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This first chapter is a short introduction to the main aspects of statistical machine

translation (SMT). In particular, we cover the issues of automatic evaluation

of machine translation output, language modeling, word-based and phrase-based

translation models, and the use of syntax in machine translation. We will also do a

quick roundup of some more recent directions that we believe may gain importance

in the future. We situate statistical machine translation in the general context of

machine learning research, and put the emphasis on similarities and differences with

standard machine learning problems and practice.

1.1 Background

Machine translation (MT) has a long history of ambitious goals and unfulfilled

promises. Early work in automatic, or “mechanical” translation, as it was known at

the time, goes back at least to the 1940s. Its progress has, in many ways, followed

and been fueled by advances in computer science and artificial intelligence, despite a

few stumbling blocks like the ALPAC report in the United States (Hutchins, 2003).

Availability of greater computing power has made access to and usage of MT

more straightforward. Machine translation has also gained wider exposure to the

public through several dedicated services, typically available through search engine

services. Most internet users will be familiar with at least one of Babel Fish,1 Google

Language Tools,2 or Windows Live Translator.3 Most of these services used to be

1. http://babelfish.yahoo.com/ or http://babelfish.altavista.com/
2. http://www.google.com/language_tools
3. http://translator.live.com/
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Figure 1.1 The machine translation pyramid. Approaches vary depending on how
much analysis and generation is needed. The interlingua approach does full analysis
and generation, whereas the direct translation approach does a minimum of analysis and
generation. The transfer approach is somewhere in between.

powered by the rule-based system developped by Systran.4 However, some of them

(e.g., Google and Microsoft) now use statistical approaches, at least in part.

In this introduction and the rest of this book, translation is defined as the task

of transforming an existing text written in a source language, into an equivalent

text in a different language, the target language. Traditional MT (which in the

context of this primer, we take as meaning “prestatistical”) relied on various levels

of linguistic analysis on the source side and language generation on the target side

(see figure 1.1).

The first statistical approach to MT was pioneered by a group of researchers

from IBM in the late 1980s (Brown et al., 1990). This may in fact be seen as part

of a general move in computational linguistics: Within about a decade, statistical

approaches became overwhelmingly dominant in the field, as shown, for example,

in the proceedings of the annual conference of the Association for Computational

Linguistics (ACL).

The general setting of statistical machine translation is to learn how to translate

from a large corpus of pairs of equivalent source and target sentences. This is

typically a machine learning framework: we have an input (the source sentence),

an output (the target sentence), and a model trying to produce the correct output

for each given input.

There are a number of key issues, however, some of them specific to the MT

application. One crucial issue is the evaluation of translation quality. Machine

learning techniques typically rely on some kind of cost optimization in order to learn

relationships between the input and output data. However, evaluating automatically

the quality of a translation, or the cost associated with a given MT output, is a very

hard problem. It may be subsumed in the broader issue of language understanding,

and will therefore, in all likelihood, stay unresolved for some time. The difficulties

4. http://www.systransoft.com/
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associated with defining and automatically calculating an evaluation cost for MT

will be addressed in section 1.2.

The early approach to SMT advocated by the IBM group relies on the source-

channel approach. This is essentially a framework for combining two models: a

word-based translation model (section 1.3) and a language model (section 1.4).

The translation model ensures that the system produces target hypotheses that

correspond to the source sentence, while the language model ensures that the output

is as grammatical and fluent as possible.

Some progress was made with word-based translation models. However, a signifi-

cant breakthrough was obtained by switching to log-linear models and phrase-based

translation. This is described in more detail in section 1.5.

Although the early SMT models essentially ignored linguistic aspects, a number

of efforts have attempted to reintroduce linguistic considerations into either the

translation or the language models. This will be covered in section 1.6 and in some

of the contributed chapters later on. In addition, we do a quick overview of some of

the current trends in statistical machine translation in section 1.7, some of which

are also addressed in later chapters.

Finally, we close this introductory chapter with a discussion of the relationships

between machine translation and machine learning (section 1.8). We will address

the issue of positioning translation as a learning problem, but also issues related to

optimization and the problem of learning from an imprecise or unavailable loss.

1.2 Evaluation of Machine Translation

Entire books have been devoted to discussing what makes a translation a good

translation. Relevant factors range from whether translation should convey emotion

as well and above meaning, to more down-to-earth questions like the intended use

of the translation itself.

Restricting our attention to machine translation, there are at least three different

tasks which require a quantitative measure of quality:

1. assessing whether the output of an MT system can be useful for a specific

application (absolute evaluation);

2. (a) comparing systems with one another, or similarly (b) assessing the impact

of changes inside a system (relative evaluation);

3. in the case of systems based on learning, providing a loss function to guide

parameter tuning.

Depending on the task, it can be more or less useful or practical to require a

human intervention in the evaluation process. On the one hand, humans can rely on

extensive language and world knowledge, and their judgment of quality tends to be

more accurate than any automatic measure. On the other hand, human judgments

tend to be highly subjective, and have been shown to vary considerably between
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different judges, and even between different evaluations produced by the same judge

at different times.

Whatever one’s position is concerning the relative merits of human and automatic

measures, there are contexts—such as (2(b)) and (3)—where requiring human

evaluation is simply impractical because too expensive or time-consuming. In such

contexts fully automatic measures are necessary.

A good automatic measure should above all correlate well with the quality of a

translation as it is perceived by human readers. The ranking of different systems

given by such a measure (on a given sample from a given distribution) can then

be reliably used as a proxy for the ranking humans would produce. Additionally,

a good measure should also display low intrasystem variance (similar scores for

the same system when, e.g., changing samples from the same dataset, or changing

human reference translations for the same sample) and high intersystem variance (to

reliably discriminate between systems with similar performance). If those criteria

are met, then it becomes meaningful to compare scores of different systems on

different samples from the same distribution.

Correlation with human judgment is often assessed based on collections of (human

and automatic) translations manually scored with adequacy and fluency marks

on a scale from 1 to 5. Adequacy indicates the extent to which the information

contained in one or more reference translations is also present in the translation

under examination, whereas fluency measures how grammatical and natural the

translation is. An alternate metric is the direct test of a user’s comprehension of

the source text, based on its translation (Jones et al., 2006).

A fairly large number of automatic measures have been proposed, as we will see,

and automatic evaluation has become an active research topic in itself. In many

cases new measures are justified in terms of correlation with human judgment. Many

of the measures that we will briefly describe below can reach Pearson correlation

coefficients in the 90% region on the task of ranking systems using a few hundred

translated sentences. Such a high correlation led to the adoption of some such

measures (e.g., BLEU and NIST scores) by government bodies running comparative

technology evaluations, which in turn explains their broad diffusion in the research

community. The dominant approach to perform model parameter tuning in current

SMT systems is “minimum error–rate training” (MERT; see section 1.5.3), where

an automatic measure is explicitly optimized.

It is important to notice at this point that high correlation was demonstrated for

existing measures only at the system level: when it comes to the score given to indi-

vidual translated sentences, the Pearson correlation coefficient between automatic

measures and human assessments of adequacy and fluency drops to 0.3 to 0.5 (see,

e.g., Banerjee and Lavie, 2005; Leusch et al., 2005). As a matter of fact, even the

correlation between human judgments decreases drastically. This is an important

observation in the context of this book, because many machine learning algorithms

require the loss function to decompose over individual inferences/translations. Un-

like in many other applications, when dealing with machine translation loss func-

tions that decompose over inferences are only pale indicators of quality as perceived
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by users. While in document categorization it is totally reasonable to penalize the

number of misclassified documents, and the agreement between the system decision

on a single document and its manually assigned label is a very good indicator of

the perceived performance of the system on that document, an automatic score

computed on an individual sentence translation is a much less reliable indicator of

what a human would think of it.

Assessing the quality of a translation is a very difficult task even for humans,

as witnessed by the relatively low interannotator agreement even when quality is

decomposed into adequacy and fluency. For this reason most automatic measures

actually evaluate something different, sometimes called human likeness. For each

source sentence in a test set a reference translation produced by a human is

made available, and the measure assesses how similar the translation proposed

by a system is to the reference translation. Ideally, one would like to measure

how similar the meaning of the proposed translation is to the meaning of the

reference translation: an ideal measure should be invariant with respect to sentence

transformations that leave meaning unchanged (paraphrases). One source sentence

can have many perfectly valid translations. However, most measures compare

sentences based on superficial features which can be extracted very reliably, such as

the presence or absence in the references of n-grams from the proposed translation.

As a consequence, these measures are far from being invariant with respect to

paraphrasing. In order to compensate for this problem, at least in part, most

measures allow considering more than one reference translation. This has the effect

of improving the correlation with human judgment, although it imposes on the

evaluator the additional burden of providing multiple reference translations.

In the following we will briefly present the most widespread automatic evaluation

metrics, referring to the literature for further details.

1.2.1 Levenshtein-Based Measures

A first group of measures is inherited from speech recognition and is based on

computing the edit distance between the candidate translation and the reference.

This distance can be computed using simple dynamic programming algorithms.

Word error rate (WER) (Nießen et al., 2000) is the sum of insertions, deletions,

and substitutions normalized by the length of the reference sentence. A slight

variant (WERg) normalizes this value by the length of the Levenshtein path, i.e.,

the sum of insertions, deletions, substitutions, and matches: this ensures that the

measure is between zero (when the produced sentence is identical to the reference)

and one (when the candidate must be entirely deleted, and all words in the reference

must be inserted).

Position-independent word error rate (PER) (Tillmann et al., 1997b) is a variant

that does not take into account the relative position of words: it simply computes

the size of the intersection of the bags of words of the candidate and the reference,

seen as multi-sets, and normalizes it by the size of the bag of words of the reference.
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A large U.S. government project called “Global Autonomous Language Ex-

ploitation” (GALE) introduced another variant called the translation edit rate

(TER)(Snover et al., 2006). Similarly to WER, TER counts the minimal number

of insertion, deletions, and substitutions, but unlike WER it introduces a further

unit-cost operation, called a “shift,” which moves a whole substring from one place

to another in the sentence.

