Keywords: Natural laminar convection, spherical cavity, domed cavity, skylight, tubular 
daylighting device.
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INTRODUCTION

Domed cavities are found in many applications in buildings, particularly in conventional 

skylights and Tubular Daylighting Devices (TDD’s).  Skylights and TDD’s are used mainly to 

daylight interior spaces, and therefore reducing lighting energy use.  However, these systems 

may introduce a significant amount of heat loss (winter condition) and unwanted solar heat gain 

(summer condition) into indoor environment that might off-set their energy saving benefits. Heat 

transfer through domed cavities is thus an important factor in evaluating the energy performance 

rating of such skylight systems, and in calculating the heating and cooling loads of buildings.  

Although there have been many studies on the convective heat transfer in related geometries 

such as concentric domes, spheres and cylinders, there is limited information on natural 

convective heat transfer in domed cavities with planar inner surfaces. 

A number of studies have addressed the heat transfer in related geometries such spheres and 

cylinders.  The flow pattern between concentric isothermal spheres with diameter ratio of 2 was 

studied by Garg (1991).  That study used the vorticity-stream-function formulation and a finite 

difference method to obtain the flow and temperature fields, which were in good agreement with 

previous experimental work.  Chiu and Chen (1996a, 1996b) and Chen (2005) applied the same 

numerical method to study the transient natural convection between concentric and vertically 

eccentric spheres with diameter ratio of 2 under isothermal and mixed boundary conditions.  The 

obtained numerical results for the flow pattern were consistent with the previous experimental 

work. McGowan et al. (1998) conducted measurements and numerical simulations using a 

commercial CFD package to investigate the thermal performance of pyramidal and barrel vault 

skylights.  They concluded that the convective heat transfer in curved or trapezoidal cavities can 

be approximated using the correlations for flat rectangular cavities at the equivalent mean slope 
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of the complex cavity.  The conclusion drawn from their study is, however, limited to fairly 

small Rayleigh numbers (Ra < 7x104), and therefore, their results cannot be generalized to higher 

Rayleigh numbers and to other geometry types.  

Klems (2000) conducted measurements of the net heat flow through several types of flat 

and domed skylights.  He compared the measured U-values with calculations using WINDOW 4 

and THERM programs.  The calculated U-factors did not agree with the measurements; in 

general, the measured U-factors were higher than the calculated ones.  The disagreement 

between measurements and calculations was worse if the well air temperature (rather than the 

chamber air temperature) was used to calculate the measured U-factor.  Klems (2000) pointed 

out the importance of having an accurate model of the frame and the environmental conditions. 

Fomichev and Curcija (2007) used a CFD commercial tool to investigate free convection in 

multi-layer eccentric domes tilted from the horizontal.  Correlations for Nu were developed for 

two types of domes with circular and flat inner surfaces tilted at 20º and 90º. The obtained 

correlations are limited to small range of Rayleigh number (Ra ≤ 7x104).  Sartipi et al. (2007) 

conducted numerical simualtions using control volume approach to investigate free convection in 

eccentric multi-layer domes with low- and high-profiles when heated from the exterior surface.  

Profiles of Nusselt number (Nu) as a function of Rayleigh number (Ra) were developed for 

various dome shapes.  Laouadi and Atif (2001) and Sartipi et al. (2010) used the numerical 

control volume approach to investigate the laminar natural convection within concentric domed 

cavities.  The study covered a number of cavity gap spacing to dome radius ratios under a wide 

range of Rayleigh numbers.  The numerical results were used to develop practical correlations 

for the heat transfer coefficient as a function of the cavity gap spacing to dome radius ratios and 

Ra.   
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The present study is a part of an ASHRAE research project (1415-RP) to evaluate the 

thermal performance of tubular daylighting devices.  The study addresses numerically the 

laminar natural convection heat transfer in cavities of horizontal domes with planar inner 

surfaces subject to cold or hot uniform temperature boundary conditions.  Saber and Laouadi, 

(2011) have recently studied natural convection heat transfer in horizontal fully-hemispheric 

domed cavities with planar inner surfaces. Their numerical model was based on the finite 

element method.  The bounding surfaces of the cavity were subject to uniform temperatures 

during hot and cold weather conditions.  The model was successfully benchmarked by 

comparing its predictions against numerical data available in literature for concentric spheres and 

domed cavities (Laouadi and Atif, 2001, Sartipi et al., 2007).  Furthermore, Saber and Laouadi 

(2011) developed practical correlations for the convective heat transfer, covering broad ranges of 

the governing parameters in both cold and hot weather conditions.  

