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Abstract

The two temperature coupled equations, modelling thermal diffusion during laser-
induced ablation of metals, are solved under the assumptions that the electron and the
lattice heat capacities, and the thermal conductivity remain constant in the process. In
view of its practical value, the solution is initially obtained for the energy sources with a
Gaussian distribution. The solution is then generalized to include a larger class of source
terms for comparison with other results. Present analysis is valid under less restrictive
conditions than frequently imposed in the literature. In particular, the solution is valid for
realistic source terms and describes the process for ultra-short to nanosecond pulse-width
regimes. More general results obtained here retain the attractive features of other
approximate solutions available elsewhere and reduce to them under the respective
conditions. Predictions of the present model agree well with the experimental
observations reported in the literature.



1.0 Introduction

High power lasers with short pulse widths are widely used for micro-machining
because of their ability to machine surfaces with high accuracy and precision with little
damage to the underlying material. Metals and their alloys are commonly processed with
lasers. Models under varying assumptions have been proposed to describe the response of
metals to laser irradiation'®. In brief, the laser-energy absorbed by the thermal electrons
is transferred to the lattice subsystem by collisions between the energized electrons and
the atoms'. This transfer of the energy is modeled in terms of the electron-phonon
coupling term, which is directly pro;nonional to the temperature difference between the
electrons and the lattice subsystems”. The ablation depth is obtained by integrating the
velocity of the evaporation front. In general, it is necessary to take into account the
electron-phonon coupling term to properly describe heat transfer into the material. This
has a significant impact on the results for sub-picosecond pulse-widths®*, but for large,
nanosecond pulse-widths, where there is sufficient time for equilibrium to establish, the
two temperatures are commonly assumed to be equal, eliminating the electron-phonon
coupling term, and thus, simplifying the system to one equation 5

While direct numerical solutions to one-temperature equation7'8 as well as the two-
temperature coupled equations6 can be obtained under quite general conditions, the
?goblem is frequently approached analytically by making some simplifying assumptions'

. Major advantage in the analytical approach is that it provides better insight into the
processes and general features of the results, as long as the simplified model is realistic,
and such approximate solutions can be made the starting points for further refinements.
Considerable simplifications result from the assumptions that the heat capacity of the
thermal electrons and the lattice, and the thermal conductivity remain constant during the
process of ablation!*’. Further assumptions are sometime made to facilitate a solution'.
Also, the solutions are commonly obtained by separate methods for laser pulse-widths in
the femtosecond, picosecond and nanosecond regimes with respective simplifying
assumptionsl'z""g.

In the present paper, we consider the two-temperature model, which describes the
phenomenon of thermal diffusion for all pulse-widths, and approach the problem
analytically under the assumptions that the heat capacities of the free electrons and the
lattice, and the diffusivity of the electron subsystem remain constant. Although these
quantities depend on temperature, particularly the electron heat capacity, these
assumptions are commonly used to simplify the calculations'®. Approximate solutions
so obtained provide adequate insight into the processes and quite frequently, provide
adequate description of the experimental behaviour. When the effects of the temperature
dependence become significant, the approximate solutions can be made the starting
points to include the corresponding corrections. However, we have relaxed some
assumptions as follows. Shape of the pulse-width is initially assumed to be Gaussian,
which provides an accurate description of the energy distribution in the laser beams used
for machining. The results are then generalized for other shapes of the beam for
comparison with the results available in the literature. Further, since no pertaining
assumptions are made, the solution is valid for lasers with an arbitrary pulse-width, which



includes the physically relevant pulse-widths, ranging from the femtosecond to
nanosecond. The present, more general solutlon possesses the attractive features of the
approximate solutions available elsewhere', which are recovered under the corresponding
assumptions. Average heat penetration depth, the ablation depth and the evolution of the
temperatures during ablation are found to be in good agreement with the experimentally
observed values, which indicates that the assumptions made here have little effect in the
cases considered.

