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Abstract Electrical actuation and control of liquid

droplets in Hele-Shaw cells have significant importance for

microfluidics and lab-on-chip devices. Numerical modeling

of complex physical phenomena like contact line dynam-

ics, dynamic contact angles or contact angle hysteresis

involved in these processes do challenge in a significant

manner classical numerical approaches based on macro-

scopic Navier–Stokes partial differential equations. In this

paper, we analyze the efficiency of a numerical lattice

Boltzmann model to simulate basic transport operations of

sub-millimeter liquid droplets in electrowetting actuated

Hele-Shaw cells. We use a two-phase three-dimensional

D3Q19 lattice Boltzmann scheme driven by a Shan–Chen-

type mesoscopic potential in order to simulate the gas–

liquid equilibrium state of a liquid droplet confined

between two solid plates. The contact angles at the liquid–

solid–gas interface are simulated by taking into consider-

ation the interaction between fluid particles and solid

nodes. The electrodes are designed as regions of tunable

wettability on the bottom plate and the contact angles

adjusted by changing the interaction strength of the liquid

with these regions. The transport velocities obtained with

this approach are compared to predictions from analytical

models and very good agreement is obtained.

Keywords Lattice Boltzmann method � D3Q19 �

Shan-Chen mesoscopic potential � Hele-Shaw cells �
Electrowetting � Digital microfluidics

1 Introduction

Microfluidics is a very important field in the area of mi-

croelectromechanical systems (MEMS) (Kovas et al. 1998;

Tanaka 2007) and lab-on-chip devices that is expanding

very rapidly, stimulated by an impressive number of appli-

cations in biology, chemistry and medicine. Several issues

related to the high pressures needed for pumping liquids

through microchannels as well as the ineffective mixing at

low Reynolds numbers (Ismagilov et al. 2001) combined

with the inherent difficulties of designing scalable continu-

ous-flow architectures severely limit the reliability and

throughput of these devices in more complicated microflu-

idic architectures. A recent way to circumvent these diffi-

culties is to implement architectures based on discrete

droplets, the resulting devices being usually referred to as

digital microfluidic microchips (Pollack et al. 2002). The

liquid droplets are confined between two parallel plates [like

in the Hele-Shaw cells (Hele-Shaw 1898)] and the basic

operations such as transport, merging and splitting usually

achieved by the electrowetting on dielectric (EWOD) effect

(Beni and Hackwood 1981). This effect consists of a change

in the solid–liquid contact angle due to an applied potential

difference between the solid and the liquid. Since any

change in the liquid–solid contact angle induced by the

electrode voltage modifies locally the curvature of the liquid

free surface (and so the internal pressure in the bulk liquid

according to Laplace’s law), actuation forces toward regions

of lower internal pressure can be achieved by using appro-

priate designs for the electrode system (Pollack et al. 2002).

Usually the top electrode is a conductor connected to the

ground (so the liquid droplets) whereas the bottom (activa-

tion) electrodes are covered with a thin dielectric layer. The

microchips based onHele-Shaw-like cells accompanied by a

set of conducting electrodes able to move liquid droplets via
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the EWOD effect are usually refereed to as EWOD devices

(Mugele and Baret 2005) and used as an alternative to

classical continuous-flow microfluidics.

It is very difficult to accurately model the physical

processes related to the motion of the contact line of the

liquid droplets in EWOD devices. The main challenges are

related to the dynamics of the liquid–gas interface,

dynamic contact angle as well as the contact angle hys-

teresis (CAH). Since classical fluid dynamics methods

(based on solving partial differential equations and a con-

tinuum description of the liquid) either leads to (1) stress

singularities and multivalued velocity fields especially near

the contact line (Sciffer 2000; Seppecher 1996) or (2)

involve empirical relations with unknown parameters

which can only be determined by fittings with experimental

data (Sciffer 2000), alternative and promising numerical

scheme based on discrete (atomistic) description of the

liquid (molecular dynamics simulations) have been

recently developed (He and Hadjiconstantinou 2003;

Samsonov and Ratnikov 2007) but the necessary compu-

tational load for modeling real amounts of liquids in

microfluidic devices is too large. One way to circumvent

this difficulty and model larger systems while taking

advantages from both continuum and discrete approaches

is to use hybrid methods (Yasuda and Yamamoto 2008)

obtained by coupling classical fluid computation schemes

with molecular dynamics algorithms.

