
Publisher’s version / Version de l'éditeur:

Rules on the Web: Research and Applications - Proceedings of the 6th
International Symposium on Rules, RuleML 2012, pp. 264-279, 2012-08-29

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien

DOI ci-dessous.

https://doi.org/10.1007/978-3-642-32689-9_22

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

PSOA2TPTP: a reference translator for interoperating PSOA RuleML

with TPTP reasoners
Zou, Gen; Peter-Paul, Reuben; Boley, Harold; Riazanov, Alexandre

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=de5acf87-0778-4f67-a397-cebb25b2c1b2

https://publications-cnrc.canada.ca/fra/voir/objet/?id=de5acf87-0778-4f67-a397-cebb25b2c1b2

PSOA2TPTP: A Reference Translator

for Interoperating PSOA RuleML

with TPTP Reasoners

Gen Zou1, Reuben Peter-Paul1, Harold Boley1,2, and Alexandre Riazanov3

1 Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
gen.zou AT unb.ca, reuben.peterpaul AT gmail.com,

2 National Research Council of Canada
harold.boley AT nrc.gc.ca,

3 Faculty of Computer Science, University of New Brunswick, Saint John, Canada
alexandre.riazanov AT gmail.com

Abstract. PSOA RuleML is a recently specified rule language combin-
ing relational and object-oriented modeling. In order to provide reasoning
services for PSOA RuleML, we have implemented a reference translator,
PSOA2TPTP, to map knowledge bases and queries in the PSOA RuleML
presentation syntax (PSOA/PS) to the popular TPTP format, supported
by many first-order logic reasoners. In particular, PSOA RuleML reason-
ing has become available using the open-source VampirePrime reasoner,
enabling query answering and entailment as well as consistency checking.
The translator, currently composed of a lexer, a parser, and tree walkers,
is generated by the ANTLR v3 parser generator tool from the grammars
we developed. We discuss how to rewrite the original PSOA/PS gram-
mar into an LL(1) grammar, thus demonstrating that PSOA/PS can
be parsed efficiently. We also present a semantics-preserving mapping
from PSOA RuleML to TPTP through a normalization and a transla-
tion phase. We wrap the translation and querying code into RESTful
Web services for convenient remote access and provide a demo Web site.

1 Introduction

Semantic Web knowledge representations span objects, rules, and ontologies.
PSOA RuleML [1] is a positional-slotted object-applicative rule language, in-
cluding light-weight ontologies, which integrates relations (predicates) and ob-
jects (frames). To test the PSOA/PS syntax specification and also illustrate the
PSOA RuleML semantics, we have developed a reference implementation as a
translator named PSOA2TPTP4 mapping knowledge bases and queries in PSOA
RuleML in RIF-RuleML-like Presentation Syntax (PSOA/PS) to the TPTP5

format – a de facto standard supported by many first-order logic reasoners. The
translated document can then be executed by the open-source first-order rea-
soner VampirePrime6 or other TPTP systems for query answering or simpler

4 http://psoa2tptp.googlecode.com/
5 Thousands of Problems for Theorem Provers, http://www.cs.miami.edu/˜tptp/
6 http://riazanov.webs.com/software.htm

2 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

reasoning tasks, such as consistency testing and entailment testing (theorem
proving).

The main components of our two realizations of PSOA2TPTP include a
shared lexer and parser as well as two tree walkers. The lexer breaks the in-
put document up into a stream of tokens. The stream is then transformed by
the parser into an Abstract Syntax Tree (AST) which condenses and structures
the information of the input. Finally, the AST is traversed by the tree walkers,
either for direct TPTP generation or via Abstract Syntax Objects (ASOs). These
components are produced by the widely used ANTLR v3 framework7 from,
respectively, the specified grammars, namely a lexer grammar, a parser grammar
and two tree grammars.

To prove feasibility of efficient parsing, we rewrite the original PSOA RuleML
EBNF grammar into an LL(1) grammar which accepts a slightly restricted sub-
set of the PSOA RuleML language, including some syntactic sugar proposed
in [1]. With this rewriting, the grammar is accepted by ANTLR and is more effi-
cient for parsing. However, it becomes less readable and reusable. Thus, we chose
to construct a customized AST by embedding additional rewrite rules into the
parser grammar, and to develop an understandable and reusable tree grammar
for ANTLR to generate the tree walkers.