2.0 Thermal diffusion model

In the thermal diffusion model, microscopic processes are ignored and the material
is divided into two main subsystems, the thermal electrons and the lattice, which is the
remaining bulk. In case of metals, the free electrons absorb the laser energy and are
accelerated rapidly acquiring large velocities, with consequent high temperatures.
Energetic electrons transfer heat to the lattice subsystem by collisions described by the
electron-phonon coupling. This interaction between the two subsystems is represented in
the model equations by gAT , where AT is the temperature difference between the two
subsystems and g is the electron-phonon coupling constant'”. Since the bulk, collectively,
is more massive than the electrons, it exhibits a slower rise in temperature . Based on
the relative size of the pulse width, 7, , and the characteristic electron cooling and lattice

heating times, 7, and 7;, respectively, the process of metal ablation is commonly divided
into three regimes: femtosecond (7, <7, < 7;), picosecond (7, <7, <7;) and

nanosecond (7, =7; < 7, )",

Space-time distribution of the electron temperature, T,, and the average lattice

temperature, T,, can be described, to a good degree of approximation, by the following

4
one-dimensional two-temperature diffusion equations” >
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together with the boundary conditions
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where the zero of the temperature scale is taken to be at the room temperature, D is the
diffusivity of the electron subsystem,z, =C,/g, 7,=C,/ g, with C, and C,; being the
electron and lattice heat capacities, respectively, and & is the coordinate distance in the
direction of outward normal to the surface®. For a horizontal flat surface, £ reduces to the

vertical coordinate, which will be assumed to be the case for the calculations here. For
convenience, the time ¢ is measured in units of the pulse width with the units and the
values of other quantities adjusted accordingly. Laser source S, with Gaussian
distribution of energy is given by,



S (&,1)= ayal, exp(—kt*) exp(—aif) )
where a, is the light absorption coefficient, «¢is the inverse skin depth, Iy is the peak laser
power and, K is a laser specific constant. Here we take k = 4log(2) in conformity with the
laser used for experimental verification of the present solution. In general, the source
term also depends on the coordinates of the plane of the cross section of the laser beam.
When this dependence is of significance, it can be included in the present analysis.

The temperatures, defined uniquely by Egs. (1), (2) and (3), for a large class of
source terms including as given by Eq. (4), possess the following additional property:
T,(§,4°)=0 (5)
in conformity with the physical behaviour of eventual cooling of metal to the room
temperature. Proof of the result stated in Eq. (5), although lengthy, follows from standard
arguments'®. In view of this property, it is convenient to obtain the temperatures by first
solving the corresponding equations for the Fourier transforms of T, and 7; defined by,

i o) = ﬁ [T, &ne™ d

In terms of f"e and T: , Egs. (1), (2) and (3) reduce to:
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respectively. It follows that
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with the boundary conditions as stated in Eq. (8). Here
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where F, is the laser fluence absorbed by the metal. Eq. (10) is solved by standard
methods yielding,
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where B(w) is the principal branch of ,/,Bz(a)), defined by Re.(S(w))>0,

I()=[B(@)]", and the skin depth ¥ =" Eq. (13) together with Eq. (9) determines

T
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gs. (13) and (14) can be generalized to any laser source expressible as
[S'()exp(=£ /7)) , yielding the following expressions for the temperatures:

T &0 = [TEt-mSm dn (15)
o
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and
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Relative behaviour of the electron and lattice temperatures in different pulse-width
regimes, which is usually inferred from the solution of Eq. (2), can be deduced from Eq.
(9), or from the solutions stated in Egs. (13) to (17). For pulse-widths in the nanosecond
range, 7, <<1 in units of pulse-width, and thus Ia)z',, |<<1, i.e., (1+iwt,) =1, except for

large values of |@|, where the values of T,,(&,@) are quite small, with small

contribution to the integral defining the inverse Fourier transform. Therefore, for the
large pulse-widths, the electron and the lattice temperatures may be taken to be equal, to
a good degree of accuracy. This approximation is commonly used to reduce the two-
temperature coupled equations to a single equation, with consequent simplifications*”?.
Quahtatlve features of the temperatures for the sub-picosecond pulse-widths used in the
literature'® can also be deduced from the present results by similar straightforward
arguments. However for the shorter pulse-widths, the electron-phonon interaction term
becomes 31gmflcant making it necessary to solve the two-temperature equations or their
simplified forms*. The present solutions are valid, and about equally convenient, for all
pulse-widths.

3.0 Results and discussion



In this section, we calculate the heat penetration depth, the temperatures and the
ablation depth using the results of Sec. 2. The temperatures are obtained directly by

taking the inverse Fourier transforms of fe(f,w) and ﬁ(f,w) . An Arrhenius type
equation deduced in terms of the vapour pressure, determines the ablation depth from the
knowledge of the lattice temperature f}(f, @) ', The heat penetration depth is identified

from an approximate expression for 7}5 (&.1).