In the last years, the lattice Boltzmann method (LBM)

(Chen and Doolen 1998; Succi et al. 1991) has experienced

significant development due to the possibility to easily

implement complex solid boundaries and multicomponent/

multiphase systems in a unitary manner. The tremendous

advantage of this relatively new approach is that it behaves

like a classical Navier–Stokes solver in the bulk liquid

whereas its mesoscopic nature becomes important at the

interfaces (Zhang and Kwok 2004). Moreover, it allows for

considering larger physical systems when compared to

molecular dynamics methods and is able to capture all the

physics from classical CFD approaches based on contin-

uum representations. Thus, the LBM is a very appropriate

numerical tool when interfacial phenomena and complex

interactions with solid boundaries become important, as it

is the case with the dynamics of liquid droplets in Hele-

Shaw cells.

Several LBM schemes for simulating complex multi-

phase and multicomponent fluid flows are available in the

literature. The first LBM-based multicomponent model has

been developed by Gunstensen and Rothman (1993) and it

was based on the lattice gas model of Rothman and Keller

(1988). Phase separation and multiphase flows have suc-

cessfully been simulated by using the method of Shan and

Chen (1993), Shan and Doolen (1995), based on the use of

an interaction pseudopotential between different phases (or

components). Free energy (Swift et al. 1995, 1996), mean-

field (Zhang et al. 2004) or more consistent bottom-up

(Melchionna and Marini Bettolo Marconi 2008) LBM

approaches based on the thermodynamics of two-compo-

nent fluids and the free-energy thermodynamic functional

can also be used for modeling multiphase and interfacial

dynamics.

In this paper, we evaluate the efficiency of a three-

dimensional LBM scheme accompanied by a Shan–Chen

interaction potential to model basic transport operations in

EWOD devices. The actuation of the liquid droplets is

performed by changing the interaction potential of the

liquid with the electrodes and the separation between liquid

and gas defined as an isosurface in the density scalar field.

The numerical simulations are then compared to analytical

models and good agreement is obtained.

2 LBM model

The LBM is a numerical version of the continuous (full)

Boltzmann equation in which space, time and particle

velocities are all discrete. The space (of one, two or three

dimensions) is represented by a regular lattice with particles

residing on the nodes and moving along a fixed (finite)

number of directions. In this paper, we use a three-dimen-

sional LBM scheme with 19 directions/velocities, well

known in the literature as the D3Q19 scheme (Mei et al.

2000). The distributions of particles fi on each direction

i ¼ 0; 18 (where 0 stands for particles at rest, 1–6 for the

directions along lattice principal axes and 7–18 for the face

diagonals) are iteratively updated according to the equation

fi x~þ e~iDx; t þ Dtð Þ ¼ fi x~; tð Þ þ Xi f x~; tð Þ½ � ð1Þ

where Dx and Dt are, respectively the space and time

increments and e~ij j ¼ Dx=Dt: If the functional Xi is

replaced by the BGK collision term (Bhatnagar et al.