In the same project a further semiautomatic human-targeted translation edit rate

(HTER) is also used. While WER and TER only consider a pre-defined set of

references, and compare candidates to them, in computing HTER a human is

instructed to perform the minimal number of operations to turn the candidate

translation into a grammatical and fluent sentence that conveys the same meaning

as the references. Not surprisingly, Snover et al. (2006) show that HTER correlates

with human judgments considerably better than TER, BLEU, and METEOR (see

below), which are fully automatic.

1.2.2 N-Gram–Based Measures

A second group of measures, by far the most widespread, is based on notions derived

from information retrieval, applied to the n-grams of different length that appear

in the candidate translation. In particular, the basic element is the clipped n-gram

precision, i.e., the fraction of n-grams in a set of translated sentences that can be

found in the respective references.5

BLEU (Papineni et al., 2002) is the geometric mean of clipped n-gram precisions

for different n-gram lengths (usually from one to four), multiplied by a factor

(brevity penalty) that penalizes producing short sentences containing only highly

reliable portions of the translation.

BLEU was the starting point for a measure that was used in evaluations organized

by the U.S. National Institute for Standards and Technology (NIST), and is

thereafter referred to as the NIST score (Doddington, 2002). NIST is the arithmetic

mean of clipped n-gram precisions for different n-gram lengths, also multiplied

by a (different) brevity penalty. Also, when computing the NIST score, n-grams

are weighted according to their frequency, so that less frequent (and thus more

informative) n-grams are given more weight.

1.2.3 The Importance of Recall

BLEU and NIST are forced to include a brevity penalty because they are based

only on n-gram precision. N-gram recall was not introduced because it was not

immediately obvious how to meaningfully define it in cases where multiple reference

5. Precision is clipped because counts are thresholded to the number of occurrences of
n-grams in the reference, so that each n-gram occurrence in the reference can be used
to “match” at most one n-gram occurrence in the proposed sentence. Note also that the
precision is computed for all n-grams in a document at once, not sentence by sentence.
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translations are available. A way to do so was presented in Melamed et al. (2003):

the general text matcher (GTM) measure relies on first finding a maximum matching

between a candidate translation and a set of references, and then computing the

ratio between the size of this matching (modified to favor long matching contiguous

n-grams) and the length of the translation (for precision) or the mean length of the

reference (for recall). The harmonic mean of precision and recall can furthermore be

taken to provide the F-measure, familiar in natural language processing. Two very

similar measures are ROUGE-L and ROUGE-W, derived from automatic quality

measures used for assessing document summaries, and extended to MT (Lin and

Och, 2004a). ROUGE-S, introduced in the same paper, computes precision, recall,

and F-measure based on skip-bigram statistics, i.e., on the number of bigrams

possibly interrupted by gaps.

A further measure, which can be seen as a generalization of both BLEU and

ROUGE (both -L and -S), is BLANC (Lita et al., 2005). In BLANC the score

is computed as a weighted sum of all matches of all subsequences (i.e., n-grams

possibly interrupted by gaps) between the candidate translation and the reference.

Parameters of the scoring function can be tuned on corpora for which human

judgments are available in order to improve correlation with adequacy, fluency,

or any other measure that is deemed relevant.

Finally, the proposers of METEOR (Banerjee and Lavie, 2005) put more weight

on recall than on precision in the harmonic mean, as they observed that this

improved correlation with human judgment. METEOR also allows matching words

which are not identical, based on stemming and possibly on additional linguistic

processing.

1.2.4 Measures Using Syntax

Liu and Gildea (2005) propose a set of measures capable of taking long-distance

syntactic phenomena into account. These measures require the candidates and the

references to be syntactically analyzed. Inspired by BLEU and NIST, averaged

precision of paths or subtrees in the syntax trees are then computed. In the

same line, Giménez and Màrquez (2007b) also use linguistic processing, up to

shallow semantic analysis, to extract additional statistics that are integrated in

new measures.

While these measures have the drawback of requiring the availability of an ac-

curate and robust parser for the target language, and of making the measure de-

pendent on the selected parser, the authors show significantly improved correlation

with human judgments of quality.

1.2.5 Evaluating and Combining Measures

Measures of translation quality are usually themselves evaluated according to

Pearson (and less often Spearman) correlation coefficients with human judgments

on some test set. Lin and Och (2004b) observe that this criterion is not stable
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across data sets. They thus propose an alternative metameasure, ORANGE , based

on the additional assumption that a good measure should tend to rank reference

translations higher than machine translations. Using a machine translation system,

an n–best list of candidate translations is generated. Each element in the list is

then scored using the measure of interest against a set of m reference translations.

Reference translations themselves are scored using the same measure, and a global

ranking is established. From this ranking, it is possible to compute the average rank

of reference translations. Averaging this average rank across all sentences in the test

set provides the ORANGE score. This score is then shown to be more consistent

than correlation coefficients in ranking evaluation measures on data produced by a

single MT system on a given test corpus.

An interesting method to combine the complementary strengths of different

measures, and at the same time evaluate evaluation measures and estimate the

reliability of a test set, is QARLA (Giménez and Amigó, 2006).

1.2.6 Statistical Significance Tests

Whatever automatic measure one uses, tests of statistical significance provparamet-

ric methods are usually considered better suited to the task, especially bootstrap

resampling and approximate randomization. Riezler and Maxwell (2005) provide a

good discussion of these tests in the context of machine translation evaluation.

1.3 Word-Based MT

Word-based statistical MT originated with the classic work of Brown et al. (1993).

Given a source sentence f , Brown et al. seek a translation ê defined by the

“fundamental equation of statistical MT”:

ê = argmax
e

p(f |e) p(e). (1.1)

Here the conditional distribution p(e|f) is decomposed into a translation model

p(f |e) and a language model p(e). By analogy with cryptography or communication

theory, this is sometimes referred to as a source-channel (or noisy-channel) model,

where p(e) is a known “source” distribution, p(f |e) is a model of the process that

encodes (or corrupts) it into the observed sentence f , and the argmax is a decoding

operation. This decomposition has the advantage of simplifying the design of p(f |e)

by factoring out responsibility for ensuring that e is well formed into the language

model p(e) (language models will be covered in more detail in section 1.4). It also

allows the language model to be trained separately on monolingual corpora, which

are typically more abundant than parallel corpora.

Brown et al. elaborate a series of five generative models (numbered 1 through

5) for p(f |e) which are known collectively as the IBM models. Each model in the

series improves on its predecessor by adding or reinterpreting parameters. The
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models are trained to maximize the likelihood of a parallel corpus seen as a set of

statistically independent sentence pairs,6 with the earlier models used to provide

initial parameter estimates for later models. Early stopping during expectation–

maximization (EM) training is typically used to avoid overfitting.

The IBM models are defined over a hidden alignment variable a which captures

word-level correspondences between f and e:

p(f |e) =
∑

a

p(f ,a|e)

where a is a vector of alignment positions aj for each word fj in f = f1 . . . fJ . Each

aj takes on a value i in [1, I] to indicate a connection to word ei in e − e1 . . . eI ,

or is 0 to indicate a null connection. Note that this scheme is asymmetrical: words

in f may have at most a single connection, while words in e may have from 0 to J

connections. This asymmetry greatly reduces the number of alignments which must

be considered, from 2IJ if arbitrary connections are allowed, to (I + 1)J .

1.3.1 Models 1, 2, and HMM

IBM models 1 and 2, as well as the commonly used HMM variant due to Vogel

et al. (1996), are based on the following decomposition7 of p(f , a|e):

p(f ,a|e) ≈
J∏

j=1

p(fj |eaj
)p(aj |aj−1, j, I, J).

These three models share the family of lexical translation parameters p(f |e), but

differ in how they parameterize alignments:

p(aj |aj−1, j, I, J) =






1/(I + 1) IBM 1

p(aj|j, I, J) IBM 2

p(aj − aj−1) HMM

,

i.e., in IBM 1 all connections are equally likely, in IBM 2 they depend on the absolute

positions of the words being connected, and in the HMM model they depend on

the displacement from the previous connection. Och and Ney (2003) discuss how to

extend the HMM model to handle null connections. Maximum likelihood training

using the EM algorithm is straightforward for all three models; for IBM 1 it is

guaranteed to find a global maximum (Brown et al., 1993), making this model a

good choice for initializing the lexical parameters. Due to the large number of lexical

6. A necessary prerequisite is identifying translated sentence pairs in parallel documents.
This is nontrivial in principle, but in practice fairly simple methods based on sentence
length and surface lexical cues, e.g., Simard et al. (1992), are often adequate. For more
difficult corpora, a bootstrapping approach (Moore, 2002) can be used.
7. Omitting a factor for normalizing across all sentence lengths J .
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parameters, it is common practice to prune out word pairs (f,e) whose probability

p(f |e) falls below a certain threshold after IBM1 training.

1.3.2 Models 3, 4, and 5

IBM 1/2 and HMM are based on a generative process in which each word in f is

filled in (from left to right) by first choosing a connecting position in e according

to the position’s alignment probability, then choosing the word’s identity according

to its translation probability given the connected target word. In the more complex

models 3, 4, and 5, the emphasis of the generative process shifts to the target

sentence: for each word in e, first the number of connected words is chosen (its

fertility), then the identities of these words, and finally their positions in f . These

models retain word-for-word translation parameters p(f |e), as well as asymmetrical

alignments in which each source word may connect to at most one target word.

Model 3 incorporates a set of fertility parameters p(φ|e), where φ is the number of

words connected to e, and reinterprets model 2’s alignment parameters as distortion

parameters p(j|i, I, J).

Model 4 replaces model 3’s distortion parameters with ones designed to model

the way the set of source words generated by a single target word tends to behave

as a unit for the purpose of assigning positions. The first word in the ith unit is

assigned to position j in the source sentence with probability p(j − Ui−1|ei, fj),

where Ui−1 is the average position of the words in the (i − 1)th unit.8 Subsequent

words in the ith unit are placed with probability p(j−Ui,j−1|fj), where Ui,j−1 gives

the position of the (j − 1)th word in this unit.

Models 3 and 4 are deficient (nonnormalized) because their generative processes

may assign more than one source word to the same position. Model 5 is a technical

adjustment to correct for this problem.

