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Abstract
The paper addresses the problem of validation of fault

knowledge through automated model acquisition. The

Diagnostic Remodeler (DR) algorithm has been imple-

mented for the automated generation of behavioural com-

ponent models with an explicit representation of function by

re-using fault-based knowledge. DR re-uses as its first

application the fault knowledge of the Jet Engine Trouble-

shooting Assistant (JETA). DR extracts a model of the Main

Fuel System using real-world engine fault knowledge and

two types of background knowledge as input: device depen-

dent and device independent background knowledge. The

generated model uncovers gaps and inconsistencies in the

fault-based knowledge. To demonstrate DR’s generality, it

was applied to coffee maker fault knowledge to extract the

component models of a full coffee device. It is possible to

use DR as a general means of validating fault knowledge.

1 Introduction

Artificial Intelligence (AI) researchers in the

model-based diagnosis (MBD) community dis-

miss fault-based diagnostic (FBD) systems far

too easily [van Soest 93, Abu-Hanna 89]. Many

MBD authors incorrectly assume that fault-based

knowledge is still represented and organized as a

flat file of if-then production rules as it was in the

days of MYCIN [Clancey 86]. MYCIN was the

earliest well-known fault-based diagnostic sys-

tem and it was implemented in the 1970’s. Much

work has evolved and improved on MYCIN’s

main diagnostic themes. Today’s FBD systems

recognize the need for developing systems that

explicitly separate the control from the data in

reasoning. This separation aids in tractable rea-

soning and in searching for diagnoses in finite

time [Chandrasekaran 86, Goel et al. 87]. This

separation is also essential in justifying system

behaviour and in generating good explanations

[Abu-Hakima and Oppacher 90]. Currently

developed FBD systems address complex real-

world problems, are highly structured, and thus,

their knowledge bases are very efficiently

searched. In essence, FBD systems can be vali-

dated. Validation here is taken to imply that the

knowledge-based system can generate predictable

and accurate results which satisfy specification

goals [Laurent 92].

Despite FBD strengths, MBD researchers repeat-

edly criticize fault-based systems as limited, and

inadequate for troubleshooting novel faults. What

is often forgotten by the MBD supporters, are the

number of implemented FBD systems that are in

successful daily use, as exemplified in the litera-

ture [Abu-Hakima 94b]. Furthermore, MBD has

been shown to be computationally expensive and

intractable for complex devices. MBD systems are

additionally limited by the generation of models

that accurately reflect the systems they model. If a

model does not correctly propagate the behaviours

of a device, it will not be able to adequately diag-

nose the device, let alone discover novel faults.

Thus MBD models are difficult to validate.

My work is intended to form a bridge between the

FBD and MBD communities. Although the two

communities are striving towards the same goal,

mainly the efficient and accurate diagnosis of

devices, they have not closely examined or taken

advantage of their commonly shared problems.

They share problems in knowledge acquisition for

diagnosis, be it fault or model knowledge. The

researchers in the two camps need to address com-

mon approaches for structuring, reasoning about,

explaining, validating and re-using knowledge.
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One problem in bridging FBD and MBD, is the

problem of relating, and possibly re-using device

fault knowledge as model knowledge. To address

this problem, the Diagnostic Remodeler (DR)

algorithm, the subject of this paper, has been for-

mulated, implemented, and tested [Abu-Hakima

94a; 93]. DR illustrates that well-structured fault

knowledge can be mapped and re-used, as model

knowledge. DR addresses the re-use of existing

complex device fault knowledge in conjunction

with background knowledge for the generation of

black box component models of a device. These

component models represent device structure,

behaviour, and function and are typical of models

used in model-based reasoning [Nayak and Struss

94; Abu-Hanna et al. 92]. DR thus maintains two

views for the diagnostic knowledge of a single

device or subsystem, a fault-based view, and a

model-based one. These two views help illustrate

that fault and model knowledge for the same

device are related, and given one view, the second

can be extracted. Other MBD researchers have

shown that the fault view can be extracted by

compiling diagnoses based on the model view

[Bizzari et al. 90; Meisner et al. 90; Althoff et al.