3.1 Heat penetration depth
We show below that if /(@) is replaced with a constant 1 in the inverse Fourier

transform representation of 7}"(4‘,1‘), then the approximate expressions of the

temperatures in Ref. [1] are recovered, with the corresponding source term. In addition to
illustrating the features of the present solutions, this also provides an insight into the
approximations used in the literature and motivates a physical interpretatio : of l(w). The

approximation under consideration to 7}5 (£,1) is given by
- -1
N2m 2, 1+iwr,
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where h(t) is the Heaviside step function. For clarity of comparisons, the pulse-width 7,
will be explicitly shown in the following.

The source term in Ref. [1] was taken to be
S(&,1) = Ao exp(t/z,) h(-t) (19)
Since the source term given by Eq. (19) falls to zero discontinuously at time equal to
zero, it is unrealistic. We have considered it here to illustrate the properties of the present
treatment, which is valid for considerably more general source terms.
From Egs. (18), (19) and (15), it follows that

F 12 _ - 1
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where the absorbed fluence is given by' F, = Aaz, . The equation for the temperature for

time below zero agrees with that in Ref. [1] with [ termed the heat penetration depth.
For the positive times, for ¢ and 7, in the femtosecond regime, exp(—t/7;) =1, and
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T, +7,
defined in Ref. [1], and using the fact that 7,/C, = g =7;/C;, the same approximation

for the equilibrium temperature of the lattice subsystem is obtained as given by Eq. (24)

of Ref. [1], which is,
_F 1 _So-¢r L T,ET
TiGe>0)= 1‘2—;/2( et +1e4)

These considerations show that the approximation used in deducing Eq. (18) is
consistent with the approximations of Ref. [1], which is to replace /(@) by a constant I

=]1. By setting I = ./Dz'e , which is approximately the heat penetration depth

in the integrand in the inverse Fourier transform of 7}5 (&,1). In view of this, /(@) may

be considered the spectral distribution of the heat penetration depth, and 1, the mean
value of the distribution I(@) . With this identification, we have

_ 1 +0
| = lim— | (w)dw 20
Mza_fa( ) (20)

Since |ﬁ(§,w)‘ < exp(—a)zl 4x), I is quite accurately determined by Eq. (20) with a

reasonably large fixed value of o, without taking the limit. We have found it sufficient
to set 0 =4k, yielding

_ 1 -+ K
[= — [ lw)do @1)
8K 4«
It was verified numerically that a larger interval makes no noticeable difference in the

results. Since Im. f(w) is an odd function of @ Im.[l(a))] is also odd in I/(w) and

therefore the imaginary component will vanish in the integral over a symmetrical
interval, and hence, [ is real, as the value of the heat penetration depth should be.

It is known both experimentally and theoretically that the heat penetration
depth in the sub-nanosecond regime is approximately constant, equal to ./Dre , while it

behaves in proportion to /7, in the nanosecond re ime'>. Figure 1 compares the
prop L g g p

behaviour of [ obtained from Eq. (21) with the values reported in Ref. [1] with respect
to the pulse-width. Diffusivity, D for both curves was estimated by using the formula

D =vi7, /3 where 7y is the electron relaxation time and vy is the Fermi velocity [1].
We assumed that 7 is minimum, which is approximately, a/vp where a is an average

inter-atomic distance (a =4 A for Cu) and v is the Fermi velocity. This is adequate

within the framework of the present approximations. The characteristic lattice heating
time and the electron-phonon coupling constant, g are about 34 ps and 10"WmK!

respectively'”. The electron heat capacity is given by Ciz,/7; = 107 C;. Apart from an

offset, the behaviour of 1 as given by Eq. (21) is about the same as the heat penetration
depth predicted by Egs. (13), (14) and (20) of Ref. [1] below 100 ps. For all pulse-widths,



the present values are less than the values reported in Ref. [1], for nanosecond regime
more so than the lower pulse-widths. Both of these approximations indicate that the heat
penetration depth has a very weak dependence on the pulse-width in the sub-nanosecond
regime and a strong dependence in the nanosecond regime. In the nanosecond regime,

both sets of values increase approximately in proportion to /7, , with constant of

proportionality depending on other parameters, in agreement with other observations®?®,

3.2 Time evolution of temperatures
The electron temperature was obtained by evaluating the inverse Fourer

transform of f’e(ﬁ,a)) , and the lattice temperature T;(£,t) was evaluated by convoluting
T,(&,t) with [h(t)exp(-t/7;)/7,], in conformity with Eq. (9). The inverse Fourier
transform was obtained using the FFT routine in Matlab and the electron heat capacity

was taken to be equal to (3N.ks/2), ensuring the electron cooling time of the order of
picoseconds.