1954) then Eq. 1 can be rewritten as

fi x~þ e~i; t þ 1ð Þ ¼ fi x~; tð Þ �
fi � f eq

s
: ð2Þ

Here s is the rate at which the local particle distributions

relax to an equilibrium state and it is related to the

kinematic viscosity of the fluid by

m ¼
1

3
s�

1

2

� �

: ð3Þ

The equilibrium distribution function can be written up

to O(u2) as (Chen et al. 1992; Qian et al. 1992)
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f
eq
i ¼ qwi 1þ 3e~i � u~þ

9

2
e~i � u~ð Þ2�

3

2
u2

� �

ð4Þ

where wi = 1/3 if i = 0, wi = 1/18 if i ¼ 1; 6 and wi = 1/

36 if i ¼ 7; 18: The quantities q and u~ are two macroscopic

variables related to the density and the local velocity of the

fluid, respectively. They are computed at each iteration step

via

q ¼
X

18

i¼0

fi and u~¼
1

q

X

18

i¼0

fie~i: ð5Þ

According to Shan and Chen (1993) and Shan and

Doolen (1995), the coexistence of multiple phases at the

nodes of the lattice can be simulated by shifting the

velocities u~ in Eq. 5 with the quantity

Du~¼
s

q
F~ ð6Þ

where F~ is an attractive short-range force of the form

F~ x~ð Þ ¼ �GLLW x~ð Þ
X

i

wiW x~þ e~ið Þ ð7Þ

and W an interaction potential responsible for the equation

of state (EOS) of the considered physical system. GLL in

the expression above is a negative quantity equivalent to a

thermodynamic temperature and it is responsible for the

liquid–gas density ratio as well as the surface tension

coefficient. Several EOS can be incorporated into the above

lattice Boltzmann scheme via the potential W (Yuan and

Schaefer 2006). As the physical processes related to digital

fluidics and electrowetting analyzed in this paper are

dominated by viscous and interfacial effects, the capillary

number Ca defined as

Ca ¼
gU

c
ð8Þ

can be chosen as a relevant dimensionless quantity. g in

the equation above stands for the liquid viscosity, U for

the liquid velocity and c for the liquid surface tension

coefficient. In order to reproduce the relevant Ca numbers

in EWOD devices, we have selected an interaction

potential that leads to one of the most numerically stable

EOS (Shan and Chen 1994) that is

W q x~ð Þ½ � ¼ W0 exp �
q0
q x~ð Þ

� �

; ð9Þ

where W0 and q0 are two constant parameters responsible

for the equilibrium values of liquid and gas densities after

phase separation. By using this potential, liquid to gas

density ratios of about 20 can easily be obtained before

numerical instabilities caused by spurious velocities (Mei

et al. 2000) start to appear. Although this density ratio is

significantly lower than the water to air density ratio, we

will see in the following that the selected interaction

potential can still be used to model accurately the dis-

placement of liquid droplets in Hele-Shaw cells.

An example of EOS given by the pseudopotential in

Eq. 9 is illustrated in Fig. 1a and the points corresponding

to the phase separation at GLL = -120, W0 = 4 and

q0 = 200 are highlighted. For this value of GLL, a surface

tension coefficient cLB = 14.1 is obtained by evaluating

the variation of pressure across surfaces of spherical

droplets of different radii (Fig. 1b) and applying the

Laplace’s law.

The wettability of solid obstacles (plates, electrodes,

etc.) is modeled by assuming a default value for the

interaction potential W x~ð Þ at all their nodes. The interaction
constant in Eq. 7 is set to a specific value GLS, the ratio

GLL/GLS being responsible for the contact angle at the

contact line (CL) of the droplet. Moreover, bounce-back

boundary conditions (Chen and Mei 1996) have been

imposed at all these solid obstacle nodes. The interface

between liquid and vapor states of densities ql and qg is
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Fig. 1 a Equation of state (EOS) and equilibrium liquid-steam states

(highlighted with points) obtained for W0 = 4, q0 = 200 and

GLL = -120; b pressure difference due to the curvature of several

simulated liquid spherical droplets (points) and linear fit with the

Laplace’s law (full line)
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then represented by the isosurface (ql ? qg)/2 in the mass

density scalar field q given by Eq. 5. An example of such a

representation is given in Fig. 2. The transition from lattice

units to physical units employed in this figure is described

in the next sections.

