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Abstract

1 Introduction

Belief Networks for the Perceptual Grouping of 3-D

Surfaces
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Research in the domain of modeling using 3-D data has primarily focussed on the extraction of
3-D surfaces and volumetric primitives for the purpose of either object recognition or creating

more precise models from 3-D sensory data of machined parts. These type of objects can easily be
carried and placed in a controlled environment and scanned using a high resolution active sensor.

For the modeling of large indoor environments it is necessary to bring the sensor to the environment,

This article introduces an approach, based on Bayesian Networks, for the grouping of 3-D surfaces

extracted from data obtained by a laser ranging sensor. A methodology based on the decomposition
of an object into its sub-parts is used for specifying the structure of the network. Conditional

probabilities are computed using a set of compatibility functions that measure the are a measure in
the quality of �t of the data to a model that the features may have come from. These compatibility

functions are akin to measures that are used for the perceptual organization of features in the
computer vision domain except that they have been developed for 3-D range data. An approach

is presented for the mapping of the compatibility functions to conditional probabilities that are
required by the Bayesian network. An example of a Bayesian network is presented that models the

detection of corners and continuity among planar surfaces and uses both range and intensity values
as features sets. The Bayesian network is used to compute a belief value in the formation of corners

and continuity among the surfaces which in turn can be used to decide if surfaces should be joined.
Results and analysis are presented for an actual set of intensity and range images taken of a typical
indoor scene of a robotics laboratory.



2 Constructing the Bayesian Network

changing the characteristics of the sensed data dramatically. The result of this is that nearly all

scans taken in these environments consist of missing data and occluded objects. Recent attempts
in the modeling of larger environments [1, 2, 3, 4] from 3-D sensory data have demonstrated it

to be a di�cult task, due mainly to the amount of missing, sparse, and obscured data. This
requires algorithms to be developed that can manage several sources of evidence for determining

how surfaces should be grouped and should also maintain belief values in the formation of these
groupings.

Research in the modeling of indoor environments has primarily focussed on the incremental
synthesis of sensor views and/or position estimation of the sensor [5, 6, 7, 8]. For these systems
to become viable tools for Computer Aided Design (CAD) it is necessary to develop approaches

that can extract geometric surfaces from the data and hypothesize the formation of more composite
features from the surfaces, i.e junctions among the surfaces. In most circumstances a set of heuristics

have had to be declared to decide what and how the surfaces should be joined. Unfortunately
these heuristics tend to be embedded into the algorithms and no formal approaches are used for

maintaining a belief value in the grouping process. This leads to systems that are not easily
extendable and the user has no ability to sense of the quality in the grouped surfaces.

This article presents an approach to the grouping of surfaces based on the formalisms developed
for Bayesian networks. A Bayesian network o�ers a cohesive approach to the speci�cation of

relationships among feature sets as well as a methodology for the computation of belief values
in the existence of a formation among the features. Bayesian networks have been used in the
domain of computer vision for object recognition [9, 10, 11, 12], multi-agent vision systems [13],

road scene recognition [14], tracking of dynamic objects in images [15], and perceptual grouping
for 2-D images [16]. A common thread among those systems in the use of constraints among the

features to help either recognize or track objects in a scene. These constraints are a mathematical
expression of perceptual organization and the Bayesian network enforces a structure that de�nes

intermediate formations among those features. The Bayesian network also enforces a computational
model for belief values in the existence of those formations. This is similar in concept to the system

developed by Levitt et al. [9] in that the belief values of the nodes in the Bayesian Network represent
a probability of the existence of formations among the features. This is a well sound model and

the challenge still remains of determining approaches for constructing the network and determining
the conditional probabilities.

This particular implementation of a Bayesian Network is based on the modeling of composite geo-
metrical formations from other fundamental features computed from the sensory data. A composite

geometrical formation is created from the aggregation and combination of other geometrical for-
mations until �nally it is composed of individual components that can be detected by the sensor.
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2.1 The Network's Structure
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The constraints that are applied at each level to achieve a geometrical formation can be mapped

to a conditional probability for the Bayesian network. The Bayesian Network allows the encoding
of the expected geometrical formations that the sensor may detect and infer a belief value in the

existence of that formation.