To combine and deploy the above-mentioned components, we have also de-
veloped a RESTful Web API for translating PSOA/PS documents to TPTP and
running VampirePrime. We have published a Web site to demonstrate the use
of the API, constituting the first PSOA RuleML implementation release.8

The rest of the paper is organized as follows. Section 2 explains the translation
source and targets of PSOA2TPTP. Section 3 shows the overall translation archi-
tecture. Section 4 discusses grammar implementation, especially the rewriting of
the parser grammar. Section 5 gives the syntactic translation from PSOA/PS to
TPTP-FOF. Section 6 discusses the RESTful Web API implementation. Section
7 concludes the paper and discusses future work.

2 Interoperation Source and Targets

We discuss here the source language, PSOA RuleML, the target language TPTP,
and the target reasoner VampirePrime, of our interoperating translator.

2.1 PSOA RuleML

PSOA RuleML is a rule language that generalizes the POSL [2] as well as the
F-Logic and W3C RIF-BLD languages [3]. In PSOA RuleML, the notion of a
positional-slotted, object-applicative (psoa) term is introduced as a generaliza-
tion of: (1) the positional-slotted term in POSL and (2) the frame term and the

7 ANother Tool for Language Recognition, a language framework for constructing
recognizers, interpreters, compilers and translators from grammatical descriptions
containing actions in a variety of target languages. http://www.antlr.org/

8 http://198.164.40.211:8082/psoa2tptp-trans/

Translator from PSOA RuleML to TPTP 3

class membership term in RIF-BLD. A psoa term has the following general form:

o # f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] p1->v1 ... pk->vk)

Here, o is the object identifier (OID) which gives a unique identity to the object
described by the term by connecting three kinds of information: (1) The class
membership o # f makes o an instance of class f; (2) each tupled argument
[ti,1 ... ti,ni] represents a sequence of terms associated with o; (3) each slotted
argument pi->vi represents a pair of an attribute pi and its value vi associated
with o.

A psoa term can be used as an atomic formula. Atomic formulas in PSOA
RuleML can be combined into more complex formulas using constructors from
the Horn-like subset of first-order logic: conjunction, disjunction in premises, as
well as certain existential and universal quantifiers. Implication can be used to
form rules.

2.2 TPTP and VampirePrime

TPTP (Thousands of Problems for Theorem Provers) is a library of test problems
for automated theorem proving systems using a problem format of the same
name. A TPTP problem is a list of annotated formulas of the form:

language(name, role, formula, source, useful info).

language specifies the TPTP dialect used to write the formula. We use the FOF
dialect which allows the use of arbitrary first-order formulas. name is a name
given to the formula; role specifies the intended use of the formula. The most
important roles are axiom, hypothesis, conjecture and theorem. formula is the
formula body. source and useful info are optional and irrelevant for us. Some of
the constructors of TPTP are shown in Table 1.

Table 1. TPTP Constructors

Symbol Logical Meaning Symbol Logical Meaning

~ not != unequal

& and => implication

| or ?[v1, v2, ...] existential quantifier

= equal ![v1, v2, ...] universal quantifier

Following is an example of an annotated TPTP formula.

fof(first_order,axiom,

![X]: ((p(X) | ˜q(a)) => ?[Y,Z] : (r(f(Y),Z) & ˜s))

).

This formula represents the first order formula

∀X : ((p(X)∨¬q(a))→ ∃Y ∃Z : r(f(Y), Z)∧¬s)

4 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

Vampire [4] is a mature high-performace reasoner for first-order logic.
VampirePrime is an open source reasoner derived from the Sigma KEE9 edition
of Vampire. In addition to the standard first-order logic theorem proving tasks,
such as consistency checking and entailment, VampirePrime supports query an-
swering by implementing incremental query rewriting [5]. It can also be used for
semantic querying on relational (SQL) databases modulo arbitrary first-order
logic axioms.

3 Translation Architecture

Fig. 1. Components and workflow of the PSOA2TPTP architecture

The overall architecture of PSOA2TPTP shown in Figure 1 includes three re-
alizations: the direct translator, the TPTP-Abstract-Syntax-Object-based
(TPTP-ASO-based) translator, and the fully-ASO-based translator. We have
completed the first two for a subset of the PSOA RuleML language and the
last one will be completed in the future. The input for the direct translator is a
PSOA/PS document. We use the ANTLR v3 tool to generate a parser-translator
that parses the input rulebase and query and generates a semantics-preserving
TPTP document, which can be fed into VampirePrime to compute the query
results. The concrete steps will be explained later. In contrast to the direct trans-
lator, the fully-ASO-based translator will create and transform PSOA RuleML
Abstract Syntax Objects (PSOA ASOs) – simple data structures representing the
information of the input document in a straightforward manner. The key com-
ponent is the PSOA-ASO-to-TPTP-ASO translator, which transforms a PSOA

