
Publisher’s version / Version de l'éditeur:

International Journal of Production Research, 46, 9, pp. 2433-2452, 2008-05-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Real time distributed shop floor scheduling using an agent-based

service-oriented architecture
Wang, C.; Ghenniwa, H.; Shen, W.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=e28d2b5f-2980-44fb-bd0f-91547b1065ab

https://publications-cnrc.canada.ca/fra/voir/objet/?id=e28d2b5f-2980-44fb-bd0f-91547b1065ab

http://irc.nrc-cnrc.gc.ca

R e a l t i m e d i s t r i b u t e d s h o p f l o o r s c h e d u l i n g u s i n g a n
a g e n t - b a s e d s e r v i c e - o r i e n t e d a r c h i t e c t u r e

 N R C C - 5 0 3 2 3

W a n g , C . ; G h e n n i w a , H . ; S h e n , W .

M a y 2 0 0 8

A version of this document is published in / Une version de ce document se trouve dans:
International Journal of Production Research, v. 46, no. 9, 2008, .pp 2433-2452

The material in this document is covered by the provisions of the Copyright Act, by Canadian laws, policies, regulations and international
agreements. Such provisions serve to identify the information source and, in specific instances, to prohibit reproduction of materials without
written permission. For more information visit http://laws.justice.gc.ca/en/showtdm/cs/C-42

Les renseignements dans ce document sont protégés par la Loi sur le droit d'auteur, par les lois, les politiques et les règlements du Canada et
des accords internationaux. Ces dispositions permettent d'identifier la source de l'information et, dans certains cas, d'interdire la copie de
documents sans permission écrite. Pour obtenir de plus amples renseignements : http://lois.justice.gc.ca/fr/showtdm/cs/C-42

http://irc.nrc-cnrc.gc.ca/
http://irc.nrc-cnrc.gc.ca/notices_e.html

Real Time Distributed Shop Floor Scheduling Using an Agent-Based

Service-Oriented Architecture

Chun Wang
1
, Hamada Ghenniwa

1
, Weiming Shen

1,2

1 Department of Electrical and Computer Engineering

The University of Western Ontario, London, Ontario, Canada
2Integrated Manufacturing Technologies Institute

National Research Council Canada, London, Ontario, Canada

cwang28@engga.uwo.ca; hghenniwa@eng.uwo.ca; weiming.shen@nrc.gc.ca

Abstract This paper proposes a distributed manufacturing scheduling framework at the shop floor level. The shop

floor is modeled as a collection of multiple workcells, each of which is modeled as a flexible manufacturing system.

The framework consists of a distributed shop floor control structure, dynamic distributed scheduling algorithms,

multi-agent system modeling of workcell, and service oriented integration of the shop floor. At the workcell level,

the designated scheduler allocates jobs to resources and deals with any dynamic events locally, if possible.

Otherwise, it collaborates with the other peer schedulers of workcells. Workcells are modeled as multi-agent

systems. Local dynamic scheduling is achieved by the cooperation of the scheduler agent, the real time control agent

and resource agents. Distributed scheduling is conducted through Web services facilitated by the service oriented

shop floor integration. The proposed distributed control structure, dynamic distributed scheduling mechanisms and

the system integration have been implemented using an agent-based service-oriented approach and validated

through a case study.

Keyword: Shop floor scheduling, distributed control structure, dynamic distributed scheduling

algorithms, agent based service oriented integration.

1. Introduction

Globalization of markets has driven manufacturing enterprises to shed the security of mass

production and shift to a new paradigm, mass customization. An essential goal of this

transformation is to respond to market changes in a timely and cost effective manner. As an

integral component of manufacturing management, scheduling needs to be effectively integrated

with other components of manufacturing systems such as supply chain management, ERP, and

shop floor control. Dynamic changes can derive from either outside parties in the market, such as

the supply side (representing suppliers), demand side (representing customers) or within the

enterprise, such as real-time events from the shop floor. In a real world shop floor environment,

it is rarely the case to execute exactly as planned. Operation durations tend to vary, machines

break down, raw materials fail to arrive on time, new customer orders appear, others get

 1

cancelled, etc. Such disruptions incur higher costs due to missed customer delivery dates, higher

work-in-process inventory, and lower resource utilization. To deal with these issues, practical

scheduling systems need to be able to effectively reorganize the shop floor production plan and

repair or redo the production schedule accordingly. Scheduling systems with the capability of

revising or re-optimizing a schedule, in response to unexpected events, becomes key for

companies to sustain their productivity.

This research is concerned with developing real time distributed scheduling systems at

the shop floor level. The shop floor is modeled as a collection of workcells. The workcells, in

turn, are modeled as Flexible Manufacturing Systems. The scheduling is performed

cooperatively and collectively by the group of schedulers, each delegated to a specific workcell.

Dynamic scheduling in this environment requires real time scheduling algorithms and their

effective integration with the distributed shop floor control structure. Dynamic scheduling has

been extensively studied in the literature (Kocjan, 2002; Shanker and Tzen, 1985). There have

been research efforts focusing on distributed scheduling as well (Baker, 1998; Neiman et al.,

1994; Sycara et al., 1991). In this paper, we study dynamic and distributed scheduling algorithms

in the multiple workcell shop floor setting. In addition to the individual algorithms, we

investigate how to integrate them in a way that the overall shop floor scheduling agility and

solution quality are enhanced.

2. Scheduling Problems in Multiple Workcell Shop Floor

As illustrated in Figure 1, the shop floor considered here consists of a collection of workcells.

Each of them is modeled as a flexible manufacturing system. Within a workcell, jobs need to be

scheduled on resources. The scheduling problem at this level is a dynamic FMS scheduling

problem, which is handled by a designated scheduler for the workcell. At the shop floor level,

due to workcell capability limitation or unexpected events, some workcells may have jobs that

need to be assigned to other workcells. The scheduling problem at this level is a dynamic

distributed scheduling problem, which needs to be solved collectively by a group of schedulers

through cooperation.

 2

Figure 1 Scheduling in Multiple Workcell Shop Floor

In this paper, we only consider the class of reactive dynamic scheduling algorithms [Sadeh,

1991]. Therefore it is not necessary to model the randomness caused by dynamic events in the

following problem models.

