
tac-com 

I*I National Research Conseil national de 
Council Canada recherches Canada Canada. 

Publisher’s version  /   Version de l'éditeur: 

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 
first page of the publication for their contact information. 

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Optomechatronic Technologies 2008, Proceedings of SPIE; no. 7266, 2008-11-17

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=e43495da-51f9-469c-aaae-a7017506ca35

https://publications-cnrc.canada.ca/fra/voir/objet/?id=e43495da-51f9-469c-aaae-a7017506ca35

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 
acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien 
DOI ci-dessous.

https://doi.org/10.1117/12.817359

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

Neural network approach to modeling hot intrusion process for 

micromold fabrication
Shiu, Pun Pang; Knopf, George K.; Ostojic, Mile; Nikumb, Suwas

https://doi.org/10.1117/12.817359
https://nrc-publications.canada.ca/eng/view/object/?id=e43495da-51f9-469c-aaae-a7017506ca35
https://publications-cnrc.canada.ca/fra/voir/objet/?id=e43495da-51f9-469c-aaae-a7017506ca35
https://nrc-publications.canada.ca/eng/copyright
https://publications-cnrc.canada.ca/fra/droits


Neural network approach to modeling hot intrusion process for 
micromold fabrication 

Pun Panu Shiu'', Gcorge K. Knopf', Mile Ostojicb, and Suwas Nikumbb
'Dept. of Mechanical & Materials Enu., Thc University of Western Ontario, London, Ontario, 

Canada 
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ABSTRACT 

The rapid fabrication of polymeric mold masters by laser micromachininu and hot-intrusion permits the low cost 
manufacture of microfluidic clevices with near optical quality surface finishes. A metallic hot intrusion rnask with the 
desired microfeatures is first machined by laser ancl then used to produce the mold master by pressinu the mask onto a 
polymethylmethacrylate (PMMA) substrate under applied heat and pressure. A thoroutth understandinu or the physical 
phenomenon is required to procluce features with hiuh dimensional accuracy. A neural network approach to modelinu the 
relationship amonu microchannel heiuht (H). width ( W). the intrusion process parameters of' pressure ancl temperature is 
described in this paper. Experimentally acquired data are used to both train ancl test the neural network for parameter-
selection. Analysis of' the preliminary results shows that the modelinu methodolouy can predict suitable parameters 
within 6% error. 

Keywords: microfluidic devices; neural network modelinu: micromold thbrication 

1. INTRODUCTION 

Microfluidic clevices, analytical microsystems, and lab-on-a-chip (LOC) technolouies have greatly advancecl diagnostic 
meclicine in recent years. These microsystems siunificantly increase the speed of' analysis and lower the cost in 
performing the tests because of the small amount of' reauents consumed durinu analysis. However, these miniature 
devices must be clisposable in order to avoicl sample contamination. It is, therefore, necessary to incorporate cost 
effective methods of volume production for desiuninu and developinu microlluidic clevices. 

The methods,of volume production for polymer-based micronuidic clevices have been explored previously, such as hot 
embossing I-  ancl microthjection moldinu ' 4. These volume production methods are replication technolouies that 
require mold masters, which are typically expensive to thbricate. The well-recognized methods for filbrication of mold 
masters of microlluidic devices are the LIGA (lithouraphy, ualvano-forminu ancl plastic molding) and Son-lithography 
technique. The LIGA method produces microfeatures of mold masters with hitth quality of surface finishes as well as 
hitth aspect ratio structures. The process employecl X-ray lithouraphy to transfer microchannel patterns onto PMMA 
resist. The resulting PMMA microstructures are then electroplated. The limitation of the LIGA method is its high-cost of 
the process'''. Solt-lithouraphy 7-1" is another popular method to fabricate mold masters. These mold masters are used to 
replicate polydimethylsiloxane (PDMS) elastomer basecl microfluidic devices. The microchannel patterns are transferred 
via UV-lithouraphy technique. The advantaue of the method is that UV-lithouraphy systems are widely available. This 
fabrication method requires a number of steps to produce the mold masters N. Both fabrication methods are basecl on 
lithography technique. 