90]. Compilation can form a hybrid MBD and

FBD system that produces diagnoses in finite

time [Meisner et al. 90]. Furthermore, DR can aid

in validating FBD and MBD knowledge as shown

by the gaps and inconsistencies uncovered in the

original knowledge bases it uses.

The remainder of the paper sections describe: in

2, the DR algorithm and its steps, in 3, DR’s re-

use of fault knowledge, in 4, background knowl-

edge input to DR, in 5, results of DR’s application

to an aircraft engine and a coffee maker including

the uncovered gaps and inconsistencies, and in 6,

an overall discussion and conclusion.

2 DR Algorithm

The de Kleer [de Kleer and Williams 87]

approach to MBD represents a device and its

function as a set of components with behaviour. A

device can be diagnosed by assuming a faulty

component and enumerating the behavioural

states propagated as a result by the remainder of

the device [Davis 84; Hamscher and Struss 90;

Struss 89]. This is compared to the behaviour that

a technician is observing in attempting to isolate a

problem. MBD can detect novel faults since the

behaviour of the device is the basis of its knowl-

edge representation and reasoning. Fault-based

diagnosis uses the faults in the functioning of a

device rather than its actual behaviour, hence FBD

cannot detect novel faults. However, MBD can

lead to a combinatorial explosion in a diagnosis

for complex systems (for example, an aircraft

engine). DR is intended to address the automated

generation of a model of a device by the re-use of

its fault knowledge. This implies the automated

generation of MBD knowledge from FBD knowl-

edge.

Two phases clearly divide the operation of the DR

algorithm (Figure 1). In DR-1, an existing well-

structured knowledge base is used as input (see

[Halasz et al. 92] for JETA’s). Two types of back-

ground knowledge, device dependent and device

independent are used as inputs to DR-2. Device

independent background knowledge is in a com-

ponent library and is general in nature. For exam-

ple, it could describe a pump which delivers some

liquid from a source to a sink and needs a control

signal (e.g. pressure) to increase or decrease the

flow of liquid. The pump library component

model also includes some knowledge about feed-

back control in moderating the flow of a liquid to a

source based on the level of the liquid at the sink.

The device dependent knowledge includes the

specific details on the input and output (I/O)

parameters for different device control modes.

The objective of the DR algorithm is to discover

and refine a component behavioural model with

explicit function. In the most general sense, the

algorithm must identify the components of the

device, generate links between those components,

and generate hypotheses for the behaviour and

function of the components.



Fig. 1. Diagnostic Remodeler Phases: DR-1 and DR-2

To achieve this, the DR algorithm must perform 5

steps:

1. identify the terminal nodes in the diagnostic hierar-
chy
-these represent component nodes that have no child or

sibling refinements

2. identify the component nodes in the diagnostic hier-
archy related to the subsystem to be modelled (if
required)
-perform a pattern match with known name or its

derivatives (possibly acronyms) that match sub-
system (a model can be constrained to the compo-
nents of a subsystem rather than a full device)

3. identify the parents and siblings of the nodes
-backtrack from terminal to parent nodes and tag
-tag shared parents of a node
-tag siblings of a parent

4. extract relations (behaviours) between sibling nodes
-cluster nodes related by parental nodes
-movement from the terminal nodes to parent node rep-

resents symptomatic information (parameters)

5. match device model against background knowledge
and output gaps for verification to the developer
-map out the identified components of the subsystem
-relate the components through shared parameters
-match derived component model with device depen-

dent knowledge to derive I/O parameter behaviours
-match derived component model with library compo-

nent model to extract function and uncover gaps
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3 DR’s Re-Use of Fault-Based Knowledge

To achieve the knowledge-rich modelling pro-

posed as the output for DR, the use of a well-struc-

tured and explicit knowledge representation that

can adequately represent diagnostic causality is

needed. Extracting a model of the connections

between the components in the subsystem to be

modelled achieves this. The connections are then

used to extract the variables (e.g. engine speed,

fuel flow, temperature, etc.) that typify the behav-

iour between components.