9 http://en.wikipedia.org/wiki/Sigma_knowledge_engineering_environment

Translator from PSOA RuleML to TPTP 5

ASO into a TPTP ASO using the TPTP parser/renderer library.10 The fully-
ASO-based translator will also support documents conforming to a PSOA/XML
syntax designed in the companion effort PSOA RuleML API [6], which also has
developed a JAXB-based11 XML parser. The dashed lines in the diagram give
the context of components under development. The TPTP-ASO-based translator
generates TPTP ASO directly using ANTLR.

Fig. 2. Workflow of the parsing code generated from the ANTLR grammars

Figure 2 ‘explodes’ the shaded box of Figure 1, showing the detailed workflow
of the ANTLR-based PSOA/PS processor (a parser-generator). Firstly, the input
PSOA/PS document is broken up into a token stream by the PSOA/PS lexer.
In the stream, every token has an associated regular expression representing all
the strings that will be accepted as this token, and the decomposition is done by
matching these regular expressions. After this step, the PSOA/PS parser feeds
off the token stream, parses its syntactic structure, and creates an Abstract
Syntax Tree (AST), which is a condensed version of the input with a tree data
structure. Finally, the AST is processed by a tree walker which generates the
output. The tree walker on the left-hand side generates the TPTP document
directly, which is part of the direct translator in Figure 1. The tree walker in the
middle (resp., on the right-hand side) creates a TPTP (resp., PSOA) ASO, which
is part of the TPTP-ASO-based (resp., fully-ASO-based) translator. The lexer,
parser, and three tree walkers are generated by ANTLR from the corresponding
ANTLR grammars. The syntactic specifications of the three tree grammars are
identical while the embedded output-creating actions in the tree grammars are
different. The tree grammar with PSOA ASO actions has not yet been developed
while the two other ones have been completed.

Comparing the direct translator and the fully-ASO-based translator, the
main advantages of the direct translator are: (d1) It requires fewer steps in
Figure 1; (d2) it is only based on Java and ANTLR; (d3) it is more efficient,
since there are no intermediate representations.

10 http://riazanov.webs.com/tptp-parser.tgz
11 http://jaxb.java.net/

6 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

The advantages of the fully-ASO-based translator are: (f1) It reuses an ex-
isting parser/renderer library for TPTP concrete syntax generation; (f2) the
TPTP document generated from the TPTP library is more readable; (f3) it can
be reused for the translation from other concrete PSOA syntaxes, such as the
PSOA/XML serialization, provided that the corresponding parsers are able to
generate PSOA ASOs; (f4) it will be easier to evolve the translation procedure,
e.g., by implementing different translation styles, because the developers can
work with a clean and simple ASO API instead of the complicated ANTLR
AST parsing.

The TPTP-ASO-based translator is an intermediate implementation com-
bining the advantages (d1), (d2), (f1), and (f2). To cover the entire interop-
eration space, we started with the direct translation, are now developing the
TPTP-ASO-based translation, and will then proceed to the PSOA-ASO-based
translation, thus allowing an overall comparison.

4 Grammar Implementation for PSOA RuleML

Presentation Syntax

In this section, we discuss the implementation of the ANTLR grammars, espe-
cially the parser grammar. Firstly, we review the original ANTLR parser gram-
mar for PSOA/PS which, in particular, incorporates the syntactic sugar into the
EBNF grammar spefication. After that, we propose some additional restrictions
on PSOA/PS to make efficient parsing possible. Then we apply some rewriting
techniques to the parser grammar to make it acceptable for ANTLR. Finally we
discuss the construction of AST and the tree grammar.

4.1 Original Parser Grammar

In [1], the EBNF grammar of PSOA/PS is specified. Besides this core grammar,
there is some optional syntactic sugar for psoa terms:

– In the anonymous version of a psoa term, the OID and the hash symbol ‘#’
are omitted.

– For psoa terms without tuples or slots, the empty pair of parentheses can
be omitted. For example, the psoa term o # f(), which represents just a
membership relation, can be abridged to o # f.

– For psoa terms with only one tuple, the square brackets ‘[’ and ‘]’ enclosing
the tuple’s term sequence can be omitted, e.g., o # f([t1 t2] p->v) can be
abridged to o # f(t1 t2 p->v).