Shui et al. I I reported a non-lithouraphy-based method that fabricates metallic mold masters for replication of PDMS-
based micronuidic clevices. The method involves laser cuttinu of microchannel features from a thin metallic sheet (50 to 
75pm thick) and the mcirochannel features were then laser welded onto a metal substrate to form the final mold masters. 
A Y-channel micronuidic mixer fabricatecl via this method was demonstrated II. The advantages of this method to 
fabricate mold masters are that it only involves a few fabrication steps, laser cuttinu and weldinu. The LHEM (Laser 
micromachininu, partial Hot Embossing, and Molcling) method is another non-lithography-based mold master 
fabrication method L. The aclvantage of the method is that the microchannel features of mold masters have near optical 
surface finishes. The method involves laser micromachininu and hot intrusion (partial hot embossing) process. 
Subsequently, the mold masters were used to replicate PDMS-basecl microfluidic devices. To design microfludiic 



devices using the LHEM method effectively, it is desirable to have a simple model that takes the inputs of desirable 
dimensions of microchannels and uenerates the required process parameters. This model coulcl recluce time in designinu 
complex microfluidic networks based on the LHEM method and therefore, increase productivity. 

Several researchers have developed models of the hot intrusion process for fabricatinu polymer microlenses. These 
researchers 1' 1' describe a comacdess intrusion method in fabrication of microlens array via applying heat ancl pressure 
on both the mask and a polymer sheet substrate. Ziolkowski et al. presented a process parameters stucly on the method 
and modeled the process usinu Laplace equation that relates the surface tension and contact anule to estimate the heiat 
and radius of the microlenses. Pan et al. 14 demonstrated an experimental and theoretical characterization of micro-
embossinu process of polymer microlenses fabrication. The optical properties such as focal lenuth of the microlenses and 
the relative intensity transmitted f-rom the optical fiber were characterized. Shen et al. also presented a similar study of' 
polymeric microlens array via hot intrusion process. which modeled with Arrhenius function. Shiu et al. ' 6 reported the 
experimental characterization of the LH EM method, where an empirical equation was clerivecl to clescribe the hot-
intrusion process. This model provides practical uuidelines to desiun the microfluidic networks via the LHEM method. 

Since the hot-intrusion process can be viewecl as a partial hot embossinu (HE), the published studies for modelinu the 
HE process 17--° are also relevant to this research. N. S. Cameron et al. 117 optimized empirically the process parameters 
fbr hot embossinu lithouraphy for microfluidic devices. K. F. Lei et al. 18 usecl contact stress analysis to model hot 
embossinu of PMMA microchannels (2D), ancl showed that the numerical prediction of wall profiles compare closely 
with experimental results. Y. Luo et al. 19 employed the viscoelastic model to clescribe the hot embossing of PMMA 
microchannels. Filially. M. Worgull et al. -0 employed non-linear transient thermo-viscoelasticity constitutive equations 
to moclel the hot embossinu process. These researchers frequently used linite element analysis software tool to simulate 
the process, which required extensive simulation time 19. 29. 

Mauargle et al. 21 proposed that modelinu of the functional components of microfluidic devices could be decomposed 
into,separated functional blocks. Further, these blocks were modeled using artificial neural networks (ANN). Y. Wang et 
al. -- reported usinu ANN to model the functional blocks of microfluidic devices. The examples of these components 
modeled via ANN are microfluidic injector, mixers, ancl separator -I-4. 