In typical troubleshooting systems, a network of

frames is used since frames offer a great deal of

flexibility in constructing and reasoning about

knowledge1. DR uses four of the frame slots in a

typical troubleshooting system to determine com-

ponent connections. The slots used are the node

name, the node type, the child node of, and the

child node ranking. Replace node types are the

terminal nodes first identified for a specific sub-

system. The subsystem is identified through the

node name itself. The child node of is used to

determine the parent of a terminal (component)

node. The child node ranking is used to determine

the siblings of a terminal node. The parent node as

mentioned earlier represents symptomatic or para-

metric knowledge between sibling nodes.

4 DR-2 Background Knowledge

4.1 Device Dependent Background Knowledge

Device dependent background knowledge is used

to identify the type of a component (for example a

pump, a filter, a control, a vessel, a source, etc.)

and any specifics about inputs or outputs related to

operational modes. The traditional approach used

in modelling feedback in engineering, requires

that both the modes of component operation, and

their respective Input/Output (I/O) parameters that

act as behavioural control variables in a particular

mode be explicitly identified [Abu-Hakima 94a].

1.This is standard in commercial systems such as the Carn-

egie Group’s TestbenchTM FBD tool.



Thus, for the main fuel control (MFC) component

of JETA [Halasz et al. 92] device dependent

knowledge identifies that the MFC is a control

with 7 fuel scheduling modes that vary from

acceleration to deceleration with a variety of

speeds in between. For each mode there are key

parameters that represent component behaviours.

They include engine speed (N), pilot demanded

speed (Nd), throttle position or power lever angle

(PLA), compressor inlet temperature (T2), fuel

flow (Wf), compressor discharge pressure (P3)

and inlet guide vanes (IGV) which indicate air

bleed valve positions. In the excerpt of device

dependent background knowledge below, each of

the MFC modes has a specific set of behaviours

represented as lists of in-out behaviour pairs.

Below are both the general, and the MFC-specific

expressions for device dependent background

knowledge.

%glossary(KB,Component,ProperName,[Component-
Type,for,[Modes]], [InOutBehaviour Pairs]).

% main fuel control terms from JETA's Glossary Frames and J85
Control Parameters/Modes

glossary('JETA','MFC',main_fuel_control,
[control,for,[steady_speed_control,speed_cutback_control,
acceleration_fuel_limit_control,deceleration_fuel_limit_control,
variable_geometry_scheduling,proportional_speed_control,
fru_fuel_selection]],
[[['N','PLA+'],['Nd+','WF/P3+']],
[['N','T2_limit'],['Nd-']],
[['N+','T2'],['WF/P3+']],
[['N-'],['WF/P3-','WF_min']],
[['N','T2'],['IGV','bleed valve positions']],
[['N','PLA'],['WF/P3']],
[['WF/P3','P3'],['WF']]]).

4.2 Device Independent Background Knowledge

Device Independent Background Knowledge is

the second type of background knowledge input

to DR-2 and forms a re-usable component library.

For each of the components the function of the

component is first represented. Function here

implies, the purpose of the device component as

defined by Sticklen and his colleagues [Sticklen

et al. 88]. In addition, the inputs and the outputs

of the component are made explicit. In the case of

a regulated component that has a control signal, a

regulation parameter is identified. Finally, the

behaviour function that maps the inputs and out-

puts of the component is described. In the case of

a proportional relation (increasing input and

increasing output, or decreasing input and

decreasing output) a behaviour is identified. More

complex components which have complex behav-

ioural relations dependent on specific modes are

also tagged. In the case of the main fuel control

with its 7 modes of operation that reflect it as a

component that has feedback, a piecewise linear

behaviour is extracted. This behaviour is a set of

behaviours that represent each mode of MFC

operation as either proportional or inverse propor-

tional.

For a pump, the device independent component model is:
component(pump,Pump_name,Fluid,Control,_,F,I,O,R,B):-

F = function(Pump_name, delivers(Fluid)),
I = input(Pump_name,fluid(Fluid)),
O = output(Pump_name,fluid(Fluid)),
R = regulator(Pump_name,Control),
behaviour_proportional(Fluid,Control,Behaviour),
B = behaviour(for(Pump_name),
behaviour_is_proportional(Fluid,Control,Behaviour)).