In order to incorporate this syntactic sugar into the parser grammar, we need
to change the original production (1) for psoa term into productions (2) and (3)
shown below, where all the productions are in the ANTLR grammar style:

Translator from PSOA RuleML to TPTP 7

psoa : term '#' term '(' tuple* (term '->' term)* ')'; (1)

psoa : term '#' term ('(' tuples_and_slots ')')? (2)

| term '(' tuples_and_slots ')' ;

tuples_and_slots : tuple* (term '->' term)* (3)

| term+ (term '->' term)* ;

The productions (2) and (3) will be further rewritten in Section 4.3.

4.2 Restricted PSOA RuleML Language

In order to simplify rewriting of the original PSOA/PS grammar into one which
can be accepted by ANTLR, we impose the following restrictions on the use of
the PSOA RuleML language.

1. The ‘-’ character is not allowed in constant and variable names.

2. The class term in a psoa term must be a constant or variable.

3. A subclass formula, an equality formula or an anonymous psoa term must
not start with an external term.

The first restriction is introduced to simplify tokenizing of the lexer. The
second and third restrictions are brought in when we rewrite the original parser
grammar into an LL(1) grammar, which will be elaborated in the next section.

4.3 Grammar Rewriting

The ANTLR-generated parser uses an LL parsing mechanism. It constructs
a DFA (Deterministic Finite Automaton) which can look ahead an arbitrary
number of lexer tokens and choose to match one of the candidate patterns in a
production. However, the original PSOA RuleML grammar is a non-LL grammar
and cannot be used directly by ANTLR to generate the parser. So we rewrite it
into an LL(1) grammar, accepted by ANTLR. The grammar is efficient in that
a single-token lookahead tells the parser which alternative to consider. We follow
the formal process in the compiler theory to do the rewriting [7]: (1) ambiguity
resolution; (2) elimination of left recursion; (3) left-factoring.

Ambiguity Resolution In the original parser grammar, the production for
psoa term shown in Section 4.1 is ambiguous. The term o # f() can be accepted
in two ways: (1) o is accepted as the OID and f as the class term; (2) o # f is
accepted as a class term and o # f() as an anonymous psoa term. To resolve the
ambiguity, we restrict the class term to be either a constant or a variable. With
this restriction, a higher-order psoa term like a # b # c in which b # c is the class
term needs to be expressed as a conjunction of separate psoa terms a # b and
b # c.

8 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

Elimination of Left Recursion Left recursion is one of the main causes of
a grammar to become a non-LL grammar. A simple example of a left-recursive
grammar with a single terminal A is:

p : p A | ;

This grammar of non-terminal p accepts a string of the form A*. However, no
LL− based parser is capable of parsing such a production since it would not be
able to consume any token when it applies the alternative p : p A.

In PSOA/PS, the production for psoa is implicitly left-recursive since its first
non-terminal term can also be a psoa. In order to eliminate left recursion, we
employ a rewriting in the following steps, where productions (4), (5) and (8) are
the results:

1. Separate psoa from the production of term.

term : psoa | non_psoa_term ; (4)
non_psoa_term : const | var | external_term ; (5)

2. Merge the two alternatives of the psoa production in Section 4.1 by com-
bining the common prefix term, and group the remaining part using a new
non-terminal psoa_rest, yielding production (6). Then we separate the left-
recursive part from (6) and get (7).

psoa : term psoa_rest ; (6)
psoa : non_psoa_term psoa_rest | psoa psoa_rest ; (7)

3. Rewrite (7) to remove left recursion.

psoa : non_psoa_term psoa_rest+ ; (8)

Left Factoring After removing the left recursion, the third step of rewriting
is left factoring, which makes the grammar an LL(1) grammar. Left factoring
means to combine multiple alternatives into one by merging their common pre-
fix. Following is an example consisting of non-terminals p,q and terminals A,B:

p : q A | q ;

q : B+ ;

While parsing a sentence of p, the parser needs to reach the end of the string
to decide on the two alternatives which have a common prefix q. Since q can
match an arbitrary number of tokens, no LL(k) parser is able to distinguish the
alternatives of p. By merging the common prefix, we can rewrite the production
into p : q A? and the grammar becomes an LL(1) grammar.

One of the examples of common prefixes in the original parser grammar is
the production for tuples_and_slots in Section 4.1 which matches zero or more
tuples or slots. The two alternatives have a common prefix term which accepts an
arbitrary number of lexer tokens. Apart from this, an LL-parser is also incapable
of predicting the end of term+ since the start of a slot is also a term.