In this paper, an artificial neural network (ANN) approach to model the hot intrusion process of the LHEM method that 
produces micromold masters fbr replication of microfluidic devices is presented. The results of this work shows that the 
process c.an be modeled usinu ANN without the in-depth understanding of the underlying physical processes. A brief 
review of the LHEM method is given in Section 2. Section 3 describes the methods of the artificial neural network 
modelinu of the hot intrusion process. The results of traininu and simulation of the networks are presented in Section 4. 
Discussion and concludinu remarks are given in Sections 5 and 6. 

2. BACKGROUND OF THE LHEM METHOD 

Fit!. I illustrates that the fabrication method of a polymethylmethacrylate (PMMA) mold master by the LH EM method. 
It involves only first, fabrication of a hot intrusion mask by laser micromachining the desirecl microchannel structure in a 
thin metallic sheet (cut throuuh), second, hot intruding the microchannel structure by pressing the mask onto a 
Poly(methylmetha-crylate) PMMA substrate. The PMMA substrate with the relief produced in Step 2 is then employed 
as a mold master for moldinu the microchannel structure in polydimethylsiloxane (PDMS) elastomer. 
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I. Rapid fabrication of micromokl master via kiser cuttinti and hot-intrusion: a) laser micromachininu or the mask and 
hot intrusion the channel structure onto the PMMA substrate, b) completed P(\'IMA master. c) cross-sectional vicw or 
the hot intrusion process in Ibrminu the contactless positive microreliels. 

Key advantages of the LFIEM method are: simplicity ancl cost-effectiveness of the process; surface fi nish of the created 
microchannel relief is of near optical quality; and a single hot-intrusion mask can be used to produce a large number of 
mold masters. These properties make the method an attractive option for volume production both in small-and-medium 
sizes. An SEM view of typical extrudecl profile of the PMMA mold master of a Capillmy Electrophoresis (CE) 
microfluidic devices fabricatecl by the LI-IEM method is shown in Fig. 2 and these typical cross-sectional view is shown 
in Fig. 3. 

.1 
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Fig. 2. An SEM view of the Capillary Electrophoresis (CE) micromold master fabricated via LI IEM method. 

3. FUNCTION APPROXIMATION USING A NEURAL NETWORK 

The artiticial neural network (ANN) inspired by biological neurons has the ability to approximate non-linear functions 21' 

-'. For function approximation applications, the neural network structure can involve either supervised or unsupervised 
training aluorithms. The choice depends upon the data and task being solved by the network. In this work, a supervised 
back-propagation algorithm is used to train the network parameters. The goal is to accurately map multiple inputs to a 
single output. 
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Fig. 3. Typical height (H) and width ( W) or a cross-sectional extruded profile for the micro-relier shown m Fig. 2. 

Two neural network models are constructed to moclel the LHEM process. The first model. Fig. 4a, is referred to as a 
process moclel which relates three independent process parameters (hot intrusion pressure, temperature, and width of the 
profile base) to the height of the extruded microrelief (ie. output). 
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Fig. 4. Neural network models for the LHEIVI method: a) ANN taking the process parameters and Outputs the height of an 
extruded microreliel. b) taking the desirable profile geometty (W and H) and outputs the suitable proccss parameters. 
The pre-defined static parameter is hot intrusion temperature. 

The second model, Fig. 4b, is referred to the parameler-seleclion model which provides the manufacturinu enuineers ancl 
technicians with the ability to relate the desired of the microrelief to a key process variable (pressure). In other words. 
the parameter-selection model avoicls the needs of technicians to understand the physical phenomenon of the process ancl 
yet allow the completion of their tasks effectively. The parameter-selection model accepts inputs as the desired 
microchannel dimensions (width VV, and height H of the extruded profile), and outputs the required process parameters. 
Although the desired outputs would be hot intrusion pressure and temperature, experimental studies have shown that two 
different sets of process parameter conditions, mainly different HI pressures and temperatures, can result in similar 
extruded profiles. Therefore, defining one of the process parameters as a slcuic parcimeler is necessaiy in order to permit 
the neural network to generate a single output. ln this regard, hot intrusion temperature was selected as the pre-defined 
static parameter for the parameter-selection model. Furthermore, the hot intrusion time was not taken into consideration 
because of the experimental results in Shui et al. 16 showed that the influence allot intrusion time towards the heiuhts of 
extruded profiles were limited under the experimental condition (2 to 15 minutes). Fig. 5 shows a typical structure of a 
static backward propagated feed-forward network that was employed in modelinu the hot intrusion process of the LHEM 
method. This type of network is selected for modeling the process because of its computational power in approximatinu 



