

NRC Publications Archive Archives des publications du CNRC

Fire resistance of light frame steel construction Bénichou, N.

This publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.

Publisher's version / Version de l'éditeur:

Short Course on Response of Materials and Structures to Fires [Proceedings], pp. 1-26, 2009-05-20

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=e48380f6-e2e1-46ee-a5e7-62897a7c217e https://publications-cnrc.canada.ca/fra/voir/objet/?id=e48380f6-e2e1-46ee-a5e7-62897a7c217e

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

- criteria for fire resistance testing:
 - -integrity failure flame penetration
 - -thermal failure average temperature rise of 140°C or maximum of 180°C on unexposed face
 - -structural failure loss of load-bearing capacity of load-bearing assemblies
- The fire resistance (time-to-failure) of an assembly is defined as the occurrence of the first criterion

Behaviour of Steel Frame Assemblies

- Steel frame walls and floors show:
 - large deflections
 - local and global buckling in the steel.
- Steel frame walls and floors usually bend towards the furnace due to thermal expansion in the steel
- The critical factors are the thickness and integrity of the lining material exposed to the fire
- The strength of steel framing depends on the temp. of the studs or joists
- · Fixings of lining are very important

- The design process for fire resistance requires Provided fire resistance > Design fire severity
- Most often, design of fire resistance of light frame structures is in the time domain
- Fire severity is usually assessed in terms of standard fire exposure (required code fireresistance rating or the equivalent fire severity for burnout of the compartment

Typical Fire-Resistance Ratings

Short Course - Response of Materials and Structures to Fires, May 20 - 22, 2009

Minimum gypsum board thickness (mm) to give fireresistance ratings for cavity walls and floors

Fire-		New Zealand				North America			
resistance		Wo	ood	Steel		Wood		Steel	
ratings		Non-load	Load	Non-load	Load	Non-load	Load	Non-load	Load
(minutes)		bearing	bearing	bearing	bearing	bearing	bearing	bearing	bearing
Walls	30	9.5	9.5	12.5	16.0				
	45					(12.7)	(12.7)		
	60	12.5	12.5	12.5	19.0	15.9	15.9	15.9	
	90	16.0	16.0	16.0	28.5	[25.4]	[25.4]	[25.4]	
	120	19.0	32.0	19.0		31.8	31.8	25.4	31.8
	180	32.0						38.1	
	240							50.8	
Floors	30		12.5						
	60		16.0				12.7		25.4
	90		32.0				31.8		
	120		38.0		38.0				

 NA listings are from Gypsum Association (94) except (12.7) from UL (96) and [25.4] from NBC (1995). NZ listings are for 'Gib® Fyreline' board, from Winstone Wallboards (97)

- Gypsum board is the most common lining material used to protect light frame structures
- There are three broad types of gypsum board:
 - Regular board (generic & not required to be fire-rated)
 - Type X board (defined to give a 60 minute loadbearing fire-resistance rating when one layer of 15.9mm board is fixed to each side of a wall assembly or a 45 minute rating for 12.7-mm board)
 - Special purpose board (manufactured in non-standard thickness & formulated to meet special market needs)

Calculation Methods of Light Steel Frame Assemblies

- Sultan and Alfawakhiri developed a FR model for steel assemblies based on test observations
- · Thermal and structural responses are evaluated
- Thermal calculation provides temp. profiles and an assessment of the insulation criterion
- Structural calculation provides an assessment of the structural failure criterion
- Required thermal and mechanical properties of different components at elevated temperatures

Structural Model for Walls – FR predictions							
Assembly number	Insulation type (fibre)	Structural failure time in test (min.)	Initiation of failure in central studs in test (min.)	FR predictions based on measured temperatures (min.)	FR predictions based on simulated temperatures (min.)		
W1	Glass	55	49	50	51		
W2	Rock	73	50	52	52		
W3	Cellulose	70	60	59	54		
W4	-	76	N/A	77	73		
W5	Rock	59	48	48	52		
W6	-	83	N/A	84	85		
Failure criteria for insulated Walls: check section at 0.2 H Failure criteria for non-Insulated Walls : check section at 0.4 H Reasonable agreement with structural failure times from tests							

Structural Model for Floors – FR Predictions

Assembly number	Structural failure time in test (min.)	JOIST predictions based on measured temperatures (min.)	JOIST predictions based on simulated temperatures (min.)
FF-22	73	73	71
FF-23	67	65	63
FF-24	68	66	63
FF-25	46	45	43
FF-27	61	56	55

- Failure Criterion M(0.5L) = wL²/8 > M_R
- M_R is the moment resistance of the joist based on the inelastic capacity of the heated section

Construction Details and Design Parameters

- · Insulation in cavities
- · Resilient channels
- Gypsum board
- Stud arrangement
- Stud spacing
- Type of frame
- · Shear panel (membrane)
- Fixing of sheets
- · Penetrations, Fire Stopping, Junctions

Use of 2 gypsum board layers versus use of 2 sub-floor layers

Effect of adding concrete topping (2 layers of GB and RCs)

Penetrations, Fire Stopping and Junctions

- A major concern about the reduction in fire resistance of assemblies is effects of penetrations for services/fixtures
- This problem is reduced if the cavity is completely filled with mineral wool insulation
- For junctions between floors and a fire-rated wall, blocking (insulation or OSB) in the floor cavity, may be used to prevent fire spread through separating wall

Short Course – Response of Materials and Structures to Fires, May 20 – 22, 2009

Important fire resistance parameters for detailing

- Use rock or cellulose fibre insulation for one layer of GB assemblies
- For two layers GB use either glass or rock or cellulose fibre
- More layers of GB provide significant increase in FR
- Install screws at 38 mm from edges of face gypsum board layers
- Use resilient channels at 406 mm (16") o.c.

References

- Buchanan A., Structural Design for Fire Safety, Wiley, 2001
- Bénichou, N.; Sultan, M.A. "Fire resistance behaviour of lightweight framed construction,"<u>3</u>rd Structures in Fire Conference, Ottawa, Ontario, pp. 119-136, May, 2004
- Bénichou, N.; Sultan, M.A. "Behaviour of lightweight-framed timber construction under elevated temperatures," APEC Seminar - Fire Performance of Timber Construction, Wellington, N.Z., pp. 1-12, May, 2005
- Sultan, M.A.; Alfawakhiri, F.; Kodur, V.R.; Bénichou, N. "A Model for predicting thermal response across steel C-joist floor assemblies exposed to fire,"<u>5</u>th Asia-Oceania Symposium on Fire Science and Technology International Conference, Newcastle, Australia, pp. 469-472, Dec, 2001
- Sultan, M.A.; Alfawakhiri, F.; Bénichou, N. "A Model for predicting heat transfer through insulated steel-stud wall assemblies exposed to fire," Fire and Materials '2001 International Conference, San Francisco, CA., U.S.A.), pp. 495-506, January, 2001

Short Course – Response of Materials and Structures to Fires, May 20 – 22, $200\bar{9}^{\dagger}$