A Bayesian Network is a directed acyclic graph with the nodes representing a hypothesis of the

existence of a proposition and the arcs signifying the causal relationship from one proposition to
the next. This results in a simple model of the universe but one that can be useful for perceptual

grouping. Deciding on the structure and variables of a Bayesian network is a mutual exercise.
The approach proposed in this article for guiding the design of the network's structure is the

theory of hierarchical decomposition by parts that has been previously used for the modeling of
objects [17, 18]. Decomposition by parts is a generic concept that cannot be used directly but as a
guide the design of the network. It was also primarily a concept developed for the decomposition

of objects for the representation in Computer Aided Design (CAD) that do not take into account
the features and components that can actually be detected by a sensor. Figure 1 illustrates a cube

decomposed into its components that directly maps to the Bayesian network shown to the right of
the decomposition hierarchy.

The process of part decomposition can lead to many solutions and must be guided by the type
of sensory data and any intermediate groupings that can be extracted from that data in gathering

evidence for the formation of the object. For example, in �gure 1 the cube can be decomposed into
and that are formations arising from the detection of and . If it

was not possible to detect then this structure would collapse to simply the left hand branch
modeling the formation of a from and . The decomposition procedure
must also consider the type of compatibility function that will determine how well the data �ts the

model represented by a node. Each directed edge or set of directed edges can be considered as an
application of a constraint to the grouping procedure and therefore implies another compatibility

function applied to the data. Later in section 2.2 a procedure will be outlined on how to convert
compatibility functions to conditional probabilities, in deciding the structure it is simply a matter

of knowing conceptually how this grouping might be performed. For example the decomposition of
to , in �gure 1, can be performed by relaxing an imposed constraint on �tting

a set of points to a planar surface. The compatibility function would correspond to a measure of
�t of the 3-D points to a planar surface.

Each node in the network is a hypothesized formation representing a boolean variable that
reects the existence of that particular formation from the sensory data. It is possible to create
a node that represents several formations [12] but this leads to fairly complicated compatibility

functions and a network that is di�cult to extend when it is discovered that one particular formation
within the node is dependent on another composite formation.
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Figure 1: Decomposition by parts of a cube.

The leaf nodes in the network tend to correspond to readily detectable 2-D or 3-D features, for

example, edges, 3-D points, intensity, and/or color. It is at this point that any hard evidence will be
entered into the network. All other intermediate nodes correspond to hypothesized formations and
groupings among the feature sets. For environment modeling the purpose is to detect particular

general surface formations that could be used for extracting overall shape of a room.
The steps for creating the structure of the network are the following:

De�ne a set of variables that represent the �nal composite formations that are desired
to be hypothesized as well as the variables of the features that are readily detected by the

sensor.

Using the decomposition by parts methodology, decompose the composite formations into

sub-formations keeping in mind the following points:

Each sub-formations should correspond to the relaxation of a geometric constraint (these
will translate directly to compatibility functions).

Eventually these sub-formations will connect to the leaf nodes that correspond to the

variables representing the features that are readily detected by the sensor.
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2.2 The Conditional Probabilities

Map the links from a parent composite formation to its child sub-formation with a directed

edge. These are causal links representing the cause e�ect relation between the parent grouping
to the child sub-grouping.

Conditional probabilities are derived from compatibility functions that measure how well a set of
features match a particular perceptual grouping. This perceptual grouping is representative of

a particular geometric constraint among the set of features that imposed on the child formation
leads to the parent formation. They are not direct measures of how well the features represent

a particular formation represented by the node but are simply one measure among several that
lead to that desired formation. This is an important point, in that the compatibility function

is not representative of the formation of a complicated object but primarily consists of simple
perceptual grouping measures leading towards that formation. So for example in terms of the
formation depicted in �gure 1 the compatibility functions measure the planar quality of a surface,

proximity among edges, proximity among surfaces, angular relationships among edges, and angular
relationships among surfaces. Later in section 3 an actual example is presented for the detection

of corners and continuity among planar surfaces. Compatibility functions then are measures that
conform closer to those fundamental sets de�ned originally by the Gestalt laws of organization, i.e.

symmetry, proximity, continuity, . . . . The di�erence is that they can be developed for di�erent
types of sensory data besides the original 2-D human perception world envisioned in the Gestalt

laws. With this in mind the following de�nition for compatibility functions is presented.
A is a function ( ( )) based on a geometric constraint applied to a

set of attributes of a sensory feature that measure how well these features match the perceptual
grouping .