2.1. Workcell Scheduling Problem

In the workcell scheduling problem setting, workcells are implemented by FMS systems. Among

many FMS scheduling models, we focus our attention on a class of problems in which machines

have Partially Overlapping capabilities [Kamel and Ghenniwa, 1995]. As illustrated in Figure 2,

a workcell consists of various types of resources, such as computer numerical controlled

machines, automated guided vehicles (AGV) and a workpiece storage system. These resources

are controlled by resource controllers and the whole workcell is controlled by a real time

controller. An operator can program the processing of the workcell through the interaction with

the real time controller. In this paper, we are interested in the impacts of partially overlapped

characteristics of the workcell scheduling problem. We have simplified the workcell scheduling

model by assuming that the transportation times of jobs between machines are equal and have

been modeled in machine processing times. Therefore, there is no need to explicitly model the

AGV. At the same time, storage and port are treated as independent resources, like machines.

This allows us to differentiate the resources only by their capability sets
1
, not by the

relationships among them. For some resources, e.g. machines - their capability sets may be

partially overlapped.

1
 The capability set of a resource is the set of functionalities provided by that resource. For example, a machine’s

capability set contains all operations that the machine can process.

 3

Figure 2 Workcell resources and the control structure

Formally, an instance of the class of scheduling problems in partially overlapping systems

consists of a set of n jobs, denoted by { }nJJJJ ,...,, 21= , to be processed by a set of resources,

denoted by . Each job (

m

{ mMMM ,...,1= } jJ nj ,...,1=) requires the processing of a sequence

operations ,j ko ()jnk ,...,1= , where is the number of operations belong to . An operationjn jJ ,j ko

corresponds to an uninterrupted physical process which has to be performed on a resource. Each

resource () is defined by a set of operations, which represent its capability.

If , can be processed by resource . For any two resources

iM mi ,...,1=

k,joik,j Mo ∈ iM ∈M li M, M , may

not be empty. That is, resources have overlapping capabilities. If a resource

lMI

i

iM

iM ()m≤≤1 is

capable of processing an operation k,jo ()nj;nk j ≤≤≤≤ 11 , a processing time is given.

 may not be equal to , for

+∈Rp ,i k,j

k,j,ip k,j,lp { }m,...,l,i,l 1i ∈≠ , which means the same operation may have

different processing times on different resources. In the workcell scheduling problem, we don’t

model the resource eligibility constraints. Instead, we assign processing time , if can

not process . In addition, with each job

+∞=k,j,ip iM

kjo , jJ ()nj ,...,1= we associate two values: release time of

a job , due date for the completion of a job - . There are precedence constraints among

operations of each job. The objective is to minimize makespan of the solution schedule. Using

the following variables,

jrjJ − jJ jd

,j kS , the starting time of the operation k of job , j

, ,

1 if machine ischosen toperformoperation of job

0 otherwise.
i j k

i k
X

⎧
= ⎨
⎩

j

 4

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≠

=

. machine; same on the job of

operation after performed is job of operation if0

machine; same on the job of

operation before performed is job of operation if1

ĵjĵk̂

jk

ĵk̂

jk

Y
k̂,ĵ,k,j

the partially overlapping scheduling problem can be formulated as a mixed integer programming

as follows.

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+∑
=

∈

m

i

n,j,in,j,in,j
JJ jjj

j

XpSmaxmin

1

 (1)

Subject to

,1j jS r≥ , (2) JJ j ∈∀

0

1

11 ≤−+∑
=

−− k,j

I

i

k,j,ik,j SpS , (3) jnk,j ≤<∀ 1

ĵjk̂,ĵ,k,jk̂,ĵ,ik,j,ik̂,ĵ

I

i

k,j,ik,j,ik,j nk̂,nk,ĵj,ĵ,j,HHYHXHXSXpS ≤≤≤≤≠∀≤+++−+∑
=

113

1

 (4)

ĵjk,j,k̂,ĵk̂,ĵ,k,j
nk̂,nk,ĵj,ĵ,j,YY ≤≤≤≤≠∀=+ 111 (5)

∑
=

=
I

i

kjiX

1

,, 1 , (6) jnkj ≤≤∀ 1,

{ }, , 0,1i j kX ∈ , (7) jnkji ≤≤∀ 1,,

{ }ˆˆ, , ,
0,1

j k j k
Y ∈ , (8)

jj nknkjjjj ˆ
ˆ1,1,ˆ,ˆ, ≤≤≤≤≠∀

, 0j kS ≥ , (9) jnkj ≤≤∀ 1,

The objective function (1) is to minimize the makespan of the solution schedule. The set of

constraints (2) ensure that a job does not start before its release time. The set of constraints (3)

ensure that an operation does not start before the previous operation of the same job has

completed. The set of constraints (4) and (5) ensure that at most one job can be processed by a

resource at a time. In (4) H is a large finite positive number. Constraints (6) say one operation

can and only can be processed by one resource. Constraints (7), (8), and (9) are non-negative and

integer constraints.

2.2. Dynamic Scheduling Problem

Manufacturing is a process often fraught with contingencies. It is rarely the case that tasks are

executed exactly as planned. Small disruptions such as minor deviations in operation durations

 5

often do not warrant major modifications to the schedule. However, as the impact of small

disruptions accumulate or as more severe disruptions occur, such as long machine breakdowns, it

is sometimes desirable to re-optimize the schedule from a more global perspective [Sadeh,

1991]. In many cases, this re-optimization means re-scheduling all operations that have not been

processed by the time of disruption. We distinguish two types of dynamic scheduling situations

at the workcell level, namely minor disruptions and severe disruptions. In case of a minor

disruption, a schedule repair procedure which minimizes the perturbation to the original schedule

is appropriate. On the other hand, if the disruption is severe (caused either by the accumulation

of small disruptions or a major resource malfunction), a re-optimization from a more global

perspective is usually desirable. An obvious issue is how to decide the severity of a dynamic

disruption. The threshold of distinguishing minor and severe disruption should be set by the

workcell operator as it involves the trade-off between the overall solution quality and the

perturbation to the original schedule. Frequent schedule re-optimization can result in instability

and lack of continuity in detailed shop floor plans, resulting in increased costs attributable to

what has been termed “shop floor nervousness”[McKay et al.1998].