The EM algorithm is intractable for models 3, 4, and 5 because of the expense of

summing over all alignments to calculate expectations. The exact sum is therefore

approximated by summing over a small set of highly probable alignments, each

of whose probability can be calculated efficiently. Model 2 Viterbi alignments are

used to initialize the set, which is then expanded using a greedy perturbative search

involving moving or swapping individual links.

1.3.3 Search

The problem of searching for an optimal translation (the argmax operation in

Eq. (1.1)) is a difficult one for the IBM models. Roughly speaking, there are two

sources of complexity: finding the best bag of target words according to the many-

to-one source-target mapping implicit in p(f |e); and finding the best target word

8. To combat data sparseness, Brown et al. map ei and fj in this expression to one of 50
equivalence classes defined over source and target vocabularies.



1.4 Language Models 11

order according to p(e). Knight (1999) shows that decoding is in fact NP-complete

for the IBM models through separate reductions exploiting each of these sources

of complexity. However, in practice, heuristic techniques work quite well. Germann

et al. (2001) describe a Viterbi stack-based algorithm that operates quickly and

makes relatively few search errors, at least on short sentences. As this algorithm is

similar to search algorithms used with phrase-based translation models, we defer a

description to section 1.5.

1.3.4 Current Status

The IBM models have been supplanted by the more recent phrase-based approach

to SMT, described in section 1.5, which is conceptually simpler and produces better

results. However, they retain a central role due to their ability to produce good word

alignments, which are a key ingredient in training phrase-based models. Despite

significant recent attention to the problem of word alignment for this and other

purposes, IBM 4 alignments—typically produced using the GIZA++ toolkit (see

appendix), and symmetrized using the method of Och and Ney (2000a)—remain

the most often-used baseline for work in this area.

Unlike the phrase-based model and the later IBM models, models 1/2 and HMM

also allow efficient computation of a smooth conditional distribution p(f |e) over

bilingual sentence pairs. This makes them well suited for applications requiring

analysis of existing sentence pairs, such as cross-language information retrieval.

1.4 Language Models

A language model (LM), in the basic sense of the term, is a computable prob-

ability distribution over word sequences, typically sentences, which attempts to

approximate an underlying stochastic process on the basis of an observed corpus of

sequences produced by that process.

Language models have many applications apart from statistical machine transla-

tion, among them: speech recognition (SR), spelling correction, handwriting recog-

nition, optical character recognition, information retrieval. Historically, much of

their development has been linked to speech recognition and often the methods

developed in this context have been transposed to other areas; to a large extent

this remains true today.

According to the dominant “generative”paradigm in language modeling (and to

our definition above), developing a language model should actually only depend on

a corpus of texts, not on the application context. The standard measure of adequacy

of the language model is then its perplexity,9 an information-theoretic quantity that

9. If LLp(T ) = log2 p(T ) represents the log-likelihood of the test corpus T relative to the
model p, then the perplexity of p on T is defined as 2−LLp(T ).
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measures the cost of coding a test corpus with the model, and which is provably

minimized when the model represents the “true” distribution of the underlying

stochastic process.

Recently, some work has started to challenge the dominant paradigm, in an

approach known as “discriminative” or “corrective” language modeling, where the

focus is more on minimizing errors in the context of a specific application, a criterion

that, due to inevitable inadequacies in the application-dependent aspects of the

overall probabilistic model (such as the “acoustic model” in SR, or the “translation

model” in SMT), does not coincide with perplexity minimization.

This section will mostly focus on the generative paradigm, and will give some

pointers to discriminative approaches. Good general references on language models

are Goodman (2001) and Rosenfeld (2000), as well as the tutorial of Charniak and

Goodman (2002), which have influenced parts of this section.

1.4.1 N-Gram Models and Smoothing Techniques

Still by far the dominant technique for language modeling is the n-gram approach,

where the probability of a sequence of words w1 , w2, . . . , wm is approximated, using

the case n=3 (trigram) as an illustration, as

p(w1 , w2, . . . , wm) ≈
∏

i
p(wi|wi−2, wi−1).

The central issue in such models is how to estimate the conditional probabilities

p(wi|wi−2, wi−1) from the corpus. The simplest way, maximum likelihood, corre-

sponds to estimating these probabilities as a ratio of counts in the corpus (where

# indicates a count of occurrences):

p(wi|wi−2, wi−1) =
#(wi−2, wi−1, wi)

#(wi−2, wi−1)
,

but this approach suffers from obvious “overfitting” defects; in particular the model

assigns a zero probability to a trigram which has not been observed in the corpus. In

order to address this problem, several “smoothing” techniques have been devised,

which can be roughly characterized by three central representatives.

In Jelinek-Mercer interpolated smoothing, one writes

pJM (wi|wi−2, wi−1) = λ3
#(wi−2, wi−1, wi)

#(wi−2, wi−1)
+ λ2

#(wi−1, wi)

#(wi−1)
+ λ1

#(wi)

#(•)
,

which corresponds to interpolating trigram, bigram, and unigram estimates, and

where the λ weights are tuned through cross-validation on the corpus. In refined

versions of this approach the weights may be tuned differently depending on

different ranges of frequencies of the corresponding denominators.
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In Katz backoff smoothing, the general idea is that when the trigram counts are

low, one will back off to the bigram estimates:

pK(wi|wi−2, wi−1) =

{
#∗(wi−2,wi−1,wi)

#(wi−2,wi−1)
if #(wi−2, wi−1, wi) > 0

λ pK(wi|wi−1) > 0 otherwise
,

where #∗(wi−2, wi−1, wi) is a “discounted” count according to the Good-Turing

formula, which has the effect of displacing some mass from observed events to

unobserved events (and which is based on the insight that the number of types10

which are observed once in the corpus is indicative of the number of unobserved

types which are “just waiting there” to be observed, for which some mass should

be reserved), and where λ is a normalization factor that weighs the influence of the

backoff to bigram model.

In Kneser-Ney backoff smoothing, and for expository reasons considering only

bigram models here, one writes

pKN (wi|wi−1) =






#(wi−1,wi)−D

#(wi−1)
if #(wi−1, wi) > 0

λ #̃(•,wi)

#̃(•,•)
otherwise

,

where D ∈ [0, 1] is a fixed discounting factor, λ is a normalization factor, and where

(our notation/reconstruction) #̃(•, •) (resp. #̃(•, wi)) is the number of different

bigram types (resp. bigram types ending in wi) found in the corpus. Thus, a crucial

difference between Kneser-Ney and other techniques is that it does not back off to a

quantity that measures the relative frequency #(wi)
#(•) of occurrences of the word wi,

which can also be written in the form #(•,wi)
#(•,•) = #(wi)

#(•) , but to a quantity #̃(•,wi)

#̃(•,•)

that measures the “context-type unspecificity” of wi in terms of the number of

different word types which may precede wi. The intuition is that the less context

type–specific (i.e., more context type–unspecific) wi is, the more we would expect

to recognize it in a context wi−1, wi we have never witnessed before.

It is probably fair to say that n-gram with Kneser-Ney smoothing is currently

the most widely accepted language modeling technique in practice, sometimes even

applied to 4-gram or 5-gram modeling when large enough corpora are available.

Caching

N-gram models are severely limited in their ability to account for nonlocal statistical

dependencies. One simple and efficient technique allowing use of the nonlocal

context is caching: remembering words that have been produced in the recent

history, for example during a dictation session, and predicting that such words have

a tendency to repeat later in the session (Kuhn and de Mori, 1990). In its simplest

10. Types correspond to classes of objects, as opposed to tokens, which correspond to
occurrences of these classes. For instance, there are two tokens of the type “man” in the
expression “man is a wolf to man.”
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form, this consists in interpolating a standard trigram model with a unigram cache

model pcache(wi|w1, . . . wi−1) = (i − 1)−1(#instances of wi in w1, . . . wi−1), but

variants exist which consider instances of bigrams or trigrams in the history. One

potential problem with caching is that recognition errors early in the history may

have a snowball effect later on, unless the history is guaranteed to be accurate, such

as in an interactive dictation environment in which the user validates the system

outputs.

Class-Based Smoothing

Rather than using words as the basis for n-gram smoothing as discussed so far,

another option is to first group words into classes that exhibit similar linguistic

behavior, then to use these classes to model statistical dependencies. A simple

example of this approach is the following:

p(wi|wi−2, wi−1) ≈ p(wi|Ci) p(Ci|wi−2, wi−1),

where Ci is the class associated with wi . The point of this model is that the

classes have higher corpus frequencies than the individual words, and therefore

conditional probabilities involving classes can be more reliably estimated on the

basis of training data. There are many variants of this basic idea, along three main

dimensions: (i) the classes may appear in diverse combinations on the left or right

side of the conditioning sign; (ii) the association of a class to a word may be hard,

with one class per word (equation shown), or soft, with several classes per word (in

this case the equation shown needs to include a sum over classes); (iii) the classes

may be associated with the words according to predefined categorization schemes,

for instance part-of-speech tags or predefined semantic categories; the last case is

especially useful for restricted target domains, for instance speech recognition for

air travel reservations. At the opposite end of the spectrum, the classes may be

data-driven and obtained through various clustering techniques, a criterion of a

good clustering being a low perplexity of the corresponding language model.

One especially interesting application of classes is their possible use for modeling

languages with a richer morphology than English, for instance by taking a class to

be a lemma or a part of speech or by combining both aspects (Maltese and Mancini,

1992; El-Bèze and Derouault, 1990). Recent approaches to factored translation and

language models (see sections 1.4.3 and 1.7.1) work in a similar spirit.

1.4.2 Maximum Entropy Models

Maximum entropy models (aka log-linear models), have been an important tool of

statistical natural language processing (NLP) since the early 1990s, in particular

in the context of statistical machine translation as we will see in the next section,

but also for language modeling proper (Rosenfeld, 2000; Jelinek, 1998), where their

role is more controversial.
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For language modeling, these models come in two flavors. The main one, which

we will call history-based maxent models, will be discussed first, then we will briefly

discuss so-called whole-sentence maxent models.