3 Analytical model

Lattice Boltzmann simulations are supposed to represent

the physics of real systems so a correspondence between

‘‘lattice variables’’ [like lattice time units (ts) or lattice

space units (lu)] and real physical units has to be found. To

achieve this, the physical system is converted into a

dimensionless one, by using a representative dimensionless

parameter. The most challenging part of this parametriza-

tion procedure is to properly choose the dimensionless

parameter. This is usually done by using analytical models

describing simpler and representative processes for the

problem under investigation (Sukop and Thorne 2005).

In the following, we describe an analytical model

(Bahadur and Garimella 2006; Kumari et al. 2008) for the

transport of liquid droplets in Hele-Shaw cells (Hele-Shaw

1898). According to this model, the motion of a cylindrical

droplet of mass m and radius R between two parallel plates

of spacing H is governed by (Kumari et al. 2008)

m
d2x

dt2
¼ Fact �

6gU

H
2pR2 �

1

2
CqgU

2 2HRð Þ � fU 4pRð Þ

ð10Þ

where Fact is the actuation force (here induced by

electrowetting effects), g the liquid dynamic viscosity, U

the droplet transport velocity and qg the gas mass density.

C and f are two phenomenological coefficients related to

the drag of a cylinder in a viscous fluid flow and to the

contact line friction force, respectively. If we neglect the

inertial effects related to acceleration of the droplet as well

as the drag force due to the filler gas and the friction at the

contact line between the three phases (liquid–solid–gas),

Eq. 10 becomes much simpler. At mechanical equilibrium,

we thus have:

Fact ¼
6gU

H
2pR2 ð11Þ

that is the droplet motion is governed only by the equi-

librium between the actuation force Fact and the viscous

force due to the top and bottom plates. The next step in

our parametrization analysis is to evaluate the actuation

force in this equation. For a droplet at rest, the curvature

has the same value at all points of the liquid–gas inter-

face so there is no difference in the internal pressure

between different parts of the droplet and consequently

no actuation force will act upon the liquid droplet

(Fig. 3a). If the contact angle in a specific region of the

droplet is modified (Fig. 3b), the curvature of the inter-

face changes accordingly and a pressure difference

between this region and the rest of the droplet occurs.

According to the fundamental principle of hydrostatics, a

liquid always flows from regions of higher pressure

toward regions of lower pressure, this being equivalent to

the apparition of an actuation force Fact. Although the

transition from this non-uniform and complex pressure

field to an equivalent (and unique) actuation force is not

Fig. 2 3D representation of the EWOD device simulated by LBM:

bottom plate containing three actuation electrodes (E1, E2 and E3)

and a liquid droplet in a transport process from E1 to E2. The top

plate is not shown in this figure and the numbers are all in mm. The

dimensions of the simulation box in LB units (lu) are

608 9 262 9 18

Fig. 3 Top and lateral views of the internal pressure effects and

consequent actuation forces exerted by the liquid–gas interface at

equilibrium (a) and when a change in the interface liquid–solid

contact angle is induced by an applied potential (b). The force Fact is a

consequence of changing the contact angle with the bottom plate in at

the left side of MN

602 Microfluid Nanofluid (2010) 8:599–608
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an easy task, we can obtain such equivalence be making

some simplifying assumptions.

We consider that, in the absence of any applied potential

on the electrodes, the out of plane curvature of the interface

corresponds to a contact angle hOFF all along the liquid

contact line. By applying a potential on the bottom plate

(at the left side of MN—Fig. 3b), the contact angle

hOFF is changed to hON and an additional curvature

cos hOFF þ cos hONð Þ=H is added to the initial in-plane

curvature. According to the Laplace’s law, the difference in

internal pressure between the left and the right side of the

droplet will be

Dp ¼
c

H
cos hON � cos hOFFð Þ ð12Þ

since the differences in internal pressure due to the in-plane

curvature (R-1) will cancel each other.