We follow the steps below to rewrite the production into LL(1):

Translator from PSOA RuleML to TPTP 9

1. Separate the scenario which has the prefix term from the first alternative.
That is the case where tuples_and_slots matches one or more slots.

tuples_and_slots : tuple+ (term '->' term)*

| term+ (term '->' term)*

| (term '->' term)+

|

;

2. Rewrite the second and third alternatives to separate the prefix 'term'.

tuples_and_slots : tuple+ (term '->' term)*

| term+ (term '->' term (term '->' term)*)?

| term '->' term (term '->' term)*

|

;

3. Merge the second and the third alternatives into a single alternative.

tuples_and_slots : tuple+ (term '->' term)*

| term+ ('->' term (term '->' term)*)?

|

;

After merging, we can see that the common prefixes between different alter-
natives are eliminated and the grammar becomes an LL(1) grammar.

Besides the example shown above, there are many other occurrences of com-
mon prefixes in the original parser grammar. Some of them relate to multiple
productions and rewriting is more difficult. One method we employ to simplify
rewriting is adding restrictions to some alternatives to make it easier to sepa-
rate a common prefix. For example, the third restriction we introduced in 4.2
prohibits some use cases of external terms in an atomic formula. It allows us to
separate the cases with the prefix external_term from atomic and combine it
with the alternative formula : external '(' atom ')'.

4.4 Abstract Syntax Tree and Tree Grammar

In the previous section we have illustrated the rewriting of the parser grammar.
The resulting LL(1) grammar is easier for generating the parser but tends to be
less reusable and more difficult for future developers to read and work on. Thus,
we chose to construct an Abstract Syntax Tree (AST) by embedding rewrite rules
into the parser grammar and develop a simple and reusable tree grammar for
traversing the AST. Examples of rewrite rules used can be found in [8]. The AST
retains the meaningful input tokens and encodes them into a tree structure, while
some auxiliary tokens like '(' and ')' are removed. Some imaginary tokens, in
the ANTLR terminology, are also added for easy recognition and navigation.

10 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

5 PSOA-to-TPTP Translation

5.1 Semantics-Preserving Translation from PSOA RuleML to

TPTP

The semantics-preserving translation from PSOA RuleML to TPTP has two
phases: (1) Normalization of composite formulas into a conjunction of elementary
constructs and (2) translating them into corresponding TPTP forms.

Normalization In the normalization phase, we transform the original knowl-
edge base (KB) into a semantically equivalent one which only uses elemen-
tary constructs. An elementary construct is a term or a formula that cannot
be split into equivalent subformulas. The reason for normalization is that the
subsequent one-to-one translation of elementary constructs into TPTP avoids
adding additional axioms to derive subformulas. For example, the psoa formula
o # f(t1...tk) is equivalent to a conjunction of two translation-ready subformu-
las: o # f() and o # Top(t1...tk), where Top is the root class such that o # Top
is true for any o. If we translated o # f(t1...tk) into a single TPTP formula,
an additional axiom, corresponding to o # f() :- o # f(t1...tk), would need
to be added to be able to derive o # f() from o # f(t1...tk).

There are two major steps in this phase: flattening nested psoa formulas and
splitting flat composite psoa formulas. For the first step, any atomic formula
with nested psoa terms (which must be anonymous [1]) will be flattened: The
original formula is replaced by a conjunction containing equations pairing fresh
variables with the nested psoa terms and containing the atomic formula in which
each nested psoa term is replaced by its corresponding variable. Flattening will
be applied recursively to equations that contain psoa terms with nested psoa
terms until all the psoa terms are flat.

The second step is only needed for flattened psoa formulas that apply a
predicate (not for psoa terms that apply a function), where the OID, slot names
and values, and tuple components are all constants or variables. The definition
of the truth value of a psoa formula in [1] introduces splitting semantically as
follows (the meaning of a psoa formula is defined via its elementary constructs):

– TValI(o # f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] p1->v1 ...pk->vk)) = true

if and only if
TValI(o # f) =
TValI(o#Top([t1,1 ... t1,n1]))=...=TValI(o#Top([tm,1 ... tm,nm])) =
TValI(o#Top(p1->v1)) = ... = TValI(o#Top(pk->vk)) = true.

The composite psoa formula is split into a conjunction of 1+m+k subformulas,
including 1 class membership formula, m single-tuple formulas and k (RDF-triple-
like) single-slot formulas. Normalization perfoms such splitting syntactically.