History-Based Maximum Entropy Models

Generally speaking, history-based language models are models of the form

p(w1 , w2, . . . , wm) =
∏

i
p(wi|hi),

where hi = w1 , . . . , wi−2, wi−1 is the history, and where p(wi|hi) is a model of the

probability of the next word given its history. N-gram models take the view that

p(wi|hi) depends only on the value of the N − 1 last words in the history, but some

models attempt to extract richer information from hi; for instance, decision trees

over hi have been used as a basis for constructing probability distributions over wi.

A powerful approach to constructing history-based models is based on conditional

maximum entropy distributions of the form

p(w|h) =
1

Z(h)
exp

∑
k
λkfk(h, w),

where the fks are feature functions of the input-output pair (h, w), the λk are the

parameters to be trained, and Z(h) is a normalizing term. In some sense that can be

made formally precise, such a distribution is the most “neutral” among distributions

constrained to preserve the empirical expectations of the fks. By adding well-chosen

features, one can then force the distribution to be consistent with certain empirical

observations. Among features that have been proved practically useful, one finds

“skipping bigrams” that model the dependency of wi relative to wi−2, skipping

over wi−1, and “triggers,” which generalize caches and model long-range lexical

influences (for instance, if stock appears somewhere in a document, bond is more

likely to occur later), but in principle the addition of various other syntactic or

semantic features is possible, under the usual caveat that adding too many features

may lead to overfitting effects and must be controlled by feature selection procedures

or some form of regularization.

History-based maximum entropy models have been reported by some to signif-

icantly decrease the perplexity of n-gram models, but other researchers are more

cautious, pointing out that combinations of smoothed n-gram and cache often per-

form at similar levels.

Whole Sentence Maximum Entropy Models

Because the history-based approach models a sentence by predicting one word at

a time, phenomena which refer to a whole sentence, such as parsability, global

semantic coherence, or even sentence length are at best awkward to model in the

approach. In addition, the partition function Z(h), which involves a sum over all

the words in the lexicon, has in principle to be computed at decoding time for each
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position in the sentence, which is computationally demanding. For these reasons,

the following whole-sentence maximum entropy model is sometimes considered:

p(s) =
1

Z
p0(s) exp

∑
k
λkfk(s),

where s is a whole sentence, the fks are arbitrary features of s, p0(s) is a baseline

distribution (typically corresponding to a standard n-gram model), the λk are

parameters, and Z is a normalization constant.11 At decoding time, Z being a

constant need not be considered at all and the objective to maximize is a simple

linear combination of the features.12 On the other hand, training is computationally

expensive because, at this stage, Z does need to be considered (it depends on the

λks, which vary during training), and in principle it involves an implicit sum over

the space of all sentences s. This is infeasible, and approximations are necessary,

typically in the form of MCMC (Monte Carlo Markov chain) sampling techniques.

1.4.3 Some Recent Research Trends

Syntactically Structured Language Models

There is a large and well-established body of research on statistical parsing tech-

niques for computational linguistics. Until recently, there have been relatively few

approaches to language modeling based on such techniques, in part because the

focus in traditional models has been on parsing accuracy rather than on the per-

plexity of the associated text-generation processes (when they are well-defined),

in part because most probabilistic parsing models require the availability of man-

ually annotated treebanks, which are scarce and have limited coverage, and may

not be immediately suitable to tasks such as large-scale speech recognition. Two

recent language models that use statistical parsing are Chelba and Jelinek (1998)

and Charniak (2001), which are both based on a form of stochastic dependency

grammar, the former operating in a strict left-to-right manner and trying to pre-

dict the next word on the basis of a partial parse for its previous history, the latter

assigning probabilities to the immediate descendants of a constituent conditioned

on the content of its lexical head (which may be to the right of the descendant,

which makes this model non–left to right). Perplexity reductions of up to 25% over

a baseline trigram model have been reported, but again such reductions tend to

decrease when simple improvements to the baseline are included, such as a cache

mechanism.

11. Although introduced later in the language model literature than the previous history-
based models, these nonconditional maximum entropy models are actually closer to the
original formulation of the maximum entropy principle by Jaynes (1957).
12. Note, however, that decoding here means assessing a complete sentence s, and that
these models are ill-suited for incremental evaluation of sentence prefixes.
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Topic-Based Modeling and Related Approaches

Topic-based document modeling has been for some time now a hot topic in infor-

mation retrieval, one of the best-known techniques being latent semantic analysis

(LSA) or its probabilistic counterpart (PLSA). Such techniques allow words to be

mapped to a real-valued vector in a low-dimensional “topic space,” where Euclid-

ian distance between vectors is an indication of the “semantic” proximity between

words, as measured by their propensity to appear in lexically related documents.

In Bellagarda (1997) these vectorial representations are used in conjunction with

n-grams to build language models where the probability of producing a word is con-

ditioned in part by the topical constitution of its history, as summarized by a vector

that accumulates the topical contributions of each of the words in the history.

The previous approach is an instance of modeling statistical dependencies that

may span over long ranges, such as a whole sentence or even a document. The neural

network–based model of Bengio et al. (2003) is another approach that falls in this

category. In this model, words are also represented as vectors in a low-dimensional

space, and the process of generating texts is seen as one of generating sequences of

such vectors. The model learns simultanously the mapping of words to vectors and

the conditional probabilities of the next vector given the few previous vectors in

the history. As words are “forced” into a low-dimensional vectorial representation

by the learning process (in which different occurrences of a word get the same

representation), words that show similar contextual behaviors tend to be mapped

to vectors that are close in Euclidian space. Recently, similar techniques have been

applied to language models in the context of SMT (Déchelotte et al., 2007).

Bayesian Language Modeling

Some recent approaches to document topic-modeling, such as latent Dirichlet

allocation (LDA; see Blei et al., 2003) attempt to characterize the problem in

strict “Bayesian” terms, that is, in terms of a hierarchical generative process where

probabilistic priors are provided for the parameters. Dynamic Bayesian networks

is another active area of research which also considers hierarchical time-dependent

generative processes which are actually generalizations of hidden Markov models

(HMM) with structured hidden layers. These methods are starting to percolate

to language modeling, in models that attempt to characterize the production of

word sequences through a structured generative process that incorporates a topic-

modeling component (Wallach, 2006; Wang, 2005; Mochihashi and Matsumoto,

2006).

Also in the Bayesian tradition are recent attempts to provide “probabilistic-

generative” explanations of the Kneser-Ney smoothing procedure in terms of the

so-called Chinese restaurant process which is claimed to explain the differential

treatment of type counts and occurrence counts in the procedure (Goldwater et al.,

2006; Teh, 2006).
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Discriminative Language Modeling

As mentioned at the beginning of this section, while perplexity as a measure of per-

formance of a language model has the advantage of universality across applications,

it is not always correlated with task-related measures of performance, such as the

word error rate in speech recognition, or the BLEU or NIST scores in statistical

machine translation. In speech recognition, for more than 15 years, this problem has

been addressed, not so much in the subtask of language modeling proper, but rather

in the so-called acoustic modeling subtask (recovering a word hypothesis from its

acoustic realization), where acoustic models have been trained with methods such

as maximum mutual information estimation (MMIE) or minimum classification er-

ror (MCE), which attempt to learn model parameters with the direct objective of

minimizing recognition errors (Huang et al., 2001).

Such discriminative methods have recently gained a large following in all areas

of NLP, and especially in statistical machine translation, as witnessed by several

chapters in this book (chapters 7, 8, 10, 11). Concerning the use of discriminative

models for language modeling proper, a representative paper is Roark et al. (2004),

which applies learning based on perceptrons and conditional random fields, in a

speech recognition context, to the task of tuning the parameters of a language model

(weights of individual n-gram features) on the basis of a training set consisting of

input-output pairs where the input is a lattice of word choices returned by a baseline

speech-recognition system and the output is the correct transcription, and where the

objective is to find parameters that favor the selection of the correct transcription

from the choices proposed by the input lattice, as often as possible on the training

set. In chapter 6, Mahé and Cancedda introduce another approach to learning a

language model discriminatively in the context of machine translation, this time by

using kernels rather than explicit features.

1.5 Phrase-Based MT

Phrase-based MT is currently the dominant approach in statistical MT. It incorpo-

rates five key innovations relative to the classic approach discussed in section 1.3:

the use of log-linear models instead of a simple product of language and transla-

tion models;

the use of multiword “phrases” instead of words as the basic unit of translation,

within a simple one-to-one generative translation model;

minimum error-rate training of log-linear models with respect to an automatic

metric such as BLEU, instead of maximum likelihood training;

a clearly defined and efficient heuristic Viterbi beam search procedure; and

a second rescoring pass to select the best hypothesis from a small set of candidates

identified during search.
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The phrase-based approach is due to Och and Ney (2004). Our presentation in the

following sections is loosely based on Koehn et al. (2003), who give a synthesis of

Och’s method and related approaches by other researchers.

1.5.1 Log-Linear Models

Recall that the noisy-channel approach combines contributions from a language

model p(e) and a “reversed” translation model p(f |e) by multiplying them. A

slight generalization of this is to apply exponential weights in order to calibrate

the contribution of each model: p(e)α1p(f |e)α2 . Taking logs and generalizing the

language and translation models to arbitrary feature functions h(f , e) gives a log-

linear analog to Eq. (1.1):

ê = argmax
e

∑

i

αihi(f , e) (1.2)

≈ argmax
e,a

∑

i

αihi(f , a, e),

where the standard Viterbi approximation on the second line simplifies the search

problem and gives features access to the alignment a connecting f and e. This

framework is more flexible than the original noisy-channel approach because it can

easily accommodate sources of information such as bilingual dictionaries which are

difficult to incorporate into generative probabilistic translation models. Commonly

used features are logs of forward and reversed translation model probabilities

and language model probabilities, as well as a simple word count and a phrase

distortion model (described in more detail below). A key assumption made by the

search procedure is that features decompose linearly; that is, if (f ,a, e) can be

split into a set of disjoint phrase triples (f̃k, ak, ẽk), k = 1 . . .K, then h(f ,a, e) =∑K

k=1 h(f̃k, ak, ẽk). This motivates calling the framework log-linear rather than

simply linear, since log probabilities have this property, but ordinary probabilities

do not. It is also worth noting that pα(e|f) = exp(
∑

i αihi(f , e))/Z(f) can be

interpreted as a maximum entropy model for p(e|f), where Z(f) is a normalizing

factor. This was the original formulation of the log-linear approach in Och (2002).