From this point on, compatibility functions will be referred solely as without the argument

.
In order to place compatibility functions on a same level of reference a mapping function is used

to map the results from a compatibility function to a certainty value that exhibits the following
properties,

It is bounded between the interval (0 1).

It is a decreasing monotonic function, so that a compatibility value equal to 0 signi�es a

certainty value of 1. This is equivalent to a perfect match between the features and the
perceptual grouping.

There are several of these type of mappings and in this particular implementation we propose

the declining -Curve function, shown in �gure 2 and represented mathematically as,
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Figure 2: A declining -curve.

This mapping o�ers the following advantages to the user:

It maps a physical measure to a subjective con�dence value and therefore separates these 2
conceptually di�erent environments. The user can operate with physical forms of measure-
ments and then apply a subjective measure that represents how well that physical measure

comes close to a particular perceptual grouping;

The -Curve function allows the user to de�ne the resolution of a match of the geometric
features with the perceived formation. It is possible to use the same compatibility functions

but di�erent -Curves for 2 di�erent geometrical formations;

Compatibility functions and constraint functions have the drawback that they are used mostly
as a means of determining how well the evidence supports a hypothesized formation. Therefore

they cannot be used as a mechanism for determining a-priori probabilities that are required for
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causal networks. For example, each node represents a Boolean variable whose states are de�ned

as = ( ), where and respectively signify the existence and non-existence of the
formation . The compatibility functions can be used directly for computing the conditional

probabilities when the parent's states are but no such mapping exists for when they are
. This does not completely prevent the use of Bayesian networks but requires that the

directional edges be reversed so as to represent consequential knowledge, i.e. from evidence to
hypothesis. For example, the cube decomposition represented in �gure 1 must now be inverted as

shown in �gure 3.

Figure 3: Formation of cube as a consequence of the evidence.

In this direction of computation the network resembles the Perceptual Inference Network (PIN)
developed by Sarkar and Boyer [16] with the signi�cant di�erence that the structure of the network
is developed using causal theory and the perceptual grouping constraints are associated with the

edges of the network. The advantages of using causality over consequences are the removal of
multiple instantiations of similar nodes that can occur when the structure of the network is built

using consequences. For example, the existence of a set of parallel lines may be caused by multiple
formations and is reected in a causal network by a node representing parallel lines and multiple

parent formations that have caused the parallel formation. When the network is designed to reect
consequences it is fairly easy to introduce another node representing a parallel formation anywhere

along the network. This of course is a design methodology than a limitation imposed by the actual
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network itself.

Let ( ) be a function that returns the parent nodes of . It is only necessary then to specify
the conditional probabilities for the cases when the states of ( ) are . For single parent

nodes the -curve mappings can be mapped directly into conditional probabilities resulting in the
following conditional probabilities for serial connections,

( ) = ( )
( ) = 1 ( )

(2)

where ( ) = .

For nodes with multiple parents, i.e. convergent nodes, the approach must account for the edges
to the other parent nodes. There are 2 possible situations that occur; either the formation is a
consequence of similar features being grouped or evidence has to be combined from the grouping

of dissimilar feature sets. A simple example of this is portrayed in �gure 3, where edges can be
used to support the formation of vertices while both 3-D points and edges are used to support the

formation of surfaces.
If the composite formation represents the grouping of similar features then a compatibility

function can be developed that measures the quality of �t of the features to a model of the composite
formation. This is typically what has been developed in the computer vision domain for the

grouping of edges. For these type of formations the conditional probabilities can be computed
using equation2.