The main objective of this paper is to extend the study by Saber and Laouadi (2011) to 

investigate the flow pattern within horizontal low-profile domed cavities with planar inner 

surfaces, and to develop heat transfer correlations that account for different environmental 

boundary conditions and cavity dimensions.

MATHEMATICAL FORMULATION

A domed cavity is bounded by two finite surfaces: an upper low-profile spherical surface

(with a truncation angle of 45) at the top and an inner planar surface at the bottom.  Both 

surfaces are made of a 6 mm (1/4 inch) acrylic sheets.  The indoor side of the planar surface and 

outdoor side of the spherical surface are maintained at uniform temperatures Ti and To, 

respectively. Owing to the temperature differential across the cavity (Ti – To), a buoyancy-driven 

flow develops within the air cavity.  The flow is considered to be two-dimensional and axi-
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symmetric since this configuration is symmetrical with respect to the vertical revolution axis.  

Only half of the cavity is, therefore, considered for the numerical simulation.  Figure 1a shows a 

schematic representation of the domed cavity.

Assumptions

The following assumptions are made for the air inside the cavity:

 The long-wave radiation heat transfer between the cavity surfaces is decoupled from the 

convective heat transfer, and therefore is not accounted for in this study.  This approach has 

been successfully applied to natural flows in enclosed cavities.  

 The air is incompressible.

 The buoyancy-driven flow within the cavity is laminar.

 The physical properties of the air are constant, except for density in the body force terms in 

the momentum balance equations. The physical properties of the air inside the cavity are 

evaluated at the average temperature of the bounding surfaces.

 The fluid density is given by the Boussinesq approximation.

 The compression work and the viscous dissipation energy in the energy balance equation are 

neglected.

Using the Boussinesq approximation, the fluid density is expressed as follows:

 )(1 refrefa TT   (1)

The buoyancy-driven flow in the cavity is governed by the Navier-Stokes equations. The 

transient conservation equations for mass, momentum and energy in the spherical coordinate 

system read as follows:

Mass balance:
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where 2 is the Laplace operator, and Sr and S are source terms.  These are given by:
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Initial and Boundary Conditions

For the horizontal low-profile domed cavity shown in Figure 1a, the radial symmetry allows 

modelling a three-dimensional case in two-dimensions.  The initial temperature and velocity 
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components are assumed equal to 10oC (50oF) and 0oC (32oF), respectively, everywhere in the 

computational domain.  The momentum equations are subjected to the no-slip condition at the 

air-solid interfaces )0(  vu , and symmetry condition at the axis of revolution ( 0u and 

 /v = 0).  The energy equations of both air and solid are subjected to the symmetry condition 

at the axis of revolution (  /T = 0), and uniform temperatures at the indoor surface of the 

bottom planar acrylic sheet (T = Ti) and the outdoor surface of the spherical acrylic sheet (T = 

T0).  Due to the energy balance at the air-solid interfaces, these interfaces are subjected to the 

continuity condition (i.e. the heat fluxes in the air and solid normal to these interfaces are equal, 

and also the temperatures of air and solid are equal).  Finally, in order to cover a wide range of 

the temperature difference across the domed cavity, the temperature at the indoor surface of the 

bottom planar acrylic sheet is fixed at 21oC (69.8ºF) (indoor temperature), and the temperature at

the outdoor surface of the spherical acrylic sheet is taken in the range of 21.1oC (69.98ºF) to 

70oC (158ºF) for the summer conditions, and -35oC (-31ºF) to 20oC (68ºF) for the winter 

conditions.  

NUMERICAL PROCEDURE

The present model was used to solve the governing equations (2) to (6), subjected to the 

boundary conditions described above.  The numerical procedure in this study is similar to the 

pervious study (Saber and Laouadi, 2011). The present model was benchmarked and used in 

several tasks to predict the hygrothermal (moisture transport is accounted for) performance of 

different building envelope components (Saber et al., 2010a, 2010b; 2010c; 2010d; 2011, 2012a, 

2012b). To assure that the results are mesh independent, a non-uniform mesh was selected with 

finer sizes near the boundaries.  Typically, the numerical mesh was refined by doubling the 



8

number of nodes until the final results do not appreciably change.  Triangular elements were 

chosen to capture the curved computational domain with less discritizing error.  Figure 1b shows 

a typical mesh used through the simulations.