1.5.2 The Phrase-Based Translation Model

The key features used in Eq. (1.2) are related to the phrase-based model for p(e,a|f).

This model is based on a simple and intuitive generative process: first, f is

segmented into contiguous phrases (word sequences of arbitrary length), then a

translation is chosen for each phrase, and finally the resulting target phrases are

reordered to form e. Unlike the IBM models, there are no parts of f or e that are

not covered by a phrase, and each phrase has exactly one translation.

Segmentations are usually assumed to be uniformly distributed, but the other two

parts of the generative process—translation and reordering—each give rise to log-

linear features. Let ẽ1 . . . ẽK be a segmentation of e into phrases, and f̃1 . . . f̃K be the
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corresponding source phrases (i.e., the phrases in f , in the order their translations

appear in e). Then a “reversed” translation feature can be defined by assuming

that phrases are generated independently:

hT (f ,a, e) =

K∑

k=1

log p(f̃k|ẽk).

A “forward” translation feature can be defined analogously using p(ẽk|f̃k). Koehn

et al. (2003) propose a simple distortion feature for capturing reordering13:

hD(f ,a, e) =

K∑

k=1

−|begin(f̃k) − end(f̃k−1) − 1|,

where begin(f̃) and end(f̃) are the initial and final word positions of f̃ in f (with

end(f̃0) = 0). This assigns a score of 0 to translations which preserve source phrase

order, and penalizes displacements from the “expected” position of the current

source phrase (immediately after the preceding phrase) by the number of words

moved in either direction.

The phrase-translation distributions p(f̃ |ẽ) and p(ẽ|f̃) are defined over a set of

phrase pairs called a phrase table. Phrase-table induction from parallel corpora is

crucial to the performance of phrase-based translation. It typically proceeds by

first word-aligning the corpus, then, for each sentence pair, extracting all phrase

pairs that are compatible with the given word alignment, under the criterion that

a valid phrase pair must not contain links to words outside the pair. For example,

in the sentence pair: Je suis heureux / I am very happy, with word alignment Je/I,

suis/am, heureux/very happy, legal phrase pairs would include Je/I, Je suis/I am,

and heureux/very happy, but not heureux/happy. In general, this algorithm is fairly

robust to word-alignment errors, which tend to affect recall more than precision.

The existence of a standard phrase-extraction algorithm independent of the

underlying word alignment has stimulated interest in improved word-alignment

techniques. As mentioned in section 1.3, the baseline approach of Och and Ney

(2003) relies on IBM model (typically IBM 4) alignments carried out from each

translation direction, then symmetrizes them into a single alignment by beginning

with links in their intersection, then selectively adding links from their union,

according to various heuristics. Recently proposed alternatives include combining

alternate tokenizations (see chapter 5 by Elming, Habash and Crego), the use

of enhanced IBM models (He, 2007), more principled symmetrization techniques

(Liang et al., 2007), discriminative techniques (Blunsom and Cohn, 2006), and

semisupervised techniques (Fraser and Marcu, 2006), to name only a few.

One difficulty in judging alignment quality for SMT is that the ideal metric—

performance of the resulting MT system—is very expensive to compute. In a recent

13. This equation assumes that begin() and end() have access to a, which maps the
permuted source phrases f̃1 . . . f̃K to their positions in f .
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paper, Fraser and Marcu (2007) argue against the use of the popular alignment

error rate metric as a stand-in, and propose an alternative which correlates better

with MT performance.

Once phrase pairs have been extracted from the training corpus, it remains

to estimate the phrase-translation distributions p(f̃ |ẽ) and p(ẽ|f̃). These may be

obtained directly as relative frequencies from joint counts of the number of times

each phrase pair was extracted from the corpus. Compositional estimates based

on lexical probabilities from the IBM models or word-alignment counts are often

used in addition to relative frequencies (Koehn et al., 2003; Zens and Ney, 2004).

It is interesting that the heuristic method outlined in the previous paragraphs for

populating phrase tables and estimating conditional phrase probabilities seems to

perform better than more principled generative algorithms (e.g., Marcu and Wong,

2002) for estimating these distributions. DeNero et al. (2006) argue that this is

essentially due to the inclusive property of considering alternative segmentations

simultaneously (e.g., learning both Je/I, suis/am, and Je suis/I am in the example

above) rather than forcing segmentations to compete as would estimation with the

EM algorithm.

1.5.3 Minimum Error-Rate Training

Given an automatic metric as discussed in section 1.2—for instance, BLEU—

minimum error-rate training seeks the vector of log-linear parameters α̂ that

optimize the metric on a training corpus:

α̂ = argmax
α

BLEU(Ê = argmax
E

log pα(E|F ), R), (1.3)

where log pα(E|F ) =
∑

(e,f)∈(E,F ) log pα(e|f). The inner argmax is a search with

log-linear model log pα, applied to a source-language corpus F to find the best

translation Ê. The outer argmax finds the α for which Ê maximizes BLEU with

respect to a reference translation R. Och (2003) showed that this approach produces

models that score better on new corpora according to the chosen metric than does

a maximum likelihood criterion.

Eq. (1.3) is difficult to optimize because the inner argmax is very expensive

to compute, and also because BLEU is a nondifferentiable function of α. The

standard solution, proposed in Och (2003), is to approximate the inner argmax

with a maximization over a small set of n-best candidate translations for F (on

the order of 100 translations per source sentence). This makes it fast enough that

general optimization techniques can be applied to solve the outer argmax. The

success of this approximation depends on being able to identify n-best lists that are

representative of the entire search space. Och does this by iterating over different

values of α̂, each time using the new value of α̂ to add new candidates to the n-best

lists, which are in turn used to update α̂. Bad values of α̂ will therefore add bad

candidates to the lists which will allow the optimization to avoid these values in

future iterations. The complete algorithm is:
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1. Initialize α̂ and set the n-best set B = ∅.

2. Find B(α̂), the n-best translations for each source sentence according to pα̂.

3. Set B = B ∪ B(α̂). Stop if B doesn’t change.

4. Set α̂ = argmax
α

BLEU(Ê = argmax
E∈B

pα(E|F ), R) and go to step 2.

Since the number of hypotheses produced by the decoder is finite, this algorithm is

guaranteed to terminate. In practice, it converges fairly quickly, usually after ten

iterations or so.

The optimization in step 4 may be solved using Powell’s algorithm (Press

et al., 2002). This is a general optimization algorithm that iteratively chooses lines

α + γα′ which must be optimized in the scalar value γ by means of a user-supplied

“subroutine.” Since log pα is linear in α, the score it assigns to each hypothesis in

an n-best list is linear in γ. There are therefore at most n− 1 values of γ at which

BLEU can change for a single n-best list, and at most m(n − 1) values for a set

of m n-best lists. By examining the intervals between these points, it is possible

to efficiently obtain an exact solution to the problem of maximizing BLEU as a

function of γ.

The bottleneck in Och’s algorithm is the decoding operation in step 2. This makes

it impractical for use on training corpora larger than about 1000 sentences, which

in turn limits the number of log-linear parameters that can be reliably learned.

Also, the ability of Powell’s algorithm to find a good optimum appears to degrade

with larger parameter sets (Och et al., 2004), so the typical number of parameters

is on the order of ten. Och (2003) also proposes a smoothed version of BLEU which

would allow gradient-based techniques to be used instead of Powell’s algorithm,

but it is not clear whether this approach would give better performance with large

feature sets.

Alternatives to Och’s algorithm use a different strategy for solving the central

problem of costly decoding time: modify the decoder to work faster, typically

by considering only monotone alignments (i.e., ones in which source and target

phrases have the same order), and by using an aggressive pruning threshold. If

decoding is fast enough, the outer argmax in Eq. (1.3) can be solved directly with

a general optimization algorithm, e.g., downhill simplex (Zens and Ney, 2004) or

simultaneous perturbation stochastic approximation (Lambert and Banchs, 2006).

These approaches appear to be competitive with Och’s. They have the advantage

that they can optimize any parameter of the decoder, rather than just log-linear

model weights, but the disadvantage of making poor estimates for features that are

sensitive to monotonic decoding, for instance distortion.

Other approaches to minimum error-rate training include recent efforts to train

very large sets of parameters, such as weights for Boolean phrase-pair features de-

fined over the phrase table, on very large corpora. Liang et al. (2006) iterate the

following: generate n-best lists for the corpus, controlling decoder speed by using

a limited-distortion model (neighbor swaps only) and limiting to short sentences,

then use the perceptron algorithm to update toward the best candidate in each n-
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Je   l’   ai   vu   à   la   télévision

I     saw 

Figure 1.2 A partial hypothesis during decoding, including its alignment. This is
extended by choosing a phrase that matches part of the source sentence with no alignment
connection (the uncovered part), for instance, à la, and appending one of its translations
from the phrase table, for instance on, to the target prefix, giving in this case the new
prefix I saw on.

best list. Tillmann and Zhang (2006) iterate the following: decode and merge 1-best

translations with existing n-best lists, controlling decoder speed by limiting distor-

tion as above, then use stochastic gradient descent to minimize a “margin-inspired”

distance function between n-best candidates and oracle translations generated by

using the references to guide the decoder. These approaches give only fairly mod-

est gains, possibly because of sacrifices made for decoder efficiency, and possibly

because performance appears to be rather insensitive to the exact values of the

phrase-translation parameters p(f̃ |ẽ).

1.5.4 Search

As we have seen, the problem of decoding Eq. (1.2) is central to minimum error-rate

training, and of course in all applications of statistical MT as well. It is NP-complete

for phrase-based MT, as it is for the IBM models, but somewhat simpler due to

the one-to-one restriction on phrase translation. The standard Viterbi beam search

algorithm (Koehn, 2004a) builds target hypotheses left to right by successively

adding phrases. As each phrase is added to a hypothesis, the corresponding source

phrase is recorded, so the complete phrase alignment is always known for all

hypotheses, as illustrated in figure 1.2. Search terminates when the alignments

for all active hypotheses are complete, i.e. when all words in the source sentence

have been translated. At this point, the hypothesis that scores highest according to

the model is output.