For the situations where a composite formation can come about from several di�erent types of
feature sets separate compatibility functions are required for each di�erent set of features and the
results of these must be combined. For these cases, each directed edge, , from a parent node

to a child node has associated with it a compatibility function and a corresponding -Curve
mapping. With this in mind the following calculation for computing the conditional probabilities

is proposed,

( ( )) = ( ( ))

( ( ))= 1 ( ( ))
(3)

These 2 conditions can occur together which can be managed by considering one compatibility
function for similar feature sets and combining the compatibility functions of dissimilar feature sets

using equation 3.
For the situations when any of the states of ( ) are then the following conditionals

apply,

( ( )) = 0
( ( )) = 1

(4)
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3 Detecting Corners and Continuity

This section will present an example of a Bayesian network for the detection of corners and con-
tinuity among planar surfaces. This network is depicted in �gure 4 and models the grouping of

surfaces and their respective edges into corners and continuous surfaces.

Figure 4: A Bayesian network for the detection of corners and continuity among planar surfaces.

This particular example is a Bayesian network depicting the computation of belief values in the
direction from evidence to hypotheses, or in the direction of consequences. Figure 4 is a grouping
model depicting the existence of corners ( ) and continuous surfaces ( ) from the existence

of coplanar surfaces ( ), parallel surfaces ( ), vertices ( ) , polygons ( ), and a set of
3-D points ( ) and their respective edges ( ). The 3-D points and edges are the only

instantiated nodes in the network since they represent actual sensory data, the other nodes are
hypothesized formations that contain belief values computed from the instantiated evidence.

This particular structure decomposes the formation of corners and continuous surfaces by relax-
ing one particular constraint among the grouping for each level in the network as one traverses the

network from top to bottom. This is a decomposition by parts operation with intermediate nodes
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3.1.2 Parallel ( ) and Coplanar ( )

that depict the relaxation of one single constraint at a time. Figure 4 also notes which perceptual

grouping compatibility functions are being applied as one moves up the network. In this network
one can see the grouping of similar features; for example, the formation of parallel surfaces among

2 polygons using one compatibility function ( ), and the grouping of dissimilar features, like
the formation of polygons from a set of 3-D points and their corresponding boundary that uses 2

compatibility functions ( and ).
Also similar compatibility functions are used for the formation of vertices ( ) as well as that

for parallel surfaces ( ). These 2 formations are contrary to each other and a di�erent -curve
function is used to actually compute the conditionals.

A very brief listing of the compatibility functions are presented with appropriate references to any
detail information. Some of these functions, in particular proximity among surfaces, are fairly
unique and require more explanation than can be performed in this article.

A compatibility function for determining the quality of �t for a set of points to a planar surface is

to take the mean of the squared distance of the points from the surface. The result is the following
compatibility function for planar surfaces from 3-D points,

( ) =
1

(5)

where is the distance of point from the surface and are the number of points that de�ne the
surface.

A measure of parallelism between two planar surfaces can be derived by evaluating the length of the

vector computed from the cross product of the normals to the surfaces. This leads to the following
geometrical compatibility function,

( ) = N N (6)

where N and N are the normals corresponding to the planar surfaces and .

Coplanar surfaces are a restricted case of parallel surfaces with the added constraint that the
angle between the normals of the surfaces and the line joining the center points of the two surfaces

is approximately 90 . This leads to the following equation,
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where and correspond to the location of the centers of the planar surfaces and

respectively and the operator is a dot product operation between vectors and . This is
a fairly loose constraint that actually measures how well the centroids among 2 surfaces are aligned

that along with equation 6 does lead to coplanar surfaces.

De�ning a proximity compatibility function for 3-D surfaces is challenging, because the de�nition

of proximity is not unique. The proposed approach de�nes a compatibility function among the
surfaces by measuring the distance between the boundary of two surfaces and is summarized in the
following equation,

( ) =
( ( ))

( + )
(8)

where ( ) computes a polygon with a boundary common with the surfaces and based
on their respective boundaries. The common boundary is determined by approximating the surface
by a polygon and projecting the vertices of the polygon away from the surface until they intersect

with another adjacent surface's boundary. This operation can be performed in the 2-D image
plane representative of an ordered set of 3-D points. This ordered set of 3-D points is a common

representation for scanning type of range sensors. The common boundaries between the 2 surfaces
are used to de�ne a 3-D surface composed of triangles of whose surface area can be approximated by

adding up the surface area of the triangles. This procedure is rather challenging and the approach
o�ers a unique method for determining adjacent surfaces [19].