If we consider now that this pressure difference is uni-

formly distributed onto the droplet interface situated at the

left side of MN, the force responsible for the droplet

actuation in Eq. 11 can be written as

Fact ¼

Z

þp
2

�p
2

Dp RH cos a da ¼ 2DpRH: ð13Þ

We can replace now Fact in Eq. 11 by the expression

above and obtain

U ¼
cH

6pgR
cos hON � cos hOFFð Þ: ð14Þ

We thus obtain from Eq. 8

Ca ¼
gU

c
¼

H

6pR
cos hON � cos hOFFð Þ ð15Þ

that is the capillary number Ca for the considered problem

depends only on the geometry of the system (i.e., on the

droplet aspect ratio H/R and its contact angles).

4 Parametrization of the LBM variables

From the analytical model presented in the previous sec-

tion, it results that (1) the capillary number Ca can

describe accurately the systems of interest if its geometry

is known and (2) that the viscous drag and the interfacial

tensions are the dominant forces in EWOD devices.

Consequently, we decided to use the capillary number Ca

as the characteristic dimensionless number for the

parametrization of the LBM variables. In the following

we use this number in order pass from LBM units of

length and time (lu and ts, respectively) to real units (m

and s). From the definition of the capillary number Ca

(Eq. 8) we can deduce that

Ca ¼
gRUR

cR
¼

gLBULB

cLB
ð16Þ

where indices ‘‘R’’ and ‘‘LB’’ stand respectively for the

real and LBM systems. It results immediately that the two

velocities weighted in m/s and lu/ts are given by

UR ¼
cR

gR
Ca

� �

m

s
and ULB ¼

cLB

gLB
Ca

� �

lu

ts

where the square brackets denote the numerical (dimen-

sionless) values of the corresponding quantities. From

U
R
= U

LB we obtain

cLB

gLB

� �

lu

ts
¼

cR

gR

� �

m

s
ð17Þ

that is a relationship between the LBM units lu and ts.

For water gR = 0.001N s/m2 and cR = 0.0725N/m whereas

the LBM algorithm described in Sect. 2 gives a dynamic

viscosity gLB = 88.3 and a surface tension coefficient

cLB = 14.1 (both in LBM units). The dynamic viscosity gLB

is evaluated by using the numerical value of the density

of the liquid phase as defined by Eq. 5. The relation-

ship between velocity in LBM and real units is thus

1 lu/ts = 454 m/s.

Although it is not necessary for an analysis of the

droplet transport velocity, we decided for the sake of

simplicity to also fix a relationship between the LBM and

real length units. From now on, we consider that the

diameter of a droplet, which is represented by 110 lu in

the simulations, is of 500 lm (a typical value for real

EWOD devices). A lattice unit thus corresponds to

1 lu = 4.55 lm. From Eq. 17 it results that the LBM unit

time (ts) has to account about 10 ns (that is 100,000 LBM

iteration steps correspond to 1 ms). The above values of

4.54 lm and 10 ns are used (Bahadur and Garimella 2006)

all along the paper in order to pass from abstract lattice

Boltzmann units (lu and ts) to real (physical) units of length

and time, respectively.

5 Transport velocity

We want to address in this section the dependence of the

transport velocity on the contact angle at the contact line of a

liquid droplet actuated by electrowetting in a Hele-Shaw

cell. A liquid droplet of about 500 lm diameter (110 lu)

and 72 lm height (16 lu) is confined between two parallel

plates (in Fig. 2 only the bottom plate, containing the actu-

ation electrodes is shown). For this geometry, a numerical

implementation of the algorithm on a supercomputer with

Intel Itanium 2 microprocessors at 1.5 MHz is able to

advance the droplet with 1 ms in about 100 CPUH (central

processing unit, hours).
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Several contact angles are first simulated by adjusting