For a filter (e.g. fuel or coffee filter) the device independent

component model is:
component(filter,Filter_name,Fluid,Control,_,F,I,O,R,B):-
    F = function(Filter_name, filters(Fluid)),
    I = input(Filter_name,fluid(Fluid)),
    O = output(Filter_name,fluid(Fluid)),
    R = regulator(Filter_name,none),
    behaviour_proportional(Fluid,Control,Behaviour),
    B = behaviour(for(Filter_name),

behaviour_is_proportional(Fluid,Control,Behaviour)).

A control component with variable number of inputs, outputs

and control variables has piecewise-linear behaviour:
component(control,Name,Ins,Outs,Modes,F,I,O,R,B):-
    Outputs = [Main_Output|Outs],
    F = function(Control_name,controls(Main_Output)),
    I = input(Control_name,control(Inputs)),
    O = output(Control_name,control(Outputs)),
    R = regulator(Control_name,regulation_control(Inputs)),

typify(Inputs,Ouputs,Modes,Control_var_list,Behaviours_list),
    B = behaviour(Control_name,

behaviour_is_piecewise_linear(Control_var_list,
Behaviours_list)).

5 Results

5.1 DR Aircraft Engine Results &Device Model

An analysis of the JETA fault knowledge (~200

nodes represented as frames of 14 slots per frame)

shows layers of knowledge represented as a

directed network which can be reduced to leaves

of diagnostic trees. The topmost layer is an entry

point to jet engine faults and subsequent layers

organize the faults into various branches. The sec-

ond layer is phases of engine operation and its

branches lead to various symptomatic nodes



labelled as snags. These snags in turn are refin-

able down to repair and replacement nodes which

represent the terminal nodes of the diagnostic

hierarchy1. If one examines the knowledge

encoded in these terminal nodes more closely one

discovers that they represent faults directly on

physical engine components. These physical

component fault nodes can be grouped into those

affecting one of thirteen subsystems by their

nomenclature. One can follow the five steps of

the DR algorithm to discover the behavioural and

functional component model for the main fuel

system of the jet engine.

Step 1: Identifies 9 replace nodes through the JETA node

frame slot ‘node-type’.

Step 2: If one takes a specific subsystem, the MFS (Main

Fuel System), one can extract names of 3 fuel system

replacement nodes by pattern matching with the node

nomenclature *N-MFS-XXX (an internal representation

used by the knowledge engineer to distinguish nodes):

1. main fuel control (MFC)
2. overspeed governor for MFC (OSG)
3. main fuel pump supplying MFC (MFP)

Step 3:Parents of replace nodes that connect sibling termi-

nal nodes are extracted.

• MFC and MFP nodes share parent fuel flow loss

• OSG shares with MFC engine speed hang-up parent

• MFC shares fuel flow loss parent with fuel nozzles, FN

• pressurizing and drain valve (PDV) shares low fuel flow parent

with FN

Step 4:A causal topological network can be the basis for

hypothesized component-behaviour relations. Sibling nodes

are clustered based on shared parent links. Example DR

output relations that form part of the network include:

[main_fuel_nozzles,is_a([nozzle,for,[fuel_flow_control]]),
and_is_connected_to(main_fuel_control),
with_connectivity_parameter([measured_rpm_engine_speed,
single_spool_engine_speed,weight_of_fuel_flow])],

[main_fuel_nozzles,is_a([nozzle,for,[fuel_flow_control]]),
and_is_connected_to(pressurizing_and_drain_valve),
with_connectivity_parameter(fuel_pump_inlet_pressure[])],

[[main_fuel_control,is_a([control,for,
[steady_speed_control,speed_cutback_control,
acceleration_fuel_limit_control,
deceleration_fuel_limit_control,
variable_geometry_scheduling,
proportional_speed_control,fru_fuel_selection]]),

and_is_connected_to(main_fuel_pump),
with_connectivity_parameter([weight_of_fuel_flow])],

1. The diagnostic hierarchy is referred to as a network as it

includes relations not directly inherited that allow the JETA rea-

soner to skip nodes thus forming a network rather than a hierarchy.