A straightforward implementation of this algorithm would create a large number

of hypotheses: for each valid segmentation of the source sentence, and each bag

of phrases created by choosing one translation for each source phrase in the

segmentation, there would be one hypothesis for each permutation of the contents of

the bag. Even when the phrase table is pruned to reduce the number of translations

available for each source phrase, the number of hypotheses is still unmanageably

huge for all but the shortest source sentences. Several measures are used to reduce

the number of active hypotheses and the space needed to store them.
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First, hypotheses are recombined: if any pair of hypotheses are indistinguishable

by the model in the sense that extending them in the same way will lead to the same

change in score, then only the higher-scoring one needs to be extended. Typically,

the lower-scoring one is kept in a lattice (word graph) structure, for the purpose of

extracting n-best lists (Ueffing et al., 2002) once search is complete. The conditions

for recombination depend on the features in the model. For the standard features

described above, two hypotheses must share the same last n − 1 words (assuming

an n-gram LM), they must have the same set of covered source words (though not

necessarily aligned the same way), and the source phrases aligned with their last

target phrase must end at the same point (for the distortion feature).

Recombination is a factoring operation that does not change the results of the

search. It is typically used in conjunction with a pruning operation that can affect

the search outcome. Pruning removes all hypotheses whose scores fall outside a

given range (or beam) defined with respect to the current best-scoring hypothesis;

or, in the case of histogram pruning, fall below a given rank.

Three strategies are used to make the comparison between hypotheses as fair

as possible during pruning. First, the scores on which pruning is based include

an estimate of the future score—the score of the suffix required to complete the

translation—added to the current hypothesis score. If future scores are guaranteed

never to underestimate the true suffix scores, then they are admissible, as in A*

search, and no search errors will be made. This is typically too expensive in practice,

however. Each feature contributes to the future score estimate, which is based on

analyzing the uncovered portion of the source sentence. The highest-probability

translations from the phrase table are chosen, and are assigned LM scores that

assume they can be concatenated with probability 1 (i.e., the LM scores only the

inside of each target phrase), and distortion scores that assume they are arranged

monotonically. Phrase table and language model future scores can be precomputed

for all subsequences of the source sentence prior to search, and looked up when

needed.

Comparing two hypotheses that cover different numbers of source words will

tend to be unfair to the hypothesis that covers the greater number, since it will

have a smaller future score component, and since future scores are intentionally

optimistic. To avoid this source of bias, hypotheses are partitioned into equivalence

classes called stacks, and pruning is applied only within each stack. Stacks are

usually based on the number of covered source words, but may be based on their

identities as well, in order to avoid bias caused by source words or phrases that are

particularly difficult to translate.

Along with recombination and pruning, a final third used to reduce the search

space is a limit on the distortion cost for two source phrases that are aligned

to neighboring target phrases. Any partial hypotheses that cannot be completed

without exceeding this limit are removed. Interestingly, imposing such a limit,

typically seven words, often improves translation performance as well as search

performance.
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There are a number of ways to arrange the hypothesis extension and pruning

operations described in the preceding paragraphs. A typical one is to organize the

search according to stacks, as summarized in the following algorithm from Koehn

(2004a):

Initialize stack 0 with an empty hypothesis.

For each stack from 0. . . J-1 (where J is the number of source words):

For each hypothesis g in the stack:

∗ For each possible extension of g, covering j source words:

· Add the extension to stack j, checking for recombination.

· Prune stack j.

Output the best hypothesis from stack J .

There have been several recent improvements to the basic Viterbi search algo-

rithm. Huang and Chiang (2007) propose cube pruning, which aims to reduce the

number of expensive calls to the language model by generating hypotheses and

performing an initial pruning step prior to applying the language model feature.

Moore and Quirk (2007) use an improved distortion future score calculation and

an early pruning step at the point of hypothesis extension (before LM calculation).

Both techniques yield approximately an order of magnitude speedup.

1.5.5 Rescoring

The ability of the Viterbi search algorithm to generate n-best lists with minimal

extra cost lends itself to a two-pass search strategy in which an initial log-linear

model is used to generate an n-best list, then a second, more powerful, model is used

to select new best candidates for each source sentence from this list in a rescoring

(aka reranking) pass.

The advantage of this strategy is that, unlike the candidates considered during

the first pass, the candidates in an n-best list can be explicitly enumerated for

evaluation by the model. This means that there is virtually no restriction on the

kinds of features that can be used. Examples of rescoring features that would not

be practical within the first-pass log-linear model for decoding include long-range

language models, “reversed” IBM 1 models for p(f |e), and features that use IBM

1 to ensure that all words have been translated. Och et al. (2004) list many others.

To assess the scope for improvement due to rescoring, one can perform an oracle

calculation in which the best candidates are chosen from the n-best list with

knowledge of the reference translations.14 This gives impressive gains, even for fairly

short n-best lists containing 1000 candidates per source sentence. However, this is

14. For metrics like BLEU, which are not additive over source sentences, this can be
approximated by choosing the candidate that gives the largest improvement in global
score, and iterating.
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somewhat misleading, because much of the gain comes from the oracle’s ability to

game the automatic metric by maximizing its matching criterion, and is thus not

accessible to any reasonable translation model (or even any human translator). In

practice, gains from rescoring are usually rather modest—often barely statistically

significant; by the time n-best lists have been compiled, most of the damage has

been done.

Rescoring is most often performed using log-linear models trained using one

of the minimum-error techniques described in section 1.5.3. Alternatives include

perceptron-based classification (learning to separate candidates at the top of the

list from those at the bottom) and ordinal regression (Shen et al., 2004); and also

Yamada and Muslea’s ensemble training approach, presented in chapter 8.

1.5.6 Current Status

Phrase-based translation remains the dominant approach in statistical MT. How-

ever, significant gains have recently been achieved by syntactic methods (particu-

larly on difficult language pairs such as Chinese-English; see section 1.6), by factored

methods, and by system combination approaches (see section 1.7).

1.6 Syntax-Based SMT

While the first SMT models were word-based, and the mainstream models are cur-

rently phrase-based, we have witnessed recently a surge of approaches that attempt

to incorporate syntactic structure, a movement that is reminiscent of the early

history of rule-based systems, which started with models directly relating source

strings to target strings, and gradually moved toward relating syntactic represen-

tations and even, at a later stage, logical forms and semantic representations.

The motivations for using syntax in SMT are related to consideration of fluency

and adequacy of the translations produced:

Fluency of output depends closely on the ability to handle such things as agree-

ment, case markers, verb-controlled prepositions, order of arguments and modifiers

relative to their head, and numerous other phenomena which are controlled by the

syntax of the target language and can only be approximated by n-gram language

models.

Adequacy of output depends on the ability to disambiguate the input and to

correctly reconstruct in the output the relative semantic roles of constituents in

the input. Disambiguation is sometimes possible only on the basis of parsing the

input, and reconstructing relative roles is often poorly approximated by models of

reordering that penalize distortions between the source and the target word orders,

as is common in phrase-based models; this problem becomes more and more severe

when the source and target languages are typologically remote from each other (e.g.,
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subject-verb-object languages such as English, subject-object-verb languages such

as Japanese, or languages that allow relatively “free” word order such as Czech).

There are many approaches to incorporating syntax in SMT systems, of which

we will describe only a few representative instances. One dimension that is useful

for organizing the different approaches is the extent to which they assume some

form of a priori knowledge about the syntactic structure of the source and target

languages. While certain approaches require that external parsers exist for both

the source and the target languages, and use parsed bilingual corpora for training

their models, some approaches only require that such parsers exist for the source or

for the target language,15 while some more radical approaches do not require any

externally given parser but learn aligned structured representations on the basis of

an unparsed bilingual corpus. We start with these “resource-poor” approaches and

move gradually toward the more “resource-intensive” ones.

1.6.1 Parser-Free Approaches

Currently probably the most representative among the parser-free approaches is

Chiang (2005)’s hierarchical phrase-based translation. The model is in line with

previous work by Wu (1997) on inversion transduction grammars for parsing

bilingual corpora and is formally based on a generalization of these grammars,

namely synchronous context-free grammars. Such grammars are bilateral context-

free grammars that simultaneously describe constituents in a source and in a target

language and have rules such as (source language is Chinese here)

X → 〈X zhiyi, one of X〉,

where the source and target expressions on the right-hand side contain termi-

nals and “coupled” nonterminals that correspond to subconstituents which are

in translation correspondence. These rules may be automatically extracted from

word-aligned phrase pairs by identifying nonterminals with aligned subphrases.

One important restriction in the formalism used by Chiang is that there is only

a single generic nonterminal type X , in contrast to externally motivated gram-

mars, which would have nonterminals such as noun phrase (NP), verb phrase (VP),

and so forth. Under this constraint, rules such as the above can be seen as direct

generalizations of standard biphrases, where the coupled Xs correspond to sub-

15. Another aspect that distinguishes systems is whether they are tree to string, string
to tree, or tree to tree, but this aspect is not as clear as the dimension involving reference
to external parsers; a system that only uses an external parser for the source can still
technically be tree to string or tree to tree, in the latter case through projecting trees from
the source side of the bilingual corpus over to the target side and using the structural
correspondences thus found; a similar remark is true of systems that only involve external
parsers on the target side.
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biphrases of these biphrases, which were themselves in translation correspondence

in the training corpus and have been “anonymized” into X .

Decoding is performed by parsing the source side with the synchronous grammar

and simultaneously producing a target parse. Competing derivations are scored

according to a log-linear model whose weights are learned based on a minimun-

error training procedure.