Translation of Elementary PSOA RuleML Constructs We define the
translation function τpsoa(. . .) mapping each PSOA/PS elementary construct to
a TPTP construct as follows:

Translator from PSOA RuleML to TPTP 11

– Constants

In PSOA RuleML, constants have the form "literal"ˆˆsymspace, where
literal is a sequence of Unicode characters and symspace is an identifier
for a symbol space. There are also six kinds of shortcuts for constants, as
shown in the production of CONSTSHORT [9]:

CONSTSHORT ::= ANGLEBRACKIRI

| CURIE

| '"' UNICODESTRING '"'

| NumericLiteral

| '_' NCName

| '"' UNICODESTRING '"' '@' langtag

In TPTP, a constant can be either an identifier starting with a lower-case
letter, a single-quoted string or a numeric constant. In the current version of
the translator, we translate constants of the form '_' NCName into a TPTP
identifier by removing '_', and the first character of NCName is converted to
lower case. Constants of type NumericLiteral are kept without any change.
In future development we may consider using single-quoted full URIs for all
constants as a configuration option.

– Variables

A PSOA/PS variable is a ‘?’-preceded Unicode string. To translate it into
a TPTP variable starting with an upper-case letter, we replace ‘?’ with ‘Q’.
For example, a PSOA variable ?job is mapped to a TPTP variable Qjob.

– Tuple Terms

A tuple term in PSOA/PS is of the form o # Top(t1...tk). It associates
the tuple [t1...tk] with the OID o (other tuple terms can use the same
OID). To translate it into TPTP, we use a reserved predicate, tupterm,
and use o as the first argument of the predicate. The k components of the
tuple follow as the sequence of remaining arguments. Since o # Top is true
for every o, Top is omitted without affecting the semantics. The result is
a (1+k)-ary term, tupterm(τpsoa(o), τpsoa(t1) . . . τpsoa(tk)). Note that the
predicate name tupterm is polyadic – i.e., representing predicates of different
arities – as allowed by the TPTP syntax.

– Slot Terms

A slot term in PSOA/PS has the form o # Top(pi->vi). Its meaning is that
the object with an OID o has a property pi and the property value is vi.
We use another reserved predicate, sloterm, to represent this relationship
in TPTP. Top is omitted as for tuple terms. The result is a ternary term,
sloterm(τpsoa(o),τpsoa(pi),τpsoa(vi)), corresponding to an RDF triple.

– Membership Terms

Class membership terms in PSOA/PS are of the form o # f() (abridged
o # f), meaning o is an instance of class f. In the translation, we use a
third reserved predicate, member, so that the result is a binary term
member(τpsoa(o), τpsoa(f)). In future versions, we may optionally use an al-
ternative translation where o # f() would be translated as f(o), i.e., treating

12 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

the class f as a unary predicate, for compatibility with other sources of TPTP
formulas, such as the translator from RIF to TPTP.12

– Subclass Formulas

Subclass formulas c1 ## c2 in PSOA/PS are reused unchanged from RIF,
meaning all the instances of class c1 are also instances of class c2. To trans-
late the subclass formula, a fourth reserved predicate subclass is used to
represent the subsumption relation ## in TPTP. The translation of the
formula in TPTP is subclass(τpsoa(c1), τpsoa(c2)). Note that solely with
such a translation, we are not able to infer the inheritance o # c2 just from
the translation of o # c1 and c1 ## c2. In order to make that inference, this
extra inference axiom for inheritance is needed in TPTP:

![X,Y,Z] (member(X,Y) & subclass(Y,Z) => member(X,Z))

– Equality Formulas

In PSOA/PS an equality formula a = b means the terms a and b are equal.
This formula can be translated to τpsoa(a) = τpsoa(b) in TPTP.

– Rule Implications

In PSOA/PS a rule is represented by ϕ :- ψ, meaning formula ϕ is implied
by formula ψ. It can be translated to τpsoa(ψ) => τpsoa(ϕ).