CONVECTIVE HEAT TRANSFER IN THE DOMED CAVITY

The enclosed airspace in the horizontal domed cavity is subjected to a buoyancy-induced 

flow.  In this study, five of inner radii (Ri) were selected for the simulation: Ri = 0.5 m (1.64 ft), 

0.63 m (2.067 ft) , 0.75 m (2.46 ft), 0.88 m (2.89 ft), and 1.0 m (3.28 ft).   Based on the set of 

typical boundary conditions, the expected range of temperatures on the acrylic surfaces were 

considered so that standard investigation of a convective heat transfer in cavity, subject to 

temperature boundary conditions on its bounding surfaces, can be defined.  This approach allows 

the development of dimensionless setup of the problem where dimensionless convective heat 

transfer rates, as expressed by Nusselt number, Nu, can be evaluated as a function of 

dimensionless natural convection parameter Raleigh number, Ra.

There are two options to be used in applying temperature boundary conditions on the domed 

cavity.  The first option is to assume that the temperatures on the indoor surface (facing the 

indoor environment) of the bottom planar acrylic sheet (Ti) and the outdoor surface (facing the 

outdoor environment) of the top spherical acrylic sheet (To) are uniform.  The second option is to 

assume that the temperatures of the surfaces of the top and bottom sheets in contact with the 

cavity air (Toa and Tia, respectively; see Figure 1a) are uniform.  The second option was 

extensively used in the literature where there is no need to include the walls in the numerical 

simulations (Laouadi and Atif, 2001; Sartipi et al., 2010).  Due to the buoyancy-induced flow, 

the air movement inside the cavity would cause a non-uniform temperature distribution on the 

surfaces of the acrylic sheets facing the cavity air (Tia and Toa). In a previous study (Saber and 
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Laouadi, 2011), it was shown that the temperature distribution on the surface facing the air 

cavity of the bottom acrylic sheet changed significantly in the case of cold weather, but it was 

approximately uniform except at the edges under the hot weather conditions. Consequently, the 

approach used in this study was to include the acrylic walls in the numerical simulations and 

apply uniform temperature boundary conditions on the surfaces facing the indoor and outdoor 

environments.

Evaluation of Nusselt Number

Under steady state conditions, the heat transfer rates at the boundary surfaces of the bottom 

and spherical acrylic sheets are equal due to the energy balance.  Because of the heat loss/gain at 

the edges of the cavity, the heat transfer rates at the surfaces facing the air cavity of the bottom 

and top acrylic sheets are not equal.  In this work, the Nusselt number, Nu, is defined as follows: 

condconv QQNu / (10)

where convQ and condQ are the convective heat transfer rate and the conductive heat rate in the 

absence of convection, respectively, normal to the inner surface (facing the air cavity) of the top 

spherical acrylic sheet.  

To evaluate the Nu in equation (10), the conductive heat transfer rate in the absence of 

convection, condQ , should be known a priori.  Since there is no analytical solution available for 

condQ in such  spherical cavities with two media (fluid and solid), a parametric study was 

conducted using the present model in order to calculate condQ at different temperature differences

across the cavity with different inner radii.  The obtained results of condQ are shown in Figure 2a.  

These results were used to develop a simple correlation for condQ , which is given as:
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Where 'r is the local radius of the inner surface of the planar acrylic, and oaia TT , are the area-

weighted average temperatures at the surfaces facing the air cavity of the bottom and top acrylic 

sheets, respectively.  These area-weighted average temperatures were obtained by numerical 

integration of the nodal temperatures along the surfaces (see Eq. (12)).  It is important to point 

out that the angle  in Eq. (12) must be greater than zero so that there is spherical dome.  Also, 

the heat transfer correlations that are developed in this paper are applicable only for the case of 

horizontal spherical domed cavity with  = 45o (see Figure 1).  

In Eq. (11), refR is a reference radius, which was taken equal 1.0 m in this study.  As shown 

in Figure 2b, the obtained correlation given by Eq. (11) is in good agreement with the numerical 

results.  It should be noted that this correlation is developed when the SI units are used for the 

heat flux and temperature. 