2.3. Distributed Scheduling Problem

At the shop floor level, the task of scheduling is to coordinate the local schedules of workcells in

a way that the good solution quality of the shop floor schedule is achieved. In this context,

individual workcell scheduling problems are tied together by two elements, shop floor level

objective and inter-workcell constraints. Because each workcell tries to minimize/maximize its

own objective function at shop floor level, the scheduling problem can be modeled as a multi-

objective optimization problem. The overall solution quality can be measured by Pareto

efficiency or some forms of aggregation of the individual objectives of workcells. In the

workcell scheduling problem formulated in the previous section, the objective of each workcell

scheduler is to minimize the makespan. Accordingly, we define the objective of the shop floor

scheduling problem as the weighted sum of makespans over all workcells.

The inter-workcell constraints in the decentralized shop floor scheduling problems are

derived from the machine capacity dependency among workcells. Solving the constraints is to

achieve coordination among schedulers of workcells. The process of solving the inter-workcell

constraints is to find a value assignment to some shared variables that satisfies all the local

 6

constraints of the workcells involved. Specifically, when solving the local scheduling problem,

each scheduler has some variables and tries to determine their values. However, there exist inter-

workcell constraints because of the capacity dependency and the value assignment must satisfy

these constraints. Formally, there exist l workcells . (l,...,2,1 hX lh ,...,1=) is the set that contains all

variables the scheduler needs to assign values to in order to determine a schedule for the

workcell h . Because of the inter-workcell constraints, some schedulers need to share a subset of

their variables. However, such a case can be formalized as these schedulers have different

variables, and there exist constraints that these variables must have the same value. We say that

the constraints of a distributed shop floor scheduling problem are satisfied, iff

h

1. For any scheduler h and hXx∈∀ , the value of x is assigned to d , any constraints in hL is

satisfied under the assignment dx = , where hL is the set of local constraints of workcell h .

2. If x is a shared variable between workcell h and workcell q , hdx = in workcell h , qdx = in

workcell l , then qh dd = .

Let denote the set of schedules which satisfy inter-workcell constraints between

workcell h and ; let denote the set of schedules which satisfy local constraints of workcell h .

The distributed shop floor scheduling problem can be formulated as follows.

I
qhS ,

q L
hS

()∑
=

l

h

hh SMw

0

min

s.t. , lhSS L
h ,...,1, =∈

I
qhSS ,∈ , , , lh ,...,1= lq ,...,1= qh ≠ .

where is the weight of the workcell , hw h ()SM h is the latest completion time of all jobs

belonging to the workcell , the allocations of jobs of all workcells form an overall shop floor

schedule S .

h

3. Agent-based Scheduling at Workcell Level

This section presents an agent-based scheduling system at the workcell level. The system

consists of a multiagent system architecture, coordination mechanisms among agents and agents’

local decision-making schemes.

 7

3.1. Multiagent System Architecture

Figure 3 shows a multiagent system architecture proposed for the agent-based scheduling system

at the workcell level. The system consists of resource agents, a real time controller agent, a

directory facilitator and a scheduler agent. All agents are connected to the network

independently. The Ethernet is taken as the infrastructure for communication and cooperation

among agents within a workcell. In principle, each agent can reach any of the other agents in the

system by sending messages. However, communication that goes outside the workcell is

mediated by the scheduler agent. The functionalities of the agents are described as follows:

Figure 3 Multiagent System Architecture for a Workcell

1. Resource agents represent manufacturing resources in the workcell. Each agent

corresponds to one resource. Resource agents receive job assignments from the Real Time

Controller agent and report the working status of their resources to the Real Time Controller

agent and the status information, including routine processing data and unexpected disruptions.

2. The Directory Facilitator (DF) has the registration service functionalities for other agents

in the agent system, keeps up-to-date agent registration, informs all registered agents with

updated registry and provides lookup and matchmaking services to the system.

3. The Real Time Controller is the agent that represents the overall control of a workcell. It

accepts production schedules from the workcell scheduler and distributes them to resources in the

workcell. At the same time it monitors the processing status of resources, analyzes and

aggregates the raw resource processing data. If unexpected changes in the workcell affect the

 8

execution of the schedule, it will report to the scheduler with high level scheduling related

processing information.

4. The Scheduler performs the main scheduling functionality in the system. At the workcell

level it works with the Real Time Controller implementing the dynamic scheduling within the

workcell. At the shop floor level, it cooperatively works with other peer schedulers in achieving

distributed shop floor scheduling.

3.2. Coordination Mechanisms among Agents

The workcell level dynamic scheduling requires coordination between the Scheduler, the Real

Time Controller and the Resources agents. The coordination between Scheduler and Real Time

Controller implements the monitoring and control functionalities required by dynamic

scheduling. The Scheduler passes the generated schedules to the Real Time Controller to be

executed in the workcell. Workcell resource statuses can be reported to the Scheduler through

monitoring. The protocol adopted for the coordination mechanism between the Scheduler and the

Real Time Controller is FIPA Query Protocol (http://www.fipa.org). The protocol has been

implemented in different ways to fulfill the different functional requirements to achieve

coordination.

Figure 4 depicts the schedule deployment protocol between the Scheduler and the Real

Time Controller. Once a new schedule has been calculated, the Scheduler deploys it to the

workcell by sending a Deploy message. The Real Time Controller receives the updated schedule

and passes it to the Resource agents to be deployed. Depending on different deploying results the

Real Time Controller may reply to the Scheduler with “inform-done” (deployment finished),

“failure” (deployment failed) or “not-understood” if part of the schedule is not understandable.

Figure 4 Schedule deployment protocol

 9

Figure 5 shows the disturbance reporting protocol between the Scheduler and the Real

Time Controller. Once a disturbance happens in a workcell, the Real Time Controller reports it

to the Scheduler by sending a Request message. The Scheduler receives the disturbance report

and replies with an “inform-done” message. If the reported message is not understandable, it will

ask the Real Time Controller to re-send the request by sending a “not-understood” message.