This compatibility function measures how well the edge of a planar surface de�nes a polygon
representing that surface. The compatibility function involves a ratio of the area de�ned by the

polygon to the area of the surface itself and is computed using the following equation,

( ) =
( ) ( )

( )
(9)

where ( ) computes the surface area based on the points de�ning the surface and ( )
computes the surface area based the polygon, associated with the surface . These two values

in most situations are not equivalent since the edges extracted for the surface are straight while the
original surface will consist of irregularly shaped edges. The estimation of the surface by a polygon

is based on determining high curvature points along the surfaces boundary [19]
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4 Experimental Results

The Bayesian network and compatibility functions described in section 3 were applied to a set of
planar surfaces extracted from range points acquired using a compact laser camera called BIRIS [20].

The output of the camera consists of one acquisition of 256 range and intensity values along a
projected plane of light. To acquire more data than that of a single acquisition the BIRIS sensor

was mounted onto a pan and tilt unit. The ability to tilt the sensor is crucial in being able to
acquire more data, since the �eld of view of the sensor is fairly limited. When the Biris Laser

Scanner is panned at a constant speed for a �xed tilt angle the result is a rectangular image of
dimension 256 x , where is the number of acquisitions taken during the panning sequence.
The characteristics of this particular version of the sensor are shown in table 1.

Laser power 24 mW, (two 12 mW laser projectors)

wavelength 680 nm (visible red)
Field of view 19 deg.

Focal Length 20 mm
Accuracy 3 mm @1 m, 14 mm @ 2 m, 42 mm @ 3 m

Range 0.5 m - 5.0 m

Table 1: Speci�cations for the BIRIS range sensor.

Figure 5 shows the extracted planar surfaces from range data taken of a room with a typical
layout approximately the shape of that shown in �gure 6. The individual segments in the intensity

image are shown using separate gray values to represent each segment. The advantage of main-
taining the points in an image is that one can take advantage of the already established scanning

ordering inherent in the sensor.
The Bayesian network depicted in �gure 4 was applied to each set of adjacent surfaces in

�gure 5. In this example there were 25 total surface groupings of which the computed belief values
are presented in table 2. Table 2 also lists a small comment for each grouping that mentions reasons

why the belief values for particular surface formations are low. Low values for both corner and
continuity do not necessarily signify bad results they can reect situations where the edge shared
by the 2 adjacent surfaces is in fact a jump edge and the surfaces cannot form either a corner or

continuous surface.
The results are consistent in that the formation of a corner is counter to the formation of

continuous surfaces. The belief values reect this in the following manner. When the belief of the
formation of a corner is high the belief in the formation of a continuous surface is low, and the

converse is true. The exception are cases where both values are close to 0.0 which in some cases
are characteristic of surfaces with \Jump" edges and in other cases low certainty values caused by

12
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Figure 5: Surfaces extracted from the range data; intensity image (a) and isometric view (b).

high compatibility functions. Using the Bayesian network it is rather simple to infer why these low

values in both corners and continuity exists, it is simply a matter of searching through the graph
looking for occurrences in low compatibility values.

Figure 7 depicts the results in table 2 as an image where the surface pairs that have belief
values (0.7 or over) of being continuous or corners have been displayed using the same intensity

value. Surfaces that had low belief values in either being planar or had bad edge representations
are depicted in a dark color with only their boundaries showing.

These results suggest that another surface grouping, known as a \Jump Surface", should perhaps
be introduced to the model and will be considered for future networks. These type of surfaces are
also presented in �gure 7. Discontinuities, like \Jump Surfaces", are generally not considered a

perceptual grouping formation but certainly do add knowledge that can be used for interpreting a
scene.

Some results are not so positive but do reect the reality of the situation. It would have been
desirable to have surfaces and to result in a high belief value of being a continuous surface.

This was not so, the reason was in the low value that surface was a planar surface. At least this
low certainty value in the surface's planar quality is reected throughout other formations where

surface is part of and a low belief value is computed that can hint to a further investigation
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Figure 6: A schematic of the top view of the robot lab showing sensor position.

into the reason behind the small value.
It should be notes that the results obtained are biased by the parameters used in the -curve

mapping. Table 3 lists the values used for the arguments and for -curve mapping.
These values were subjectively selected but the selection follows a certain reasoning. The

proximity value of 0.25 represents the desire to consider surfaces with gaps smaller than 1/4 the
sum of the areas of the 2 neighbouring surfaces as proximal, anything beyond 0.5 is not proximal.