1.6.2 Parser on the Target

An early attempt to use syntax in SMT was presented by Yamada and Knight

(2001), who considered a model for translating from Japanese to English. They use

the Collins parser for English for building tree structures over the target side of

the bilingual corpus and then learn a mapping from an English tree to a Japanese

string through a sequence of transformations: first the nodes of the English tree are

locally reordered, then some Japanese words (typically function words) are inserted

in the reordered English tree, then the remaining English words are translated

into Japanese words, and finally a Japanese string is produced. At training time,

EM is used in order to learn the parameters of the different transformations that

maximize the likelihood of the training set, and the resulting set of probabilistic

transformations constitutes the “translation model” part of a noisy-channel model

(hence the model is indeed eventually used for translating from Japanese to English,

and not the reverse.) While the model is sometimes described as mapping Japanese

strings to English trees (hence as a string-to-tree model), from the description it

is clear that internally, Japanese trees are actually built; however, these Japanese

trees are not obtained by reference to an independent parser of Japanese, but rather

as a kind of projection of externally motivated English parses.

More recently, researchers from the same research group at the Information Sci-

ences Institute have applied powerful formalisms, known as tree-to-string trans-

ducers, to relate target trees with source strings. In Marcu et al. (2006), such a

model is used to translate from Chinese to English. When applied in reverse to

the source string (such formalisms can be used either in a forward or reverse di-

rection), the tree-to-string transducer behaves similarly to a context-free grammar

(meaning that chart-parsing techniques can be applied to factorize the derivations

above a given Chinese string) but each derivation can be seen as a recipe for gluing

together English tree “stumps” and producing a complex English parse tree; thus

the correspondence between derivations on the source side and trees on the target

side is not as direct as in synchronous tree grammars and allows more flexible cou-

plings. At decoding time the application of rules is under the control of a log-linear

model that combines features computed on derivations, and the model weights are

learnt by mininum error training. The system was claimed in 2006 to be the first
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to show BLEU improvements over phrase-based models on experiments conducted

over large-scale, open domain translation tasks.16

1.6.3 Parser on the Source

An instance of using an external parser on the source only is the work conducted at

Microsoft Research by Quirk et al. (2005), who use an in-house rule-based parser,

NLPWIN, that produces dependency structures for English. Given a bilingual

English-French training corpus, word aligned with GIZA++,17 the source depen-

dency trees are projected onto the French side of the corpus and from the aligned

sentence-level dependency structures obtained, a collection of aligned “treelets”

is extracted. These treelets are structural analogs to the biphrases extracted in

phrase-based SMT and are constrained to be connected subcomponents of the de-

pendency structure, but not necessarily to project onto contiguous subspans of the

word string. At decoding time, the source sentence is parsed, is decomposed into

treelets, and a target representation is constructed by gluing together the associ-

ated target treelets, under the control of log-linear features. An important aspect of

the model (permitted by the use of dependency structures) is that the target repre-

sentations thus obtained are underdetermined with regard to the relative order of

the dependents of a head. This order is determined by a separate model, which is

independently trained; this separation of work between treelet training and order

training gives flexibility to the model, as the extracted treelets themselves do not

need to encapsulate word-ordering considerations.

In chapter 7, Wellington, Turian, and Melamed present another instance where

an externally trained parser (Bikel’s parser, trained on the Penn treebank) is used

to parse the English source side of a bilingual English-French corpus and where

projection techniques are used to obtain parallel trees in the target language;

however the focus here is on a generic training technique for learning how to

transduce a source tree into a target tree and could probably be applied as well

to a situation where the target trees were obtained by an independent external

parser. Training works by attempting to reconstruct the corpus target trees from

the corpus source trees through a sequence of atomic decisions that incrementally

build nodes of the target tree, given both the context of the source and the context

of previous decisions. The training procedure interleaves feature selection actions

and parameter tuning actions, using a boosted ensemble of decision trees under an

l1 regularization regime that favors sparse features.

16. This claim was based on experiments for Chinese-English in the NIST-06 campaign,
and continued in NIST-08 for the same language pair. However in the case of Arabic-
English, phrase-based systems still win in the later campaign.
17. Even if not mentioned explicitly, the use of GIZA++ for word-aligning a bilingual
corpus is actually a shared prerequisite of most of the approaches described in this section.
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1.6.4 Parsers on the Source and Target

One approach in which structural a priori knowledge of both the source and the

target languages plays an important role was introduced by Cowan et al. (2006).

They consider translation from German to English, and use the Dubey parser for

German and a modification of the Collins parser for English in order to parse both

sides of a bilingual Europarl corpus. The English parser produces structures of

a specific form, aligned extended projections (AEPs), which are inspired by the

formalism of lexicalized tree adjoining grammar (Frank, 2002). The focus of the

paper is to learn the translation of German clauses into English clauses, as opposed

to full sentences, and the AEP of an English clause can be seen as a syntactic

template to which a sequence of elementary operations have been applied, such

as selecting active or passive voice, instantiating the subject slot, choosing the

inflection of the verb, etc. The order of such operations is linguistically motivated,

for instance the inflection of the verb may depend on the subject. After the bilingual

corpus has been parsed on both sides, aligned German clausal structures and

English clausal AEPs are extracted, and the goal of training is to learn a sequence

of decisions that will permit reconstruction of the English AEP from the German

structure. The first such decision is choosing the English syntactic template, then

the following decisions correspond to the elementary operations that determine the

AEP. Each decision is performed on the basis of features of the German structure

and of the previous decisions taken, and the training of the associated weights is

done through a structured perceptron procedure. At decoding time, a beam-search

procedure is applied, which attempts to find the sequence of decisions which has the

largest score according to these weights. In this approach we see a clear instance

where a careful linguistic design (nature and order of the elementary operations

leading to an AEP) is explicitly exploited for organizing the learning procedure.

1.7 Some Other Important Directions

Statistical machine translation is a very active field of research, and the chapters

in this book illustrate a range of promising directions. It would be impossible to

cover all ongoing efforts: in this section we briefly touch on some that we perceive

as particularly interesting.

1.7.1 Factored Models

The majority of published research on machine translation reports experiments on

language pairs having English as target. Translating into other languages requires

solving problems that are just negligible in English. Morphology, for instance,

is very simple in English compared to most other languages, where verbs can

have tens of alternative forms according to mood, tense, etc.; nouns can have

different forms for nominative, accusative, dative, and so on. Dictionaries for such
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languages tend to be much larger (empirical linguists speak of a lower token/type

ratio), and reliable statistics are harder to gather. Moreover, when translating from

a morphologically poor language (e.g., English) into a morphologically rich one

(e.g., Russian), purely word- or phrase-based models can have a hard time, since

generating the appropriate morphology might require rather sophisticated forms of

analysis on the source: n-gram-based language models can only go so far.

Koehn and Hoang (2007) introduced factored translation models, where source

words are enriched with linguistic annotation (e.g., lemmas, parts of speech, mor-

phological tags). Separate distributions model translation from source lemmas to

target lemmas and from source parts of speech and morphology to their target

equivalent. A deterministic morphological generator, finally, combines target lem-

mas and morphological information to reconstruct target surface forms (i.e., actual

words).

Factored language models, where words are represented as bundles of features and

the conditioning history can be composed of heterogeneous elements (e.g., a word

and a parts of speech), were introduced earlier (Bilmes and Kirchhoff (2003)). The

use of factored word-sequence kernels in discriminatively-trained language models

(chapter 6) falls in the same line of work.

1.7.2 Model Adaptation

The quality of translation and language models depends heavily on the amount of

training data. Training corpora of sufficient size for a given language pair, domain,

and genre might not be readily available: one is thus left with the uncomfortable

choice of either training on few data points coming from the distribution of

interest (on-topic corpora), or on many data points from a different distribution

(off-topic corpora). Language model adaptation has been extensively investigated,

especially in conjunction with speech recognition. The interest in translation model

adaptation, on the other hand, is more recent.

Hildebrand et al. (2005) proposed information retrieval techniques to select from

a training set sentence pairs whose source is similar to a given test set, and train

only on those. Munteanu et al. (2004) went further, and proposed a classifier for

identifying sentences which are a translation of one another in a comparable corpus

(i.e., a set of similar documents in two different languages).

More recently, Foster and Kuhn (2007) introduced a method based on mixture

models: the training data is divided into different components, models (both

translation and language) are trained separately on each component, and are

combined at translation time with weights which depend on the similarity of the

source document and the training data of each component.

Similarly, Xu et al. (2007) train separate language models on different domains,

and also use limited on-topic parallel data to re-estimate the weights of the features

of a log-linear model. When a new document needs translation, it is first categorized

into one domain and then translated using the adapted language model and feature

weights.
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1.7.3 System Combination

System combination techniques aim to exploit the diversity in translation outputs

from different MT systems in order to improve over the best single system. A

challenge in doing so is that alternate translations may have very different surface

properties such as lexical choice and word order, making it difficult to blend them

into a single reasonable output. Recently, Rosti et al. (2007b) proposed an effective

solution that consists in choosing one system’s hypothesis to establish the word

order of the output. The other hypotheses are aligned to this skeleton using edit

distance, resulting in a constrained word lattice known as a confusion network

from which the output is derived by searching with a language model and weighted

scores from the input systems. Chapter 13 by Matusov, Leusch and Neyin this book

extends this approach using IBM alignments rather than edit distance for aligning

hypotheses. System combination techniques have recently improved to the point

where they reliably give gains over the best single system, even when the other

participating systems are relatively weak.

1.7.4 Kernel Methods for Machine Translation

A rather radical departure from existing approaches to SMT is proposed by

Wang et al. (2007) (see also chapter 9). Using kernels on strings it is possible

to map separately sentences of the source and of the target language into distinct

vector spaces (or feature spaces). Conceptually the translation problem can thus be

decomposed into

1. mapping a source language sentence into a vector in the input feature space;

2. mapping this vector into a vector in the output feature space by means of an

appropriate function;

3. mapping a vector from the output feature space into a target language sentence.

The function in the second step can be learned from a training set using an

appropriate regression algorithm (such as ridge regression). In practice, the first

and the second steps are conflated in that a kernel is used to implicitly map source

sentences into the input feature space. The third step, the inverse image problem,

can be very hard, depending on the kernel used on the target side.