Figure 5 Disturbance reporting protocol

Coordination between the Real Time Controller and the Resource agents utilizes the same FIPA

Query Protocol as those used between the Scheduler and the Real Time Controller. The Real

Time Controller uses the schedule deployment protocol to distribute a schedule to Resource

agents in the workcell and the Resource agents report any disturbances regarding the execution of

the deployed schedule, using the disturbance reporting protocol. All agents register their

capabilities to the DF before the actual scheduling process starts. If a new Resource agent is

integrated into the workcell after the starting time of scheduling, it registers its capabilities to the

DF as well. The Real Time Controller is notified by the DF for the updated workcell

configuration information and reports any newly integrated resources to the Scheduler using the

disturbance reporting protocol. Similarly, if a resource is withdrawn from the workcell after the

start time of scheduling, it must report to the Real Time Controller as a disturbance and delete its

registration in the DF.

3.3. Agent’s Local Decision Making Algorithm

At the workcell level, the schedules are computed by a heuristic scheduling algorithm

encapsulated in the Scheduler. The Real Time Controller and the Resource agents provide related

information needed by the Scheduler. However, they are not directly involved in the actual

 10

scheduling decision making. Therefore, in terms of decision making schemes, we focus on the

Scheduler and, for the Real Time Controller agent and the Resource agents, we give a brief

overview.

The Scheduler agent’s local decision-making scheme is mainly implemented by a static

scheduling algorithm (for the Workcell Scheduling Problem) and a dynamic scheduling

algorithm (for the Dynamic Scheduling Problem). Details of these two algorithms are described

as follows.

3.3.1. The Static Scheduling Algorithm

The workcell scheduling problem modeled in Section 2.1 is a class of FMS scheduling problems.

The majority of the approaches developed for these problems are heuristic oriented (e.g., Nof et

al., 1979; Stecke and Solberg, 1981; Chang et al., 1985) and artificial intelligence based (e.g.,

Fox and Smith, 1984; Smith and Ow, 1985; Sadeh, 91). Some Genetic Algorithm-based

approaches (e.g., Fang and Xi, 1997; Qi et al., 2000) can be considered as meta-heuristic

methods. Most of these methods use simulation to generate or evaluate schedules. A

comprehensive survey on simulation approaches in FMS scheduling can be found in (Chan et al.,

2002). Basnet et al. (1994) reviewed the literature concerning the operational aspects of FMSs.

Zweben and Fox (1994) provided a comprehensive reference for artificial intelligence-based

scheduling approaches. The problem we are focusing on is a class of FMS scheduling problems

with a partially overlapping system structure, which has been proven to be NP-hard (Wang et al.,

2006). Exact methods, which find optimal schedules, are not practical because of the prohibitive

computation demanded. While many approaches proposed in the literature focus on other aspects

of the FMS scheduling problems, we propose a dispatching rule-based heuristic algorithm,

leveraging the partially overlapping characteristics of the problem.

The heuristic algorithm combines a set of dispatching rules. The basic ideas are: (1)

effectively utilize the flexibility provided by the partially overlapping characteristic of the system

to balance the work loads, at the same time, (2) assign operations to resources which can finish

them faster. Based on the above heuristics, we propose two dispatching rules: Flexible Operation

Last (FOL) and Earliest Finishing Time First (EFT). FOL is a composite of two elementary

dispatching rules: Longest Processing Time first (LPT) [Panwalkar and Iskander, 1977] and

Least Flexible Job first (LFJ). As a composite dispatching rule, FOL is modeled as a ranking

 11

expression that combines LPT and LFJ. This combination can be implemented as the following

function:

,

,

,

exp
j k

j k

j k

n

Q
f

l

⎛ ⎞
⎜ ⎟
⎝ ⎠=

where is the ranking index of FOL, defined as the Flexibility of , is the number of

resources in the workcell that can perform ; is the average processing time of the

operation, which is calculated based on historical data. is the scaling parameter that can be

determined empirically. If Q is very large, the FOL rule reduces to the LPT rule. If Q is very

small, the rule reduces to the LFJ rule. FOL selects operations to be scheduled according to their

Flexibilities. Operations with higher Flexibilities (short average processing time and more

eligible resources) are placed towards the end of the schedule, where they can be used to balance

loads more effectively. Once the operation to be scheduled has been selected by FOL, EFT find a

resource for the operation based on its completion time. The resource with earliest completion

time is chosen.

kjf , kjo , kjn ,

kjo , kjl ,

Q

The algorithm consists of two steps. Before scheduling an operation to a resource, the FOL

rule is used to select an operation from Eligible Operation Set
1
 (EOS). Then the EFT rule is

used to designate the selected operation to a resource based on the current partial schedule. The

algorithm implements the EFT rule by considering two factors, the workload of a resource in the

current partial schedule which has been established by previous operations and the processing

speed of this resource for the selected operation. The resource which can finish the operation first

is chosen. Briefly, the algorithm can be described as following.

1. Set EOS=φ ;

2. If (jJ has unscheduled operations, JJ j ∈∀) then

2.1. Move eligible operations from jJ to EOS;

2.2. Select an operation to be scheduled from EOS based on FOL rule;

2.3. Allocate selected operation to a capable machine based on EFT rule.

2.4. Remove the allocated operation from EOS;

3. Go to 2.

1 Eligible Operation Set contains operations for which the job release time and operation preceding constraints are

satisfied.

 12

4. If EOS is not empty

4.1. Go to 2.2

5. Terminate

3.3.2. The Dynamic Scheduling Algorithm

In section 2.2 dynamic scheduling problems were classified based on the severity of the

disruption happening in the workcells. In the cases of minor disruption, schedule repair

procedures are appropriate to provide a fast response and small permutation. In the cases of

severe disruption, the re-optimization the algorithms must be considered. While the static

workcell scheduling algorithm can be applied directly to the severe disruptions as a re-

optimization algorithm, we present a scheduling repair procedure as follows.