RESULTS AND DISCUSSIONS

All results presented in this paper are for the case when air fills the cavity.  The physical 

properties of the air are evaluated at the mean temperature of the air in the cavity.  During the 

transient regime, a multi-cellular airflow with different number of vortex cells were observed for 

both the winter (Ti > To) and summer (Ti < To) conditions.  At steady state conditions, however, 

a mono-cellular airflow (i.e. the number of vortex cells in the air cavity = 1) was observed in 

both cases of hot and cold weather conditions.  Furthermore, a number of numerical simulations 
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are conducted with different initial temperatures for each cavity configuration.  The results show 

that both the flow characteristics and calculated Nu at steady state conditions are independent on 

the initial temperatures for both cold and hot weather conditions.  Examples of the temperature 

contours, velocity contours, velocity vectors, and streamline for both hot and cold weathers are 

presented in Figure 3 to Figure 6 at steady state condition for a typical cavity configuration with 

an inner radius of 0.5 m (1.64 ft) when the absolute temperature difference across the cavity is 

equal to 20 K (36 ºR).  

Figure 3a and Figure 3b show the horizontal and vertical velocity contours, velocity vectors, 

and streamline in the case of cold weather at steady state conditions.  Also, Figure 4a and Figure 

4b show the horizontal and vertical velocity contours, velocity vectors, and streamline in the case 

of hot weather.  As shown in these figures, only one vortex cell was observed in both hot and 

cold weathers.  However, both the horizontal and vertical velocities were much higher in the case 

of cold weather than that in the case of hot weather.  For example, for the same temperature 

difference across the cavity, the maximum absolute horizontal and vertical velocities in the case 

of cold weather were 169.5 mm/s (2002 ft/h) and 185.8 mm/s (2194 ft/h), respectively, which 

were 8.8 and 11.6 times higher than that in the case of hot weather (19.3 mm/s (227 ft/h), 16 

mm/s (188 ft/h), respectively).  As such, for the same temperature difference across the cavity, 

the heat transfer coefficient for cold weather is significantly higher than warm weather.  The heat 

loss/gain on the other hand will also depend on the temperature difference between the inside 

and the outside.  

Figure 5a and Figure 5b show the temperature contours without (pure conduction) and with 

convection, respectively, in the case of cold weather.  Figure 6a and Figure 6b show the 

temperature contours without and with convection, respectively, in the case of hot weather.  As 
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shown in these figures, the buoyancy-induced flow results in a significant effect on the 

temperature distribution in the cavity in both cold and hot weather conditions.  

Figure 7 shows the dependence of Nu at the inner surface (facing air cavity) of the top 

spherical acrylic sheet on the absolute temperature difference across the cavity, 

)( oaiaa TTabsT  , under the cold and hot weather conditions.  Nu increases significantly with 

increasing aT under the cold weather conditions.  Under the hot weather, however, Nu 

increases with increasing aT at a much lower rate.  Additionally, for the same aT , the Nu is 

much higher under the cold weather condition than under the hot weather condition.  For 

example, Nu under the cold weather condition is 1.67 and 2.33 times higher than Nu under the 

hot weather condition for aT = 2 K (3.6 oR) and 20 K (36 oR), respectively.  As stated earlier, 

this is due to higher air velocities under the cold weather condition than under the hot weather 

condition for the same aT across the cavity.  

Correlations for the Convective Heat Transfer 

Figure 8a and Figure 8b show the effect of the temperature difference across the cavity aT , 

and Ra on Nu under the cold weather conditions (Ti > To), respectively.  For the same inner 

radius, increasing aT results in a stronger convection current in the cavity.  As such, Nu

increases by increasing aT (see Figure 8a).  Additionally, for the same aT , Nu increases by 

increasing the inner radius of the cavity.  For example, at aT = 10 K (18 oF), Nu is 2.62 and 

3.64 for a cavity of radius Ri = 0.5 m (1.64 ft) and 1.0 m (3.28 ft), respectively.  The numerical 

results shown in Figure 8a are used to develop dimensionless heat transfer correlations under the
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cold weather condition.  A power-law form is used to develop this correlation.  The obtained 

correlation is given as follows:

  0.17773=c  1.0281,=b  107.3,=a,10/)/(1 83.0
cb

refi RRRaaNu





   (13)