Figures 2, and 3 show the lattice and electron temperatures in nanosecond and
femtosecond regimes, respectively. As expected, the electron and lattice temperatures are
almost equal for all times in the laser pulse-width in the nanosecond range. The
temperature values for 100 fs pulse- width agree qualitatively with those reported in Refs.
[2] and [6]. In this case, the lattice temperature is considerably less than the electron
temperature at lower times but they both converge to each other as the time increases,
indicating the approach of a thermal equilibrium. After the thermal equilibrium has been
established, the temperatures, which are about equal, decrease at a very slow rate,
validating the common assumption of a constant lattice temperature at intermediate times
during the ablation phase by the femtosecond lasers.

3.3 Ablation depth
The ablation depth can be estimated by integrating the velocity of the evaporation

front during ablation, given by

V=1y, exp(—H CT,) (22)
where H,,p is the heat of vaporization per umt volume and v, is of the order of sound
velocity in the metal in its condensed state" >. The duration of ablation is known to be of
the order of electron-ion thermalization time as stated in Ref. [1], and thus, it is sufficient
to integrate the velocity on the interval [—eo,7;]. The laser fluence was varied from

ImJ/cm? to 10 J/cm? and pulse-width was taken to be equal to 150 fs.

The calculated ablation depth is plotted in Figure 4 as a function of the fluence on a
logarithmic scale. As indicated by the dotted lines, the curve is approximated well by two
straight lines, up to the fluence of about 2 J/cm?, demonstrating two different logarithmic
variations in the two fluence regions. At higher values of the fluence, the behaviour
deviates from logarithmic. These qualitative deductlons are in agreement with the
conclusions based on the experimental observations'.

The case where C, = N,kg /3, the electron cooling time is about 10° times its

minimum value, and the ablated depth is practically zero for the same range of fluence



values as above. This is expected since there is a long time delay for the electron energy
to be transferred to the lattice subsystem, which eventually causes ablation. Furthermore
the higher value of C, significantly reduces the electron temperature that can be achieved
for a given fluence; in this case it reduces the temperature by a factor of approximately
10°. Thus, the amount of fluence needed for ablation increases with an increase in the
electron heat capacity. For pulse-widths in the nanosecond range, the electron and lattice
subsystems are in an approximate state of equilibrium, and the electron heat capacity is of
the same order as the relatively large lattice heat capacity. Therefore, larger fluence
values are required for ablation with the nanosecond pulse-width lasers, as also observed
elsewhere '

4.0 Concluding remarks

An analytical solution of the two-temperature model describing ablation of metals
with Gaussian laser source is obtained under the assumptions that the lattice heat
capacities and the thermal conductivity of the electron and lattice subsystems remain
approximately constant during the process. An expression for the lattice temperature due
to the delta function excitation was also obtained, which may be convoluted with a
general laser source to obtain the resulting lattice temperature. The solution was shown to
reduce to a previously reported approximate solution under the corresponding
assumptions1 Sample calculations show a good agreement with several observations of
the heat Penetration depth, ablation depth and the temperature behaviour reported
elsewhere’ *¢, and confirms several intuitive assumptions made in the literature.

For a more complete description of the process, it is necessary to include the
effects of a moving boundary, non-constant heat capacities and thermal conductivities as
well as the diffusivity together with the further refinements of the subsystems. While
these effects may become significant in some situations, for a large class of cases, the
results obtained by the direct numerical methods that include these effects® are in close
agreement with the present results. In cases when it may become necessary to improve
upon the approximations of this article, the solution obtained here still provides an
adequate insight into the process and the qualitative behaviour of the results. Also, the
present solution may be made a starting point for more accurate calculations.
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List of Figures

Figure 1. Dependence of heat penetration depth on pulsewidth. Curve I is obtained from
Ref. [1] and curve II from Eq. (21).

Figure 2. Electron and lattice temperatures for laser pulse width of 25 ns.

Figure 3. Electron and lattice temperatures for laser pulse width of 100 fs.

Figure 4. Depth of ablation as a function of laser fluence for pulsewidth of 150 fs. The
two dashed straight lines approximate the local behaviour of the curve in low
and high fluence regions.
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