1.8 Machine Learning for SMT

The preceding sections suggest that training a statistical machine translation

system is very closely related to supervised learning. At the core of the statistical

approach to MT is the attempt to map some input source language sentences f to

some output e. There are, however, a number of idiosyncracies which preclude the

straightforward application of known machine learning techniques to SMT. In this
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final section, we will relate SMT to various standard machine learning frameworks,

and discuss the issue of learning with an uncertain loss, as well as the issue of

dividing the MT learning problem into smaller manageable problems, as opposed

to adopting an end-to-end approach.

1.8.1 Translation as a Learning Problem

In the context of translation, the output variable—a target language sentence—is

formally a discrete variable. In machine learning, predicting a discrete variable

usually leads to a classification framework. However, SMT clearly does not fit

comfortably in this context: the output space, although discrete, has too many

modalities and too much structure. The regression framework is not a much better

fit: the output space is not continuous and is very unsmooth, as sentences with

similar surface forms may have very different meanings (and therefore translations).

In fact, MT is closer to the relatively recent framework of learning with structured

output (Taskar, 2004; Tsochantaridis et al., 2005).

The work presented in chapter 9 in this book is a typical example of such an

approach. Input and output data are projected into two vector spaces using the

implicit mappings Φ(f) and Ψ(e) provided by a kernel operating on structured

data (in that case, sentences in the source and target languages). A multivariate

regression model Ψ(e) ≈ WΦ(f) may then be used to model the dependencies

between the projected input and output, even though the original data is highly

structured and does not live in vector spaces. One challenge of this approach is

the preimage problem: given an estimate Ψ̂ = ŴΦ(f) for a new source sentence f ,

which target sentence ê should be chosen, such that its image through the implicit

mapping, Ψ(ê), is “closest” to the regression estimate Ψ̂? This is a very difficult

problem for most kernels operating on structured data, and very closely corresponds

to the decoding step in the traditional SMT framework.

Further work will no doubt appear along those lines. In fact machine translation

is a natural field of application for machine learning techniques operating on

structured inputs and outputs, as large amounts of training data are available,

for a variety of language pairs (e.g., Koehn, 2005; Steinberger et al., 2006). In fact,

another important challenge for structured learning methods is to scale up to the

corpus sizes commonly used in statistical machine translation, where millions of

sentence pairs are not unusual (see, e.g., chapter 8).

It may also be interesting to draw a parallel with the ranking framework, which

has been addressed in machine learning in the context of information retrieval, col-

laborative filtering, extractive summarization, or multiclass categorization, among

others. Traditionally, machine translation has been defined as the problem of pro-

ducing one correct translation e for each source sentence f . However, an arguably

equally efficient alternative would be to seek an ordered list of target hypotheses

e(1), e(2), . . ., such that correct translations are placed above incorrect ones. This

may be relevant in two situations:
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1. When there are many correct translations of the source sentence, all of them,

not a single one, should be placed at the top of the list.

2. When the model is unable to generate any correct translation, it still makes

sense to try to rank nearly correct hypotheses at the top of the list.

In the traditional approach to SMT, such as described in section 1.5, ranking

is actually used in at least two ways. First, decoders based on log-linear models

usually output ordered n-best lists of translation hypotheses rather than a unique,

most probable translation. Second, an additional reranking step, using, for example,

more and more complicated feature functions, is used to improve the n-best list by

promoting “correct” hypotheses to the top of the list. In both situations, however,

ranking is typically based on the output of a model trained for discrimination,

not for ranking. Theoretical and empirical results in machine learning (e.g., Cortes

and Mohri, 2004) suggest that models trained to minimize an error rate may not

provide optimal ranking performance, especially for uneven distributions and high

error rates, which is precisely the situation of most MT systems. Placing MT in

the framework of a ranking problem and using techniques designed to optimize the

ranking performance therefore seems like an interesting direction of investigation.

This is in fact the appraoch presented by Shen et al. (2004) for the rescoring stage,

and they obtain encouraging results using perceptron-based ordinal regression.

1.8.2 Learning with an Inaccurate Loss

One aspect that crucially sets machine translation apart from most other appli-

cations of machine learning is the issue of evaluation. As explained in section 1.2,

even when reference translations are available, there is no exact way to calculate, or

even define, the cost associated with a new translation hypothesis. This is at odds

with most areas where machine learning has been applied. Indeed, most machine

learning techniques, at their core, attempt to minimize some loss or risk associated

with the prediction. What can be done when such a loss is not available? One typ-

ical strategy is to target a different, approximate loss, work on that instead, and

hope for the best.

Standard approaches to SMT such as word-based models (section 1.3) rely on

maximizing the likelihood on the training set. Within the state-of-the-art framework

of phrase-based SMT (section 1.5), phrase tables and language models are typically

estimated using word or phrase counts, which corresponds to maximum likelihood

estimates, possibly with the addition of some smoothing or regularization. However,

the likelihood is not necessarily a good indicator of translation quality. As the

unattainable reference of translation evaluation is human judgment, the reliability of

the various metrics described in sections 1.2 is usually assessed by their correlation



1.8 Machine Learning for SMT 35

with human evaluation. The need to optimize these metrics18 has led to minimum

error-rate training (section 1.5), where some model parameters are trained by

directly minimizing one metric. In the context of machine learning, gradient descent

has been used to optimize differentiable losses. More recent work has been targeted

to optimizing kernel machines on metrics such as the F-score used in information

retrieval or the area under the curve (AUC) used for ranking (Callut and Dupont,

2005; Joachims, 2005). A challenging avenue for future research would be to train

some of the newly proposed SMT techniques that depart from the log-linear models

by directly optimizing the MT metrics, instead of relying on the standard losses

such as the squared error.

An additional consideration is that automatic MT metrics focus on different as-

pects of the difference between the hypothesis and reference translations: n-gram

precision, recall, edit distance, bag-of-word similarity, etc. Arguably, none of these

is sufficient to fully account for the difference between two sentences. However, they

may conceivably account for some of the difference. It would therefore be interesting

to consider optimizing not just a single metric, but several of these metrics simul-

taneously. Techniques from multiobjective, or multicriteria, optimization (Steuer,

1986) may be relevant to that purpose. One of the simplest ways to do that is to

combine the multiple objective functions into a single aggregate objective function

(Giménez and Amigó, 2006). The system may then be optimized on the aggregate

measure, in order to increase reliability and robustness.

Finally, the situation of MT evaluation suggests a more speculative question.

Is it possible to set up a framework for learning with an imprecisely defined

loss? In machine translation, we have a number of approximate losses which have

measurable correlation with the “real,” unknown loss. By learning on those, we

surely learn something about the underlying task, provided the correlation is

positive. By contrast, overtraining on the approximate metric will likely degrade

the performance on the real loss. It seems to us that this is not a very commonly

studied setting in machine learning. However, advances in that direction would

certainly have the potential to benefit research in statistical machine translation.

1.8.3 End-to-End Learning for SMT

Current statistical translation systems involve a combination of several models

(translation, language model, log-linear model, rescoring; section 1.5). The parame-

ters associated with each of these are usually estimated more or less independently,

leading to a highly stratified parameter estimation: the parameters of the transla-

tion model are derived from the phrase table using essentially maximum likelihood

parameters; the language model parameters are obtained by smoothing the maxi-

18. Besides the quest for better translation quality, one additional motivation is that
international MT evaluations are usually carried out using automatic MT evaluation
metrics. Optimizing the right metric can have a direct impact on a system’s ranking.
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mum likelihood (or minimum perplexity) estimates; parameters of the phrase-based

translation model and rescoring model are usually estimated using minimum error-

rate training, etc. In addition, parts of the model, such as the distortion feature

function (section 1.5.2), are parameterless, but could conceivably be made more

flexible with the addition of a few parameters.

The obvious limitation of this approach is that the overall model is divided into

smaller parts, each optimized locally on a loss that may be only loosely related

to the overall translation goal. Instead, one would ideally like to optimize all

model parameters globally, on the overall loss. Note, however, that in the context

of machine translation, this means optimizing over millions of parameters of the

translation and language models, in addition to the log-linear parameters. Recent

advances in discriminative training of machine translation models have started

addressing this issue. This is the case for two approaches described at the end of

section 1.5.3. Tillmann and Zhang (2006) propose a new translation model and an

associated discriminative training technique that optimizes millions of parameters

using a global score (such as BLEU). Liang et al. (2006) also propose an end-to-end

approach relying on a perceptron trained on millions of features, but which also

includes translation and language model probabilities as features, thus retaining

part of the stratification in the model estimation. In both cases, the models differ

substantially from the current state of the art of phrase-based translation.

The issue of stratified vs. end-to-end parameter estimation therefore suggests (at

least) two directions for improving translation performance. One would be to limit

the stratification of current phrase-based models by estimating more parameters

globally. The second is obviously to improve recent end-to-end models, which are

currently competitive only with baseline versions of phrase-based models (usually

a fairly standard Pharaoh system), but not with the more evolved versions used,

for example, in international evaluations.

1.9 Conclusion

In this introduction, we have given an overview of current statistical machine

translation techniques. We also provide pointers to the literature for readers wishing

to acquire more information on specific topics. Our hope is that this chapter is self-

contained and broad enough for the reader not especially familiar with SMT to

now turn to and benefit from the more advanced topics addressed in the following

chapters of this book.

Appendix: On-line SMT Resources

Statistical machine translation resources (http://www.statmt.org/): includes

links to the yearly workshop on machine translation
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Moses (http://www.statmt.org/moses/): SMT system implementing phrase-

based translation and factored model, with beam-search decoder

Pharaoh (http://www.isi.edu/publications/licensed-sw/pharaoh/): freely

available decoder for phrase-based SMT

GIZA++ (www.fjoch.com/GIZA++.html): toolkit implementing the IBM models

SRILM (http://www.speech.sri.com/projects/srilm/): widely used SRI lan-

guage modelling toolkit

LDC (Linguistic Data Consortium, http://www.ldc.upenn.edu/): provider of

multilingual data

ELDA (Evaluations and Language Resources Distribution Agency, http://www.

elda.org/): operational body of the European Language Resources Association

and provider of multilingual data

Europarl (http://www.statmt.org/europarl/): parallel corpus including 11

European languages

NIST (http://www.nist.gov/speech/tests/mt): the annual MT evaluation

carried out by NIST