This same argument can be applied to the edge compatibility value since it is also a ratio of areas.
Surfaces are considered parallel if the surface normals are within 10 rads with respect to each other,

and they are not parallel if beyond 20 rads. Coplanarity is similar to parallel surfaces and share
the same arguments. The parameter values for the quality of the surface being considered as a

plane was determined by computing the average in the variance of the data points of a typical
set of points gathered from the BIRIS sensor. Using the actual variances in the data as a guide
for determining the planarity arguments for and is important since the sensor itself is not an

accurate sensor at long ranges. If an arbitrary low absolute value is used the result would be small
belief values in the existence of all planar surfaces. These current settings show that the robot and

pole surfaces are reasonable planar surfaces which is not the case but because they are closer to
the sensor have smaller variances in the range then the background walls.

14
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4 5 0.0 0.0 ( ( )) 0 0 10 15 0.0 0.0 Jump Edge
4 17 0.0 0.0 ( ( )) 0 0 10 17 0.9 0.0

5 10 0.0 0.0 ( ( )) 0 0 10 18 0.0 0.0 Jump Edge
5 13 0.0 0.0 ( ( )) 0 0 11 14 0.0 0.0 Jump Edge

5 17 0.0 0.0 ( ( )) 0 0 11 16 0.0 0.0 Jump Edge
6 9 0.63 0.0 ( ( )) low 12 15 0.0 0.0 Jump Edge

6 12 0.0 0.0 Jump Edge 13 17 0.77 0.0
8 11 0.0 0.0 ( ( )) 0 0 15 18 0.0 0.0 Jump Edge

8 14 0.0 0.0 ( ( )) 0 0 16 17 0.02 0.27 ( ( )) 0 0
9 10 0.87 0.0 17 18 0.0 0.0 Jump Edge

9 12 0.22 0.0 Jump Edge

Table 2: Belief values for the formation of corners and continuity among the surfaces in �gure 5
(a).

Compatibility Units

proximity 0.25 0.50 unitless
coplanarity 10 20 Rads

parallel 10 20 Rads
planarity 0.578 1.156 cm
edges 0.25 0.50 unitless

Table 3: Values for the arguments and for particular compatibility functions.

This article presented an approach in the use of Bayesian networks for the grouping of features

and the detection of higher order complex structures. An example was presented of a Bayesian
Network for the grouping of 3-D surfaces into either corners or continuous planar surfaces. An

approach for the speci�cation of the Bayesian Network was presented that used the concept of part
decomposition for determining the structure of the network and perceptual grouping compatibility

functions that can be used to determine the conditional probabilities required by the network. It
was shown that the design of the network can be done by considering causal relationships from
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Figure 7: Image of the surfaces depicting those that are continuous, corners, or jump surfaces.

the model to its sub-parts but the actual implementation and computations must be performed

in a bottom up fashion from the sub-parts to the model. This is imposed by the inability to
specify compatibility functions for the conditions when the parent nodes are . A network

was presented that grouped surface data into corners and continuous surfaces that was tested on
3-D sensory data captured from a typical indoor environment.

The grouping results appear to be consistent but what is more bene�cial is the declarative nature
of procedure implied by the use of a Bayesian network. This facilitates the search for reasons why

belief values may be low. The procedural knowledge required to perform the grouping is also well
encapsulated as compatibility functions, facilitating the use and development of the network.

To reduce the inherent computational complexity associated with grouping operations the

grouping process was only applied to adjacent surfaces. The next challenge is to determine an
approach for comparing surfaces that are not directly adjacent without having to compare all the

surfaces. Once this issue is resolved it will be possible to apply the same Bayesian network pro-
cedure to the detection of occluded surfaces. Clearly there are many other examples that need

to be investigated like, 3 surface corners, jump surfaces, and textured surfaces like brick walls.
Development has been occurring into a Bayesian Attributed Hypergraph (BAHG) that combines

the bene�ts of Bayesian networks and attributed hypergraphs. This representation will facilitate
the computation of the compatibility functions by integrating the relationships and attributes with

the creation of the Bayesian network. Currently multiple separate networks are created as the
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