the solid–fluid interaction potential GLS with respect to the

fluid–fluid interaction strength (GLL). The contact angle is

then evaluated from the out-of-plane curvature radius R of

the liquid–gas interface (Fig. 4a) by using the surface

generated by the rotation of the arc BB0 around the droplet

symmetry axis (the regions AB and B0A0 are eliminated

from this analysis in order to avoid any influence of the

solid obstacle density on the evaluated contact angles). As

shown in Fig. 4b, a full range of contact angles from 0 to

180� can be simulated for GLL = -120 and GLS [ [-300,

-50], respectively. A value of the contact angle of 0�

corresponds to a value of GLS of about -300 whereas a

complete wettability of the surface, that is a nearly 0�

contact angles can be obtained for GLS % -50. As already

pointed out in the literature (Zhang et al. 2004), the

dependence of the contact angle on the liquid–solid inter-

action strength GLS is almost linear (Fig. 4b). However, a

better fit for our simulations can be obtained with

h GLSj jð Þ ¼ 198� � 0:37 GLSj j � 8� 10�4 GLSj j2; that is a

second degree polynomial. By using this dependence, the

value of GLS corresponding to a desired contact angle at the

liquid–solid interface can easily be found. It is also pos-

sible to link the interaction strength parameter GLS to the

electric potential used for the activation of the electrodes if

the electric potential dependence of the contact angle at

these electrodes is known. One example of such an

experimental dependence can be found in (Brassard et al.

2008). At relatively small values of the applied voltage

(before the contact angle saturation) a simple quadratic

dependence of the contact angle with the applied voltage

cos (h) � U2 can be employed (Li and Fang 2009).

The numerical algorithm presented in Sect. 2 is applied to

the nodes of a regular lattice of dimensions 608 9 262 9 18

(each of them in lattice units, lu). The largest dimension

corresponds to the direction of motion of the droplet (indi-

cated by the position arrow in Fig. 2), whereas the smallest

one represents the distance between the two plates of the

cell. By using the results of the parametrization in Sect. 4,

this simulation box will correspond to a real cell of dimen-

sions 2.736 mm 9 1.179 mm 9 0.072 mm (two lattice

points are always subtracted on the Oz directions since they

correspond to the bottom and top plates). On the bottom

plate, three interdigitated comb-shaped electrodes labeled as

E1, E2 and E3 (Fig. 2) are designed as regions of tunable

interaction potential (the size of each electrode being of

about 110 lu, that is approximately 0.5 mm).We considered

in our simulations this comb-shaped geometry of the elec-

trodes since it is largely used in the design of EWOD devices

(Brassard et al. 2008) so comparisons to experimental data

already available in the literature would be easier and more

appropriate than having simple rectangular electrodes.

These regions can be activated or deactivated by setting

different potentials GLS at different times (iterations) of the

simulation. The top plate (not shown in Fig. 2) is homoge-

neous in the sense that we set the same value of the inter-

action constant GLS at all its points. In the following we will

refer to the value of GLS on the inactive plates or electrodes

as the ‘‘OFF’’ values. The values of GLS applied on elec-

trodes in order to actuate the droplet will be referred to as

‘‘ON’’ interaction constant values.

Each simulation starts with a cylindrical droplet above

the electrode E1 and a thermalization period of about

10,000 iterations. During this period, densities inside and

outside the liquid droplet as well as contact angles at the

solid–liquid–gas interfaces reach their equilibrium values

according to the considered EOS (see Fig. 1a) and the

‘‘OFF’’ interaction constant GLS, respectively. At the end

of this thermalization period, the interaction constant GLS

at the electrode E2 is changed to ON such that the contact

angle above this electrode is changed and a difference in

the internal pressure of the droplet generated. In our

numerical simulation for example, we set the OFF inter-

action potential of the plates to GLS = -190, which

Fig. 4 Lateral view of a simulated liquid droplet at GLS = -125 that

corresponds to a static contact angle of about h = 135�; b simulated

contact angles between 0� and 180� obtained by adjusting the

potential of the electrodes between 300 and 50 (LB units), respec-

tively. The interpolation curve corresponds to the function

h GLSj jð Þ ¼ 198� � 0:37 GLSj j � 8� 10�4 GLSj j2:

604 Microfluid Nanofluid (2010) 8:599–608
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corresponds to a contact angle slightly above but not too

far from 90�. The activation of a specific electrode is made

by setting the ON interaction potentials to GLS [ {-225,

-250, -260, -275, -300} which correspond to contact

angles of 72�, 54�, 41�, 35� and 0�, respectively. A top

view of the droplet motion when the electrodes E2 and E3

are successively activated with GLS = - 275 is shown in

Fig. 5. The time dependence of the position of leading and

trailing edges as well as the length of the droplet are shown

in Fig. 6. The transport process begins with a nucleation

period in which the contact angle at the electrode E2

changes at the tips of the imbedded dents. The liquid then

begins to move slightly toward this electrode. As the liquid

invades E2, the droplet elongates such that the leading edge

moves faster than the trailing one. When the liquid

approaches the extremity of the electrode E2, the leading

edge slows down and an increase in the velocity of trailing

edge is observed. The liquid droplet finally stops when it

touches the boundary between E2 and E3 and reacquires its

initial equilibrium shape after E2 is completely deacti-

vated. A similar transport process is obtained by activating

E3 at the same value of the interaction potential GLS =

-275 while maintaining E2 deactivated (right column in

Fig. 5).

In an attempt to understand applicability and limitations

of both numerical and analytical models, the average

velocities obtained at afore mentioned activation potentials

(contact angles) are compared with predictions from the

analytical model Eq. 11. As seen in Fig. 7, the agreement

is very good even if we have neglected the last two terms in

Eq. 10 related to the viscous drag from the gas and the

contact line droplet friction. It is noteworthy that the slight

difference observed between lattice Boltzmann and ana-

lytical results (especially at lower values of the contact

angle) does not originate from the approximation we made

by removing the last two terms of in Eq. 10. Indeed, the

effect of these terms would be to further reduce the ana-

lytical velocity of the droplet (full line in Fig. 7) and so to

increase the discrepancy between numerical and analytical

approaches. The observed difference could rather originate

from the higher deformation of the droplet at high transport

velocities. We indeed observed that, as the transport

velocity is increased, the longitudinal dimension of the

droplet increases at the expense of its transversal one thus

decreasing the effective hydrodynamic radius. Variations

of the transport velocity in the range of the observed dis-

crepancies in Fig. 7 can easily be obtained by modifying

the radius of the droplet in Eq. 14 by about 9%, which is

very plausible when compared to droplet shapes in Fig. 5

and time dependence of the droplet length in Fig. 6. Thus,

we conclude that despite the low density ratios usually

obtained in multiphase lattice Boltzmann simulations, the

Fig. 5 Top view of a two-step transport process of a liquid droplet by

using three electrodes and GLS = -275 (the movie is also available

as supplementary information)

Fig. 6 Time dependence of leading (circles) and trailing (squares)

edges as well as the length (triangles) of the droplet
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gaseous phase does not significantly affect the motion of

droplets in EWOD simulations. Good agreement with

simple analytical predictions can also be obtained as long

as the shape of the droplet is not deformed too strongly by

the electrowetting pulling force.

To compare our simulation results with the values

obtained in real EWOD devices, we should first note that

real devices typically operate with rather small differences

between ON and OFF contact angles (Brassard et al. 2008)

compared to the simulations we showed previously. For

example, a pair of contact angles often employed in real

EWOD devices is 110� for the OFF state (inactive regions

on the plates) and 80� for the active electrodes (ON states).