In repairing a schedule, the schedule repair algorithm first identifies a number of operations

affected by the disruption and must be un-scheduled, then, allocates them to the available

resources using the workcell scheduling algorithm. Once a dynamic disruption happens in a work

cell, some operations are affected by the event directly. At the same time, others may be affected

indirectly by the conflict propagation caused by various constraints. For example, if

resource breaks down at time , an operation scheduled on has not started the

processing or has not been finished, , can no longer be processed on m (where is the

completion time of and assume cannot be recovered before the end time of the schedule’s

execution). We call a directly affected operation. All directly affected operations form a set,

denoted by , . Operations belong to have to be rescheduled on other capable

resources. In addition to operations in , an operation scheduled on other resources which

have precedence constraints with an operation in , say , and has been scheduled after ,

, may need to be rescheduled as well because may change too much after its

reschedule such that is no longer true. We call an indirectly affected operation. All

indirectly affected operations form a set, denoted by ,

m

k

mt k,jo

DA

DA

IAO

m

mk,j tc >

m

DAO

k,jc

k,jo

k,jo

k, O∈

k̂,ĵ
s

DAO DAjo

>

O

O

k̂,ĵ
o

jo

c

k̂,ĵ
o

k̂,ĵ
o

k,

k,j

k,jo

,jk̂,ĵ
cs >

k,jc

IAO∈ . Clearly, not all operations in

need to be rescheduled in order to generate a valid schedule repair. To minimize the

perturbation to the original schedule, we propose a two step scheduling repair procedure: (1) a

schedule repair first un-schedule operations in ; (2) if these operations are not sufficient to

IAO

DAO

 13

enable a new solution to be generated, the unscheduled operations are expanded incrementally to

operations in until a solution is found. Based on the modeling and analysis mentioned above,

we propose a dynamic scheduling repair algorithm described as following. We assume that

resource breaks down at time and cannot be recovered within the time period to be

scheduled in a workcell.

IAO

m mt

1. Set Eligible Operation Set φ=EOS ;

2. Evaluate operations scheduled on m , find all DAkj Oo ∈, , such that mk,j tc > ;

3. Find all indirectly affected operations IAkj
Oo ∈ˆ,ˆ based on the operations in DAO ;

4. Unschedule operations in DAO ;

5. If (jJ has unscheduled operations, JJ j ∈∀) then

5.1. Move eligible operations from jJ to EOS ;

5.2. Select an operation ,j ko to be scheduled from EOS based on FOL rule;

5.3. Allocate ,j ko to a capable resource based on EFT rule;

5.4. If no allocation is feasible (violate constraints),

5.4.1. Find the nearest successor of ,j ko which is not in EOS based on precedence

constraints;

5.4.2. Unschedule the successor found;

5.4.3. Go to 5;

5.5. Remove the allocated operation from EOS ;

5.6. Go to 5;

6. If EOS is not empty, go to 5.2;

7. Terminate

The Scheduler agent’s scheduling states keep changing in dynamic scheduling situations.

These changes can be modeled as a Finite State Machine as shown in Figure 6. The Scheduler

agent has six scheduling states. Among them, Monitoring, Scheduling, and Deploying are of

importance. After Initialization, the schedule has been calculated and deployed to the workcell.

The Scheduler agent will be in the state of Monitoring. Dynamic events, which represent the

changes from a workcell, can trigger the transition from the Monitoring state to the Scheduling

state at which repairing or rescheduling algorithms respond to the occurrence of these events and

 14

work out a new schedule. If dynamic events happened in the process of Scheduling, the

rescheduling procedure may be restarted to accommodate the newly occurring events. Once a

new schedule is ready, the Scheduler agent changes to the Deploying state where the new

schedule is deployed to the workcell. If deployment failed due to unexpected changes in the

workcell, it reverts back to scheduling state, and rescheduling will be restarted again.

Ini tialization Scheduling

Monitoring

Deploying
Processing started

Dynamic events

Dynamic Events

Processing finished

Deployment finished

Dynamic events or Deploying failed

New Schedule Ready

Figure 6 Finite State Machine model of the Scheduler agent

3.3.3. Local Decision Making of Real Time Controller and Resource Agents

The Real Time Controller’s local decision-making contains a set of information processing

rules to aggregate information reported from the Resource agents to a higher level abstraction

which is intelligible by the Scheduler, and to breakdown a schedule computed by the Scheduler

into sub-schedules each for a Resource agent. In addition, it also contains control logics used to

implement the coordination protocols. The Resource agents’ local decision-making mainly

contains resource monitoring procedures and control logics for disturbance reporting, schedule

deployment, and capability registration.

4. Service Oriented System Integration at Shop Floor Level

The control of multiple workcells on a shop floor has been integrated using an agent-based Web

service integration framework (AWS) (Shen et al. 2006). Agent-orientation is an appropriate

design paradigm to enable automatic and dynamic collaborations. It is a natural system design

and implementation choice in capturing the distributed and dynamic natures of the distributed

real time shop floor scheduling. In addition, the software agent paradigm has technical

advantages in software modularization, legacy systems integration, distributed problem solving,

 15

and semantics-based interaction with complex and distributed transactions. Established

technologies in these areas provide the necessary foundation for the design and implementation

of distributed real time scheduling systems. On the other hand, service-orientation is suitable in

designing system integration at the shop floor level. The Web Services paradigm is fast evolving

and has been supported by several industrial leaders. This led to the development of various

supporting technologies for Web Services that enable deploying, publishing, discovering,

invoking and composing services in a standard and consistent way. This enables an open,

flexible, standardized integration of manufacturing control at the shop floor, enterprise, and

supply chain levels.

The merging of service-oriented and agent-based approaches has been a hot topic of

research in recent years. Petrie et al. (2003) discussed the shortcomings of Web services

standards and how logical AI techniques like declarative commands, agents, and AI planning

techniques can be used to address some of these shortcomings. They proposed an FX-Agent

approach to address Web services discovery and composition of Web services. Matskin et al.

(2005) identified Web services composition as an important issue for efficient selection and

integration of inter-organizational and heterogeneous services on the Web and they believed that

software agents can help make Web services “pro-active”. In their system, provider’s Web

services are wrapped into individual Providers’ Agents on an agent-based marketplace providing

services for Customers’ Agents. Maamar et al. (2005) presented an agent-based and context-

oriented approach that supports the composition of Web services. During the service

composition process, software agents engage in conversations with their peers to agree on the

Web services that participate in this process. Liu et al. (2004) proposed a conceptual model of

agent-mediated Web services for intelligent service matchmaking. In fact, most of research

efforts in the literature such as the above mentioned approaches can be roughly categorized as

“agentification” of Web services into an agent community. We proposed a different approach for

agent and Web services integration (Li et al., 2003). In our AWS framework, an agent core is

built into each Web service, so that a Web service is itself an agent. No matter the

“agentification” of Web services as agents in a multi-agent system (Maamar et al., 2005) or

encapsulation of agents as Web services over the Internet (Li et al., 2003), both approaches share

the common goal that, by taking the advantages of Web services and agents, the resultant

integrated solution will produce a sophisticated paradigm for Internet computing.