Table 2. Mapping from PSOA/PS constructs to TPTP constructs

PSOA/PS Constructs TPTP Constructs

o # Top(t1...tk) tupterm(τpsoa(o), τpsoa(t1) . . . τpsoa(tk))

o # Top(p -> v) sloterm(τpsoa(o), τpsoa(p), τpsoa(v))

o # f() member(τpsoa(o), τpsoa(f))

a ## b subclass(τpsoa(a), τpsoa(b))

a = b τpsoa(a) = τpsoa(b)

AND(f1 ... fn) (τpsoa(f1) & ... & τpsoa(fn))

ϕ :- ψ τpsoa(ψ) => τpsoa(ϕ)

Table 2 summarizes the mapping from elementary PSOA/PS constructs to TPTP
constructs, including one extra row for conjunctions, as needed in rule premises.
The mapping is sufficient for the translation of a KB but not yet for a query:
we expect to get the bindings for any query variables. Since query answering in
VampirePrime is done through answer predicates, we introduce a reserved pred-
icate ans as the answer predicate and map a PSOA query q into the following
formula

![X1,X2,...] (τpsoa(q) =>

ans("?X1 = ", τpsoa(X1), "?X2 = ", τpsoa(X2), ...))

where X1,X2, ... are free variables in q. Answers from VampirePrime are of
the form

12 http://riazanov.webs.com/RIF_BLD_to_TPTP.tgz

Translator from PSOA RuleML to TPTP 13

ans("?X1 = ", v1, "?X2 = ", v2, ...)

where v1, v2, . . . are bindings for the variables. When the query has no variables,
ans is used alone as the conclusion. A sample will be given in the next section.

5.2 Translator Implementation

In the current version of PSOA2TPTP, we have implemented the translation for
a PSOA RuleML subset where the accepted constants are numerals and short-
form RIF-like local constants starting with ‘_’. Following is a sample translation,
where the two conjunctions resulting from normalization are implicit in the en-
closing Group:

– Input KB:

Document(

Group(

_f1 # _family(_Mike _Jessie _child->_Fred _child->_Jane)

_Amy # _person([_female] [_bcs _mcs _phd] _job->_engineer)

)

)

– Normalized KB:

Document(

Group(

_f1 # _family() _f1 # Top(_Mike _Jessie)

_f1 # Top(_child->_Fred) _f1 # Top(_child->_Jane)

_Amy # _person() & _Amy # Top(_female)

_Amy # Top(_bcs _mcs _phd) _Amy # Top(_job->_engineer)

)

)

– Query: _Amy # _person(_job->?job)

– Translator Output:

fof(ax1, axiom,

member(f1, family) & tupterm(f1, mike, jessie) &

sloterm(f1, child, fred) & sloterm(f1, child, jane)).

fof(ax2, axiom,

member(amy, person) & tupterm(amy, female) &

tupterm(amy, bcs, mcs, phd) & sloterm(amy, job, engineer)).

fof(query, theorem,

![Qjob]: ((member(amy, person) & sloterm(amy, job, Qjob))

=> ans("?job = ", Qjob))).

– VampirePrime Output:

Proof found.

· · ·

... | «ans»("?job = ", engineer) ...

14 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

The sample KB has two psoa formulas as facts. The first fact has one tuple for
the family’s adults, where _Mike _Jessie is equivalent to [_Mike _Jessie], a
shortcut allowed only in single-tuple psoa terms; it has two slots for the family’s
children. The second fact has two tuples, of lengths 1 and 3, and also a slot. The
two formulas in the first stage are broken into two conjunctions of elementary
constructs, as shown in the normalized KB above. In the second stage, each con-
struct is mapped to a corresponding TPTP term. The above translator output
contains three translations, of which the first two are for the KB and the last
is for the query.13 In the VampirePrime output, «ans»("?job = ",engineer)

indicates one binding, engineer, is obtained for the variable ?job.

6 RESTful Web API

Representational State Transfer (REST) is an architectural style for distributed
systems, specified in [11]. A RESTful Web API is an API implemented by us-
ing HTTP (operations, URIs, Internet media types, response codes) and by
conforming to the architectural constraints specified in REST. We have imple-
mented a RESTful Web API consisting of two resources, see URIs in Table 3: a
resource representing the PSOA2TPTP translation component, and a resource
representing the VampirePrime reasoner component. As shown in Table 4, the
HTTP POST method is allowed and the application/json Internet media type
is supported for the listed resources.

For example, to translate PSOA RuleML into TPTP, an HTTP POST 14 re-
quest with a JSON-encoded PSOA document in the body is sent to the Translate
resource URI. The response will be a JSON encoding of the translated TPTP
document.

Table 3. RESTful Resource URIs

Resource URI

Translate http://example.ws/translate

Execute http://example.ws/execute

To execute the translated TPTP sentences in the VampirePrime reasoner,
the Execute resource mentioned in Table 4 should be used by sending an HTTP
POST request containing an application/json encoding of the TPTP sentences
to the Execute resource URI. The server will then return the raw output stream
(text/plain) of the VampirePrime-generated solutions (see listing 1.5 in [8]).