Where Ra is expressed as follows:
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In this correlation, Ra was evaluated using the air properties at the mean temperature of the 

air inside the cavity.  Also, the characteristic length that was used to define Ra is the inner radius 

of the air cavity (Ri).  However, in the case of using the maximum height of the air cavity at the 

axis of revelation (L, see Figure 1) as a characteristic length to define the Rayleigh number (Ra*

in this case), Ra in Eq. (13) must be replaced by Ra*/(1-cos())3, where = 45o.  As shown in 

Figure 8b, the obtained correlation given by Eq. (13) is in good agreement with numerical results 

for different inner radii of the spherical cavities (within ±3%).  A more accurate correlation for 

the Nu in the case of cold weather condition was also developed.  This correlation is given as:
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Figure 9 shows that the calculated Nu using the above correlation (Eq. (15)) is in good 

agreement with that obtained using the present model (within ±1%).

Under the hot weather condition (i.e. Ti < To), the effect of aT and Ra on Nu are shown 

in Figure 10a and Figure 10b, respectively.  The results shown in Figure 10a are collapsed to 

obtain the following correlation:
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Similar to Eq. (13), Ra in Eq. (16) must be replaced by Ra*/(1-cos())3 in the case of using 

the height of the cavity at the axis of revelation (L) as a characteristic length to define Ra*.  As 

shown in Figure 10b, the developed correlation given by Eq. (16) is in good agreement with 

numerical results for different radiuses of the air cavities (within ±1.5%).  Note that in both 

correlations for the cold and hot weather conditions, Nu approaches to 1.0 as the value of Ra

goes to zero.  Also, a more accurate correlation in the case of hot weather condition was 

developed where Nu obtained using this correlation is in good agreement with that obtained 

using the present model (within ±1%, see Figure 11).  This correlation is given as: 
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The convective heat transfer correlations for the cold weather and hot weather conditions 

(Eq. (13) or (15) and Eq. (16) or (17), respectively) were obtained when the temperature of the 

indoor side of the planar surface (Ti) equal to 21oC (69.8oF). In the cold weather condition, the 

temperature range of the outdoor side of the spherical surface (To) was 20oC (68oF) to -35oC (-

31oF) (|Ti – To|min = 1 K (1.8 oR) and (|Ti – To|max = 56 K (100.8 oR)).  In the hot weather

condition, however, the temperature range of the outdoor side of the spherical surface was 

21.1oC (69.98oF) to 70oC (158oF) (|Ti – To|min = 0.1 K (0.18 oR) and (|Ti – To|max = 49.0 K (88.2 

oR)).  The range of the inner radius of the domed cavity (Ri) was varied from 0.5 m to 1.0 m.  As 

indicated earlier, a number of numerical simulations were conducted with different initial 

temperatures for each cavity configuration.  In these simulations, the steady state conditions were

achieved where the flow characteristics and calculated Nu were independent on the initial 
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temperatures for both cold and hot weather conditions.  According to the definition of Ra number 

given by Eq. (14) where its characteristic length is equal Ri, the lowest and highest Ra in the case 

of the air heated from below (cold weather condition) were 1.19 x 107 (Ri = 0.5 m (1.64 ft), and 

|Ti – To| = 1 K (1.8 oR)) and 1.01x109 (Ri = 1.0 m, |Ti – To| = 56 K (100.8 oR)), respectively (see 

Figure 12).  When the height of the air cavity at the axis of revelation was taken as the 

characteristic length for Rayleigh number, the corresponding range for Ra* was 2.98 x 105 and 

2.53 x 107 (Figure 12).

For this range Rayleigh number (Ra or Ra*), flow instabilities in the air cavity are not known

(experimental data are not available), and were not observed using the present numerical 

approach.  In flat horizontal cavities heated from below, flow instability due to the Rayleigh-

Benard convection may occur at a lower Ra.  For example, Bucchignani and Stella (1999) and 

Stella and Bucchignani (1999) found out that the critical Ra values depend on the problem 

parameters such as the Prandtl number (Pr), aspect ratio, and flow configurations.  For their 

specific geometries, the critical Ra values corresponding to flow transition from a steady to 

unsteady state were found to vary from 3.4x104 to 4.4x104.  In the present study, flow instability 

would occur at higher values of Rayleigh number since the curvature of the horizontal domed 

cavity helps to stabilise the flow (note that natural flows in vertical cavities are stable for this 

critical Ra range).  Therefore, future experimental studies should be conducted in order to 

investigate the flow instability and transition in domed cavities.