As shown in Fig. 8, we thus made simulations of transport

processes with these values of the contact angles. We found

an average velocities of about 40 cm/s, which is at least

2–3 times larger than experimental velocities achieved in

similar real EWOD devices (Brassard et al. 2008). We

believe this discrepancy between the LBM simulations and

the velocities values obtained in real EWOD devices is due

to CAH (that was not considered in the simulations).

Indeed, when the difference is rather small between ON

and OFF contact angles (as is the case with real EWOD

devices), the transport velocities are very sensitive to small

variations of the contact angles (due to the CAH effect, for

example). As we can see in Fig. 8b, when cos hON � cos hOFF
is smaller than 0.1, variations of the contact angles of only

few degrees can be responsible for relative variations of the

transport velocities up to 100%. One should also note that

this plot has been obtained by accounting the influence of

only the advancing contact angle on the activated electrode

(E2). If we take into account the effect of CAH on all four

contact angles (advancing and receding on both plates) the

variation of the transport velocity could easily reach 200–

300%, thus explaining the observed difference. This means

in our view that the wetting phenomena in real EWOD

devices are affected by hysteresis that is the advancing and

receding contact angles of the droplet can be substantially

different from the measured static values. These variations

of the contact angles due to the CAH should thus be

introduced into the LBM in order to correctly describe the

transport processes at these low velocity regimes. This is a

very challenging issue for numerical models since the static

hysteresis is related to microscopic imperfections of the

solid surfaces (Ramos-Canut 2005) that are difficult to

address by LBM, mainly due to the mesoscopic (and not

microscopic) nature of these approaches. This difficulty

may be addressed by either refining the mesh (Filipova and

Hanel 1998) near nanostructured surfaces or phenomeno-

logically introducing irreversible and velocity dependent

components to the interaction force with solid obstacles. In

the present approach, this effect could also be taken into

consideration by simply modifying the advancing and

receding contact angles according to the observed CAH at

the considered solid surfaces.

Fig. 7 Numerical (circles) and analytical (lines) contact angle

dependence of the average transport velocity

Fig. 8 a Time dependence of the leading edge position and the length

of the droplet for hOFF = 110� and hON = 80� applied on E2; b

contact angle dependence of the relative variation of the droplet

transport velocity
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6 Concluding remarks

LBM is a powerful numerical technique able to model

complex processes related to digital fluidics in Hele-Shaw

cells. The mesoscopic nature of this method coupled with

its ability to model multiphase flows offer tremendous

advantages over other traditional techniques. Since viscous

and interfacial effects are the most relevant forces for the

transport of sub-micrometric droplets in EWOD devices,

the capillary number Ca can be used in order to relate

lattice Boltzmann units to real (SI) physical units. The Ca

number can further be related to the electrowetting number

by relating the LB liquid–solid interaction potential con-

stant (GLS) to the real electric voltage via the static liquid–

solid contact angle.

The low density ratios usually obtained in LBM simu-

lations are not an issue in modeling processes related to

digital fluidics. The influence of the gas phase on the

transport velocity of sub-micrometric liquid droplets is

found to be insignificant even at values of about 20 for

these ratios. Our LBM simulations show that maximal

velocities experimentally obtained in real EWOD devices

are still very low, the effect being at only 10% of its

maximal achievable transport velocity. At these regimes,

variations of few degrees only in the contact angles due to

surface imperfections (like CAH effects) can have a drastic

influence on the transport velocity, thus making the com-

parisons of LBM simulations to experiments very chal-

lenging. The influence of the CAH on the transport velocity

is drastically reduced at higher differences between ON

and OFF contact angles. For example, when the difference

cos hON � cos hOFF related to the ON and OFF contact

angles is about 0.5, a relative variation of the transport

velocity of about only few percents by degree is obtained.

However, since these contact angles are not achievable yet

in experimental devices, further LBM approaches to the

modeling of EWOD basic operations need to include the

effects related to imperfections on solid surfaces.
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