 16

4.1. System Overview

Figure 7 illustrates an agent-based Web service integration for the distributed real time shop

floor scheduling system. The proposed system integration is composed of a UDDI and several

scheduling service sub-systems, each represents a workcell. As shown in Figure 7, the scheduler

of each workcell has two identities, scheduling service and scheduling agent. When working

with Real Time Controllers, it is exposed as an agent communicating with ACL. On the other

hand, it is exposed as a Web service when working with its peer schedulers on the shop floor.

The UDDI is a static repository that provides schedulers’ information with standard terms that

contains workcell’s capabilities and constraints. At the shop floor level, communication among

schedulers is based on Web Services standards; at the workcell level, communication among

agents is base on ACL messages.

Figure7 Agent-based Web service integration

4.2. Distributed Scheduling

The scheduling problem at the shop floor level contains multiple distributed workcells. Thus, it is

actually a distributed scheduling problem. In a workcell, some dynamic events, such as a

resource malfunction, may happen. If this disruption cannot be contained inside the workcell, in

other words, some disrupted jobs can no longer be scheduled in the same workcell because of the

lack of processing capabilities caused by the resource breakdown, the scheduler of this workcell

needs to assign the un-scheduled operations to other workcells.

We propose a Contract Net-based distributed scheduling algorithm for the shop floor level

scheduling problem in the context of the service oriented integration of multiple workcells.

Briefly, the algorithm can be described as follows:

 17

1. Dynamic events at a workcell (call it initiator in terms of the contract net protocol) causes

some operations to no longer be able to be processed in the workcell. The initiator finds eligible

workcells (call them responders) which can process the un-scheduled operations through UDDI.

Note that, a responder does not have to be able to process all un-scheduled operations of the

initiator. The definition of eligible workcell requires that the workcell can process at least one of

the un-scheduled operations.

2. The initiator sends out a call for proposal (CFP) to all responders. The CFP contains un-

scheduled operations and their associated constraints, such as precedence and release dates.

3. The responders try to accommodate the un-scheduled operations from the initiator into

their own local schedules based on their scheduling objectives respectively. Once the scheduling

on the responders is finished, the responders send proposals back to the initiator. Each of the

proposals contains a solution schedule for the un-scheduled operations of the initiator. Note that,

the schedule solution from a responder may not contain all un-scheduled operations. Therefore,

for some responders, they can just provide schedules for some of the unscheduled operations due

to their capability constraints or the availability of the resource processing time. If it is not

feasible for the responder to schedule any of the assigned operations or the responder is not

interested in the assignment, it sends back a Refuse message.

4. Upon receiving the proposals from the responders, the initiator selects one or a

combination of them based on its scheduling objectives to form a final schedule for the

unscheduled operations and inform the responders which are included in the final schedule by

sending Award messages.

5. If the proposal is accepted by the initiator, the responder deploys the contingent schedule

and sends the initiator a message indicating the result of the deployment. If no dynamic events

happened during the negotiation process, the responder should be able to successfully deploy the

schedule and send the initiator an “inform-done” message. If some dynamic events happened

during the negotiation process made the contingent schedule impossible to be deployed, a

“failure” or “inform-result” message will be sent to the responder indicating how the contingent

schedule is impacted.

 18

4.3. Scheduler Agent Design

In a distributed shop floor scheduling system, workcells are modelled as multi-agent systems.

However, at the shop floor level, these multi-agent systems are integrated through Web services.

The coexistence of these two different environments poses challenges in systems integration.

Because all interactions between the two environments are facilitated by the scheduler, it is not

really necessary to implement a general Web services agent gateway between agent and Web

service environments. Our approach is to encapsulate the gateway functionality into the

scheduler agent, such that it can communicate with both environments concurrently. Based on

the CIR-Agent architecture (Ghenniwa and Kamel, 2000), we have designed problem solver,

interaction and communication components in the scheduler agent. However, in order to

communicate to different environments, both the interaction and communication components

into the scheduler agent are split into two parts. As shown in Figure 8, the workcell scheduling

interaction and ACL communication are used by the local controller of the problem solver to

interact with the real time controller agent in the workcell; the scheduling service interaction and

SOAP communication are used by the remote controller of the problem solver to interact with

scheduling services provided by other workcells. The problem solver component consists of the

local controller, remote controller and scheduling algorithms designed for scheduling at different

levels of the shop floor.

Other agents in the system, such as resource agents and real time controller agents are also

designed based on the CIR-Agent architecture. Because they only exist in the agent environment,

they are not equipped with SOAP communication and Service interaction components.

Figure 8 Design of scheduler agent

 19

4.4. System Deployment

The real time distributed shop floor scheduling system has been implemented in Java on the

JADE agent development platform (http://jade.tilab.com) and Java Web Services tools

(http://java.sun.com/webservices). Figure 9 illustrates a two-workcell deployment of the system.

The scheduling system for a workcell contains a scheduler agent, a real time controller agent,

several resource agents and a scheduling service. All agents sit on a distributed JADE platform

across several hosts. A Java Web Service environment is installed on the same host that the

scheduler agent sits on, which allows the scheduling service of a workcell to be connected with

the scheduling services of other workcells. Together, the scheduling services and the scheduler

agents fulfill the functionality of the real time distributed shop floor scheduling.

Figure 9 Deployment of the real time distributed scheduling system

5. A Case Study

This section presents a case study which demonstrates how the proposed components, at

different levels of the multiple workcell shopfloor, collaboratively provide robust scheduling

under the proposed Agent-based Web Service integration framework. For the sake of clearly

demonstrating the interactions among workcells, we consider a shop floor with two workcells.