CONCLUSIONS

A numerical model based on the finite element method was developed to study natural 

convection heat transfer in horizontal low-profile domed cavities with planar inner surfaces.  The 

bounding surfaces of the cavity with different radii were subject to uniform temperatures under 
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hot and cold weather conditions.  In a recent study (Saber and Laouadi, 2011), the model was 

successfully benchmarked by comparing its predictions against numerical data available in 

literature for concentric spheres and domed cavities with a uniform gap thickness.  The results 

obtained for the domed cavity under consideration showed that at steady state conditions, a 

mono-cellular airflow was observed in both cases of hot and cold weather conditions.  For the 

same temperature difference across the cavity, the airflow velocity was much higher under the

cold weather condition than under the hot weather condition.  Practical correlations for the 

convective heat transfer in the cavity were developed, covering broad ranges of governing 

parameters under both cold and hot weather conditions.  
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NOMENCLATURE

Cp : specific heat (J/(kg.K))

g : gravitational acceleration (m2/s)

L : length of the axis of revolution of the air cavity, L = Ri (1 – cos 45o) (m)

Nu : Nusselt number (-)

p : pressure (Pa)

Pr : Prandtl number,  //Pr  Cp

Qeff : heat transfer rate (W)

Qcond : heat transfer rate by pure conduction (W)
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Ri : inner dome radius (m)

Ro : outer dome radius (m)

Ra : Rayleigh number (-)

Ra* : Modified Rayleigh number, )/(3   LTTg oaia

r : radial position (m)

Sr, S : source terms in the radial and circumferential directions.

T : temperature (ºC)

Ti : temperature of indoor surface of the bottom planar acrylic sheet of the cavity (K)

Tia : average temperature of the inner surface of the bottom planar acrylic sheet of cavity (K)

To : temperature of the outdoor surface of the top spherical acrylic sheet of cavity (K)

Toa : average temperature of the inner surface of top spherical acrylic sheet of cavity (K)

Tref : reference temperature equal to the average temperature of cavity bounding surfaces (K)

t : time (s)

u : velocity component in -direction (m/s)

v : velocity components in r-direction (m/s)

Greek Symbols

 : fluid thermal diffusivity (m2/s)

 : thermal conductivity (W/(m.K))

 : dimensionless cavity gap spacing ( = (Ro-Ri)/Ri)

 : fluid thermal expansion coefficient (K-1)

 : fluid dynamic viscosity (Pa.s)

 : fluid kinematic viscosity (m2/s)
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 : position angle

 : density (kg/m3)

ref : density evaluated at Tref (kg/m3)

Subscripts

a : air

s : solid
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Figure 1. A schematic representation of a horizontal spherical domed cavity of 45o with a planar 
inner surface and corresponding numerical mesh
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Figure 2. Dependence of the conductive heat transfer rate normal to the inner surface of the top 
spherical acrylic sheet
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Figure 3. Horizontal and vertical velocity contours, velocity vectors and streamlines in the case of cold weather with temperature difference across 
the cavity of 20 K (36 oR)
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Figure 4. Horizontal and vertical velocity contours, velocity vectors and streamlines in the case of hot weather with temperature difference across 
the cavity of 20 K (36 oR)
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Figure 5. Temperature contours (oC) in the case of cold weather with temperature difference across the cavity of 20 K (36 oR)
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Figure 6. Temperature contours (oC) in the case of hot weather with temperature difference across the cavity of 20 K (36 oR)
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Figure 7. Dependence of Nusselt number on the temperature difference across the cavity 
of an inner radius of 0.5 m (1.64 ft)
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Figure 8. Dependence of Nu on the temperature difference across the cavity and Ra in 
the case of a cold weather condition
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Figure 9. Comparison between Nu obtained using the developed correlation (Eq. (15)) 
and that obtained using the present model in the case of a cold weather condition
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Figure 10. Dependence of Nu on the temperature difference across the cavity and Ra in 
the case of a hot weather condition
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Figure 11.  Comparison between Nu obtained using the developed correlation (Eq. (17)) 
and that obtained using the present model in the case of a hot weather condition
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Figure 12. Dependence of Nu on Ra and Ra* for a 45o spherical cavity (Ri = 0.5 m) in 
the case of a cold weather condition
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