Step 5: Step 4 output is matched against device independent/

dependent background knowledge and gaps identified. In the

case of inconsistencies, in phase 1 of the DR algorithm

parameters which are not explicitly related to components

through background knowledge may point to inaccuracies

that should be corrected. The complete component model for

the main fuel nozzles (FN) with the identified gaps is:

[function(main_fuel_nozzles,flow_control(WF+)),
input(main_fuel_nozzles,flow(WF+)),
output(main_fuel_nozzles,flow(WF+)),
regulator(main_fuel_nozzles,regulation_control(N+)),
behaviour(main_fuel_nozzles,

behaviour_is_proportional(WF+,N+,
[increase_in(N+),increases(WF+),
decrease_in(N+),decreases(WF+)]))],

[[main_fuel_nozzles,
[[gap_for_mode,fuel_flow_control,

extracted,EGT,input,[N+,WF],output,[WF+]],
[gap_for_mode,fuel_flow_control,

extracted,N,input,[N+,WF],output,[WF+]],[]]]],

Note that EGT is exhaust gas temperature and is

an inconsistent link. This implies that there is an

invalid link in the fault-based knowledge. The

parameters engine speed (N) and fuel flow (Wf)

are expected and the sign on N is missing as

expected. The partial view of the extracted MFS

subsystem is shown in Figure 2.

Fig. 2. Main Fuel System model extracted by DR

Note that the main fuel pump and main fuel con-

trol filters extracted by DR were omitted to sim-

plify the diagram. Thus, DR succeeds in extracting

the 7 components (Figure 2 shows 5 and excludes

the 2 filters and shows a fuel tank) and their

respective connections in Phase 1. In the second

phase the device dependent and device indepen-

dent background knowledge is used to derive the
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direction and relations between the extracted

parameters. Any gaps between JETA and the

background knowledge are highlighted (illus-

trated with dashed boxes in Figure 2) so that the

fault-based knowledge can be made consistent or

modified. Thus, the validating algorithm has

shown errors in JETA’s fault-based knowledge,

specifically, missing or extra links and one miss-

ing component (the fuel tank) to be manually or

automatically corrected.

5.2 DR Coffee Maker Results & Device Model

To test the generality of the DR algorithm and

relax some of its assumptions, I generated a 30-

node knowledge base for the diagnosis of a coffee

maker (a very different device than an aircraft

engine). The coffee maker device had a variety of

terminal nodes (not only replace types). DR

selected all terminal nodes and assumed that they

represented device components. Then, as before,

parental nodes were used to identify sibling nodes

and connections between them. Only 3 of the

node slots of the frames of fault-based knowledge

were used, the node name, the child node of and

the child node ranking slots. From these slots the

5 steps (with step 1 relaxed) of the DR algorithm

were used to generate the model in Figure 3.

A regulator, a switch, a heater, a holder and a fil-

ter were the device independent component mod-

els added to the library for background

knowledge. In addition, 10 expressions that rep-

resented the device dependent background

knowledge giving the type of component and the

input/output behaviour parameters were used by

DR. Thus, it was possible to successfully gener-

ate a component behaviour model for a full

device (rather than only a subsystem) with

explicit function and behaviour descriptions for

each of the coffee maker components. To provide

the reader with some detail, below are the DR

generated component models for 2 of the 10 com-

ponents, specifically for the coffee drip and water

temperature heating control.

[function(coffee drip,regulates(coffee+)),
input(coffee drip,coffee+),output(coffee drip,coffee+),
regulator(coffee drip,coffee+),
 behaviour(for(coffee drip),
behaviour_is_proportional(

[increase_in(coffee+),increases(coffee+),
decrease_in(coffee+),decreases(coffee+)])),

[function(water temperature heat control,regulates(heat+)),
input(water temperature heat control,heat+),
output(water temperature heat control,water+),
regulator(water temperature heat control,heat+),
behaviour(for(water temperature heat control),
behaviour_is_proportional(
[increase_in(heat+),increases(water+),
decrease_in(heat+),decreases(water+)])),..

.

Fig. 3. Coffee Maker device model as extracted by DR

6 Discussion and Conclusions

Mapping fault-based knowledge (FBK) to model-based

knowledge (MBK)

The DR algorithm makes the assumption that as

one ascends a well-structured diagnostic hierarchy

of FBK, one can extract component knowledge

and behavioural MBK. This is key in discovering

the relation between the components and the vari-

ous layers of knowledge above them, thus identi-

fying any gaps or inconsistencies and validating

the KBS. In the engine fault knowledge, DR

showed that a significant layer is missing in the

FBK.