Since the contract net (a one to many negotiation protocol) is used for assigning jobs, the

proposed system can also accommodate the dynamic scheduling on shop floors with larger

number of workcells. As illustrated in Figure 10, the shop floor has two workcells (Workcell A

 20

and Workcell B). Each of them has a set of jobs to be scheduled. The experimental scenario

goes as follows.

Workcell Scheduling The schedulers of Workcells A and B perform scheduling using the static

workcell scheduling algorithm described in Section 3.3.1. At this stage we assume that all jobs

can be scheduled in local workcells. The generated schedules are passed to the Real Time

Controllers of Workcells A and B respectively. Figure 10(a) shows the assigned schedule for

Workcell A and Figure 10(b) shows the assigned schedule for Workcell B in the form of a Gantt

chart. Workcell A and Workcell B have the same workcell configuration (only include three

machines). The two job sets that need to be allocated have the same configuration as well

(however, different job names are used). In the chart, the horizontal bars indicate the length of

time allocated to each operation. The x-axis of the chart is subdivided into equal units of time

(say hours in our case). The y-axis, on the other hand, lists all the resources in the workcell.

Dynamic Scheduling For dynamic scheduling, we demonstrate how a machine down event is

accommodated by the dynamic scheduling algorithm proposed in Section 3.3.2. Say Machine 3

of Workcell A breaks down at hour 25. This disruption is passed to the Scheduler through the

Real Time Controller. The schedule repair algorithm first identifies operations (job13-op6,

job13-op7, and job11-op8 in this case) that are affected by the disruption and need to be re-

scheduled, then, allocates them to available machines using the workcell scheduling algorithm.

The repaired schedule is passed to the Real Time Controller and executed in Workcell A. As

illustrated in Figure 10(c), job13-op6 is rescheduled on machine 2. To accommodate job13-op6,

job13-op7 is shuffled two hours towards the end of the schedule. However, job11-op8 can no

longer be processed by Workcell A because Machine 3 is the only one eligible in Workcell A. It

needs to be assigned to other workcells on the shop floor by the distributed scheduling algorithm

Distributed scheduling To assign job11-op8 to other workcells, the scheduler of Workcell A

first tries to find all eligible workcells on the shop floor that can process the operation through

the lookup service provided by the UDDI (Workcell B turns out to be the only eligible one). The

scheduler A sends out a service request which contains a call for proposal to Scheduler B

including the operation name (job11-op8) and the operation release time (at hour 18 because its

precedent operation job11-op5 ends at hour 18). Upon receiving the request from Scheduler A,

Scheduler B calculates a solution for job11-op8 and sends back a bid indicating when the

operation will be processed. Scheduler A awards this operation to scheduler B. Scheduler B

 21

 22

passes the modified schedule (including the assignment of job11-op8) to the Real Time

Controller of Workcell B for execution. As shown in Figure 10(d), the operation is added to the

end of Machine3’s schedule in Workcell B.

(a) Original schedule of workcell A.

(b) Original schedule of workcell B.

(c) Repaired schedule of workcell A.

(d) Refined schedule of workcell B accommodating the op8 of job 11 from work cell A.

Figure 10 Gantt charts of schedules

To demonstrate the integration of scheduling algorithms more clearly and intuitively, we have

intentionally used a simple scenario in this case study. The performance of the algorithms has been

tested using more complicated problem sets. Interested readers may refer to (Wang et al., 2005, 2006).

6. Conclusion

Generally speaking, any manufacturing enterprise is distributed. Distribution can be geographical,

logical, temporal, or spatial. In the manufacturing domain, it is not uncommon for production to be

distributed geographically, sometimes on a continental scale (the automobile industry is a prime

example). An enterprise can logically be distributed, reflecting its organizational structure.

Organizational structuring can be a necessity in order to decompose the enterprise’s problems into

manageable chunks and to better exploit available expertise. Scheduling is an essential functionality

required by manufacturing control and management at various levels of manufacturing. We have

proposed a real time distributed scheduling framework for multi-workcell shop floors. Since distributed

environments exist at other levels of manufacturing management, in many cases, it is justified to apply

the proposed distributed control structure and even some algorithms (e.g. the distributed scheduling

algorithm) to inter-enterprise, enterprise and plant environments as well. For example, at the enterprise

level, if a set of customer orders need the cooperation of several divisions of an enterprise, in a dynamic

market environment, the scheduling problem involved is a real time distributed one. Currently, most of

the enterprise planning and scheduling as in ERP/MRP systems are conducted in a centralized way. One

of the criticisms of these systems is the fact that they are complex and inflexible. As a result, there has

been interest in the development of decentralized strategies for enterprise systems. We see this as a

potential application domain of real time distributed scheduling systems.

 In many real world environments, scheduling exhibits a decentralized nature and is conducted

through negotiation processes. This observation triggers one of our important future research directions,

which is the application of economic based resource allocation mechanisms, such as various auctions, to

real time distributed manufacturing scheduling. In many business-to-business transactions, production

scheduling parameters (e.g. due dates) are set through a negotiation process between the customer and

the service or product provider. In some cases, a firm may consider the possibility of “outsourcing”

some time-sensitive orders through a negotiation mechanism if the system is highly congested where

completing all the orders in-house would lead to very high tardiness penalties. As many manufacturing

 23

management applications require scheduling functionality in decentralized environments, we see that

economic-based scheduling mechanisms are good candidates in such environments.

Acknowledgement

The research work presented in this paper was partially supported by the Material and Manufacturing

Ontario and Timelog International Inc. through a collaborative project.

Reference

Baker, A.D., Merchant, M.E., Automatic Factories: How Will They Be Controlled. IEEE Potentials, 1993, 12(4), 15-20.

Baker, A.D., A Survey of Factory Control Algorithms which Can be Implemented in a Multi-Agent Heterarchy: Dispatching,

Scheduling, and Pull. Journal of Manufacturing Systems, 1998, 17(4), 297-320.

Basnet, C., Mize, J., Scheduling and Control of Flexible Manufacturing Systems: A Critical Review. International Journal of

Computer Integrated Manufacturing, 1994, 7(6), 340-355.

Chan, F.T.S., Chan, H.K., Lau H.C.W., The State of the Art in Simulation Study on FMS Scheduling: A Comprehensive

Survey. International Journal on Advanced Manufacturing Technologies. 2002, 19, 830-849.