non-linear functions 25. The ANN structures used for the tests below were two-layer (n-1) networks for both the process 
model and parameter-selection model. The training was completed when the network reached the preset mean-square 
error (MSE) goal. 

n Neurons 

Input Hidden Output 
layer layer layer 

Fie. 5. A two-layer neural nctwork structure lor describinu the process model of the LI IEM method. 

To evaluate the performance of the modelinu accuracy ancl identify the appropriate network structure that approximate 
well the experimental data, the authors tested a number of networks having different n neurons in the hidden layer. The 
size of the networks was initially large to first obtain a quick converuence solution of the ANN structure. The /7 number 
of neurons was then reduced stepwise, testecl, simulated. and evaluated the performance. This procedure is stopped when 
a network structure (n-1) having the fewest neurons possible with small average clifference, experimental values minus 
simulated values. 

The mean-square errors (MSE) goal was set at x 0') for the process model (output in pm) and lx1Ou MSE goal for the 
parameter-selection model (output in Psi). The MSE uoal for the process model trained with experimental clata was set at 
one to average out the effects of the possible random errors inherited in the experimental clata. The evaluation of ANNs 
performance was based on the average percentaue error between the ANN outputs and the experimental clata (all testecl 
networks reached the MSE goal). The number of epochs to reach the goal was set at 10,000. The constructing, training, 
and testing of the networks were done using. the Neural Network ToolBox V. 5.0 from MATLAB, MathWorks, lnc.. 
USA 25 

Both the process ancl parameter-selection models were trained and tested using the experimental clata reported in Shiu et 
al. 16. The available experimental clata pairs were 45 set (90% of these experimental clata were used in training and the 
remaining 10% data, randomly selected, were used as test set clata to evaluate the ANN performance). The process and 
parameter-selection ANN models hold for the experimental conditions u' when the pressure ranged from 30 to 60 Psi 
(207 to 414 kPa), hot intrusion temperature from I 10 to 135"C, hot intrusion time from 2 to 15 minutes, extruded profile 
width from 25 to 200pm, and the processing material is PMMA. 

4. RESULTS 

Both the process ancl parameter-selection ANN models were successfully trainecl using the backward propagation. The 
optimal ANN structures for the process ancl parameter-selection models were found. The optimal size of the process 
model was (7-1) two-layer network structure. The optimal size of parameter-selection model networks was (20-1) 
because of smaller than that size of' networks were not able to reduce to the target MSE for a veiy long periocl of time. 
The approximation of both ANN models was acceptable because the ANN outputs are less than six percent averaue error 
against the test clata set. 

The results of performance evaluation of the ANN process models are showed in Figs. 6 to 8. 



Fig. 6 shows that the smallest averaue percentage difference between the simulated ANN outputs and test set was 3.57% 
ancl the smallest average difference was 1 .28pm. Fius. 8 and 9 show a comparison between the ANN simulated outputs 
and experimental clata of the optimal network of (7-1). Note that a goocl approximation of the experimental data by 
ANN model is clearly shown. 
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40 

Initially, the MSN goals were set as lx10-I. After a number of training and testing trials, the resulting ANNs had poor 
ueneralization with hid deuree or undulations. Subsequently, the MSN goal was set as 1 x1Ou (MSE 1pm instead of 
0.1)tm). The ueneralization was greatly improved. The number of neurons in the networks was further reduced and 
improved ueneralization was observecl as shown in Fig. 6. 
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414 kPa) or the process model (7-1) ANN structure. 
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process model (7-1) ANN structurc. 