If one examines the knowledge extracted by DR,
the lowest layer of knowledge (represented by the
terminal nodes in Figure 4), is the component
knowledge. The layer above that knowledge is, as
assumed by DR, symptomatic knowledge that
maps directly to component parameters. These
parameters represent model behavioural variables.
Some minor inconsistencies (missing or extra
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parameters which implied missing or extra links)
were found in JETA at this level. However, the
most significant discovery is the layer of missing
knowledge above the symptomatic knowledge for
components that have multiple functional modes
in JETA.

These are specifically control components (e.g.

the Main Fuel Control, the Overspeed Governor,

etc.). These components have associated with

them functional modes with a different number of

respective control variables. Thus, in a specific

mode, a fault in JETA may be manifested and it

would be indicated by some variable. In another

mode, a completely different variable may be the

indicator of a fault with the component. At a

higher level in the JETA hierarchy, the functional

modes are related to phases of engine operation.

However, the current JETA fault knowledge does

not explicitly relate these component operational

modes to the phases of engine operation. Given

the DR acquired component models, it would not

be very difficult to add this new layer of knowl-

edge above the component symptom layer, and

explicitly relate it to the phases of engine opera-

tion.

Fig. 4. Missing Layers of knowledge in JETA

Impact of Background Knowledge Vs. Fault Knowledge

Two types of background knowledge are needed

to achieve the DR algorithm results: device

dependent background knowledge (DDBK) and

device independent background knowledge

(DIBK). DDBK provides glossary knowledge,

root

phases

operational modes

components

component symptoms

... ... ...

components
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control modes

fault-based knowledge
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mapping the fault-based encoded name of the

component to a meaningful symbolic name (this

was necessary for the engine application to decode

JETA syntax, but was not used for the coffee

application which encoded meaningful text). The

DDBK also represented any component-specific

modes of operation and respective I/O variables

with a plus/minus (+/-) sign indicating a direction

for changes in value. DIBK is a form of a generic

component type description that gets instantiated

according to the extracted model. The generic

component descriptions are designed to be placed

in a design or model library (e.g. a CAD/CAM

library) so that they may be re-used for different

devices. Their description includes a function (the

purpose or goal of the component, e.g. to pump, to

control, to filter, etc.), inputs, outputs, regulation

inputs, and a behavioural relation describing how

the inputs change with respect to the outputs for

particular modes of operation (proportional,

inverse proportional or piece-wise linear).

Often in software engineering, lines of code are

used to compare metrics of various programs.

Similarly, the statistics comparing the ratios of

background knowledge (BK) to fault-based

knowledge (FBK) used by DR can be examined.

The total fault knowledge used for the engine

application is 3972 lines of code encoding 197

fault nodes. Out of this fault knowledge, in model-

ling the Main Fuel System (MFS), approximately

60 fault nodes are used. The average number of

lines of code per node is 20. Thus, the DR algo-

rithm uses 1200 lines of JETA fault knowledge

code, to model the MFS components and connec-

tions. DR also uses 168 lines of code of total back-

ground knowledge, of which 101 is device

dependent (DDBK) and 67 is device independent

(DIBK). Thus, the ratio of background knowledge

to total fault knowledge is only 4.23%, and to fault

knowledge used by DR for modelling the MFS is

14%. Similarly, for the coffee application, 330

lines of code or 29 fault nodes are used by DR.

The total number of lines of code of background

knowledge used for modelling the device are 91,

of which 35 are device dependent and 56 are

device independent. Thus, the ratio of back-



ground, to total fault knowledge used by DR for

modelling the full coffee maker device is 28%.

Final Conclusion

This paper addresses the difficult problem of

automated model acquisition for diagnosis and

illustrates a new approach for the validation of

fault knowledge. The DR algorithm automates

generation of component models with an explicit

representation of behaviour and function through

the re-use of FBD knowledge and background

knowledge. For a small additional investment in

background knowledge, black box models for

complex devices can be generated by DR through

fault knowledge re-use. These models can be

used to uncover gaps and inconsistencies in the

original fault knowledge. DR forms a bridge

between FBD and MBD knowledge to facilitate

the exploitation of knowledge in hybrid systems.
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