Chang, Y.L., Sullivan, R.S., Bagchi, U., Wilson, J.R., Experimental investigation of real-time scheduling in flexible

manufacturing systems. Annals of Operations Research, 1985, 3, 355–377,

Duffie, N.A., Piper, R.S., Humphrey, B.J., Hierarchical and Non-Hierarchical Manufacturing Cell Control with Dynamic

Part-Oriented Scheduling. Proceedings of the 14th NAMRC, North American Manufacturing Research Conference,

Minneapolis, MN, 1986, pp. 504-507.

Fang, J., Xi, Y., A rolling horizon job ship rescheduling strategy in the dynamic environment. International Journal of

Advanced Manufacturing Technology, 1997, 13, 227–232.

Fox, M.S., and Smith, S.F., ISIS: a knowledge-based system for factory scheduling. Expert Systems, 1(1):25-49.

Ghenniwa, H, Kamel, M, (2000) Interaction Devices for Coordinating Cooperative Distributed System. Automation and Soft

Computing, 1984, 6(2), 173-184.

Kamel, M., Ghenniwa, H., Partially-Overlapped Systems: The Scheduling Problem. Design and Implementation of Intelligent

Manufacturing Systems, Parsaei, H. and Jamshidi, M. (Eds.), Prentice-Hall, 1995, pp. 241-274.

Kocjan, W., Dynamic scheduling: State of the art report. Technical Report, T2002:28, SICS, 2002.

Li, Y., Ghenniwa, H.H., Shen, W., Integrated description for Agent-based Web Services in eMarketplaces. Proceedings of

the Business Agents and the Semantic Web Workshop, Halifax, Nova Scotia, Canada. 2003, pp. 11-17.

Lin, G.Y.-J., Solberg, J.J., Flexible Routing Control and Scheduling. Proceedings of the Third ORSA/TIMS Conference on

Flexible Manufacturing Systems, K. E. Stecke and R. Suri, Eds., Elsevier, Amsterdam, 1989, pp. 155-160.

Liu, F., Yao, L., Zhang, W., Liu, H., Zhang, H., A conceptual model of agent mediated Web service. Proceedings of IEEE

International Conference on Services Computing (SCC 2004), Shanghai, China, 2004, pp. 638-42.

 24

Maamar, Z., Mostéfaoui, S.K., Yahyaoui, H., Toward an agent-based and context-oriented approach for Web services

composition. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(5), 686-97.

Matskin, M., Küngas, P., Rao, J., Sampson, J., Peterson, S.A., Enabling Web services composition with software agents.

Proceedings of the Ninth IASTED International Conference on Internet and Multimedia Systems, and Applications

(IMSA 2005 #477-122), Honolulu, Hawaii, USA, 2005.

McKay, K.N., Safayeni, F.R., Buzacott, J.A., Job shop scheduling theory: What is relevant? Interfaces, 1998, 18(4): 84-90.

Neiman, D., Hildum, D., Lesser, V., Sandholm, T., Exploiting meta-level information in a distributed scheduling system.

Proceeding of Twelfth National Conference on Artificial Intelligence (AAAI-94), 1994.

Nof, S., Barash, M., Solberg, J., Operational control of item flow in versatile manufacturing systems. International Journal

of Production Research, 1979, 17(5), 479–489.

Panwalkar, S., Iskander, W., A survey of scheduling rules. Operations Research, 1977, 25(1), 45-61.

Petrie, C., Bussler, C., Service agents and virtual enterprises: A survey. IEEE Internet Computing, 2003, 7(4), 68-78.

Qi, J.G., Burns, G.R., Harrison, D.K., The application of parallel multipopulation genetic algorithms to dynamic job-shop

scheduling. International Journal of Advanced Manufacturing Technology, 2000, 16, 609–615.

Ramaswamy, S.E., Joshi, S., Distributed Control of Automated Manufacturing Systems. Proceedings of 27th CIRP

International Seminar on Manufacturing Systems, Ann Arbor, MI, 1995.

Sadeh, N., Look-Ahead Techniques for Micro-Opportunistic Job Shop Scheduling. PhD thesis, School of Computer Science,

Carnegie Mellon University, Pittsburgh, PA, 1991.

Shanker, K., Tzen, Y.J., A loading and dispatching problem in a random flexible manufacturing system. International

Journal of Production Research, 1985, 23, 579-595.

Shaw, M.J., Whinston, A.B., Distributed Planning in Cellular Flexible Manufacturing Systems. Management Information

Research Center Technical Report, Purdue University, West Lafayette, IN, 1983.

Shen, W., Norrie, D.H., Agent-Based Systems for Intelligent Manufacturing: A State-of-the-Art Survey. Knowledge and

Information Systems, 1999, 1(2), 129-156.

Shen, W., Distributed Manufacturing Scheduling Using Intelligent Agents. IEEE Intelligent Systems, 2002, 17(1), 88-94.

Shen, W., Li, Y., Hao, Q., Wang, S., Ghenniwa, H., A Service Oriented Integration Framework for Collaborative Intelligent

Manufacturing. Robotics and Computer-Integrated Manufacturing, 2007, 23(3), 315-325.

Smith, R.G., The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver. IEEE

Transactions on Computers, 1980, C-29(12), 1104-1113.

Stecke, K.E., Solberg, J., Loading and control policies for flexible manufacturing systems. International Journal of

Production Research, 1981, 19(5), 481–490.

Sycara, K., Roth, S., Sadeh, N., Fox, M., Distributed constrained heuristic search. IEEE Transactions on Systems, Man, and

Cybernetics, 1991, 21 (6), 1446-1461.

Wang, C., Ghenniwa, H., Shen, W., Heuristic Scheduling Algorithm for Flexible Manufacturing Systems with Partially

Overlapping Machine Capabilities. Proceedings of IEEE ICMA 2005, Niagara Falls, Canada, 2005, pp. 1139-1144.

Wang, C., Ghenniwa, H., Shen, W., Scheduling Multi-operation Jobs in Partially Overlapping Systems. International Journal

of Computer Integrated Manufacturing, 2006, 19(5), 453-462.

 25

 26

Zweben, M., Fox, M.S., (Eds.), Intelligent Scheduling. Morgan Kaufman Publishers, San Francisco, CA, 1994.