The results of' the parameter-selection model are presented below. Fig. 9 describes the results of the percentage error in 
difThrent 17 numbers of neurons of two-layer structures. The smallest percentage error of ANN structure is 5.15% and 
17.24 kPa (2.5 Psi). Fig. 10 shows that the results of the ANN outputs from the parameter-selection network ancl 
demonstrated that the ANN outputs have strong tendency towards 310 kPa (45 Psi) at smaller widths of the extruded 
profile, less than 70 pm. This tendency can be observed in the difTerence between the ANN output and the experimental 
data provided in Fiu. 10. 
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Fig. I I shows the deviation of' the simulated outputs from the expected pressure values. At the smaller widths of the 
extruded protiles, below 70pm, the cleviation or the predicted 1-1 l pressure values increased. This implies that when 
designintz smaller microreliek usinu the parameter-selection ANN model, the resultinu microfeatures may have a larger 
deviation prediction using the trained ANN model. 
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5. DISCUSSION 

The number of neurons of the optimal parameter-selection model was about three times larger than process model's, 
although the same experimental clata were used to train the networks. This shows that the arrangement of the data used in 
training determines the final number of neurons of the network in this study. 

All trainecl networks reachecl the target MSE values initially. However, hiuh deuree of undulation of the simulated ANN 
outputs was observed, poor generalizations. Subsequently, the first attempt to minimize the poor ueneralization was to 
reduce the number of neurons of the networks because it also reduced the ability of the networks to approximate Null 
order non-linear functions. Poor generalizations of the trained networks were still observecl. 

Tlie second attempt to minimize the poor generalization of the trained networks was to increase the MSE value. The 
MSE goal value was set initially to be 1 x 1 for process model and it implied that a 0. 1 pm mean-square-error restrictecl 
the network to adapt a lower deuce orcler flinction to represent to clata. MSE uoal was adjusted to be 1 x 101pm. The 
networks were re-trained. Subsequently, the ueneralization \vas laruely improved and fiwther improvement was macle by 
reduced the number of neurons of the networks. shown in Figs. 6 and 9. 

The results of the trainecl parameter-selection moclel show that some of the simulated ANN outputs (1-1 1 pressure values) 
deviated from the expected values when the input panuneter or width of extruded profiles was smaller than 7011m. The 
contributing factor to this cleviation appeared to be that the differences in heiuhts of the extruded profiles are small at 
smaller widths of extruded profiles, mostly within 5 to 1 Opm ranue. The ANN networks may have difficulties to 
distinguish the difference. However. this problem \vas not observed in the process model. 

II expansion of ANN models is needed for the LHEM method that included different processing material, the modelinu 
approach presented in this paper could be employed. In addition, the trainecl networks could be incorporated into 
design/manufacture software (CAD/CAM) to enhance its functionality. For that purpose, portability to different 
computing devices is necessmy the trained networks could be extracted in a form of analytical equation of simple feed-
forward networks of two-layer structure with a single output. The analytical form states as: 

k = Y ow[ I g hul [E 
t=0 

( 

where /1, is the output of the network, y,„„[g] is the activation function of linear output, zho[c] is the nonlinear activation 
function of the hidden layer, gAi and wfi are the weiuhts between each neurons. 

6. CONCLUSION 

In this paper. we presented the artificial neural network (ANN) models that clescribe the hot intrusion process of the 
LHEM method. The result showed the ANN models predicted the expected values within 6% difference. Usinu ANN, 
we avoicled modeling the hot intrusion process via first principles that requires in-depth knowledge of the physical 
phenomenon, and yet hiuh accuracy of mappinu between inputs/outputs was able to achieve. Further, different 
processing materials used by the LHEM method can be modeled in a similar fashion ancl portability to different 
design/manufacture software can be incorporated as well. 
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