13 PSOA2TPTP targets VampirePrime by using TPTP’s axiom for the KB and theorem

for queries, while [10] would suggest the use of conjecture for queries.
14 POST is chosen over PUT to reflect idempotency of the translation service: a new

translation (instance) is produced for each request.

Translator from PSOA RuleML to TPTP 15

Table 4. RESTful Resources

Resource Methods Description

Translate POST This resource represents the PSOA2TPTP translator.
Media types: application/json

Execute POST This resource represents the VampirePrime theorem
prover. Media types: application/json, text/plain

7 Conclusion

To enable rule/theorem prover interoperation, we implemented a first version of
the PSOA2TPTP translator. It takes a document in PSOA/PS as input and gen-
erates a semantics-preserving TPTP document. Through the translator, PSOA
RuleML documents are translated into the TPTP format and can then be exe-
cuted by the VampirePrime reasoner or other TPTP systems.

Our work makes heavy use of the ANTLR v3 parser generator framework.
We (1) rewrite the complete PSOA/PS EBNF grammar into an LL(1) grammar;
(2) construct an intermediate AST using ANTLR’s tree rewrite mechanisms
embedded in the parser grammar; (3) develop reusable tree grammars for parsing
the AST; and (4) embed code into the tree grammars to generate ASOs and
TPTP documents.

Future work on the PSOA RuleML implementation includes: (1) Extending
the PSOA2TPTP translator capability to handle all PSOA RuleML constructs,
introducing another reserved predicate for functional psoa terms;
(2) implementing the fully-ASO-based translator; (3) creating a testbed for rigor-
ously testing PSOA RuleML implementations; (4) ‘inverting’ PSOA2TPTP into
a TPTP2PSOA translation for the Horn subset of first-order logic; (5) deploying
PSOA2TPTP in the Clinical Intelligence use case [12], where PSOA rules are
used to define a semantic mapping for a hospital data warehouse.

References

1. Boley, H.: A RIF-Style Semantics for RuleML-Integrated Positional-Slotted,
Object-Applicative Rules. In Bassiliades, N., Governatori, G., Paschke, A., eds.:
RuleML Europe. Volume 6826 of LNCS., Springer (2011) 194–211

2. Boley, H.: Integrating Positional and Slotted Knowledge on the Se-
mantic Web. Journal of Emerging Technologies in Web Intelligence
4(2) (November 2010) 343–353 Academy Publisher, Oulu, Finland,
http://ojs.academypublisher.com/index.php/jetwi/article/view/0204343353.

3. Boley, H., Kifer, M.: A Guide to the Basic Logic Dialect for Rule Interchange on the
Web. IEEE Transactions on Knowledge and Data Engineering 22(11) (November
2010) 1593–1608

4. Riazanov, A., Voronkov, A.: The Design and Implementation of Vampire. AI
Communications 15(2-3) (2002) 91–110

5. Riazanov, A., Aragao, M.A.: Incremental Query Rewriting with Resolution. Cana-
dian Semantic Web II (2010)

16 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

6. Al Manir, M.S., Riazanov, A., Boley, H., Baker, C.J.O.: PSOA RuleML API: A
Tool for Processing Abstract and Concrete Syntaxes. (2012) In these proceedings.

7. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D., eds.: Compilers: Principles, Tech-
niques, and Tools. Second edn. Pearson/Addison Wesley, Boston, MA, USA (2007)

8. Zou, G., Peter-Paul, R.: PSOA2TPTP: Designing and Prototyping a Transla-
tor from PSOA RuleML to TPTP Format. Technical report http://psoa2tptp.

googlecode.com/files/PSOA2TPTP_Report_v1.0.pdf.
9. Polleres, A., Boley, H., Kifer, M.: RIF Datatypes and Built-ins 1.0 (June 2010)

W3C Recommendation, http://www.w3.org/TR/rif-dtb.
10. Sutcliffe, G.: The TPTP Problem Library. http://www.cs.miami.edu/~tptp/

TPTP/TR/TPTPTR.shtml

11. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, Irvine, California, USA
(2000)

12. Riazanov, A., Rose, G.W., Klein, A., Forster, A.J., Baker, C.J.O., Shaban-Nejad,
A., Buckeridge, D.L.: Towards Clinical Intelligence with SADI Semantic Web
Services: a Case Study with Hospital-Acquired Infections Data. In: Proceedings of
the 4th International Workshop on Semantic Web Applications and Tools for the
Life Sciences. SWAT4LS ’11, New York, NY, USA, ACM (2012) 106–113

