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Abstract

To understand the various mechanisms of fiber deformation of flexible fiber suspensions,
we carry out a direct simulation study to analyze the effect of fiber rigidity on fiber
motion in simple shear flow. Such a study may be used to investigate the critical
parameters controlling the breakage of flexible fibers during processing. We model the
fiber as a series of rigid spheres connected by stiff springs. The stretching, bending and
torsional rigidities are determined by Young’s modulus and shear modulus to realistically
model the fiber rigidity. The model correctly predicts the orbit period of fiber rotation,
Ty, as well as the trend of critical flow strength, 77/ E, versus fiber aspect ratio, r,, at

which breakage occurs in simple shear flow.



I. INTRODUCTION

The prediction of deformation of flexible fibers in any type of flow represents an
important step in the understanding of how process conditions along with the flow field
domain may induce fiber degradation. To investigate the various mechanisms of fiber
breakage, and to improve the manufacturing procedure of long fiber reinforced systems,
it is of interest to understand the dynamics of flowing flexible fiber suspensions. The
present work contributes to this issue by constructing a fiber model that can be used for
quantitative predictions of critical flow conditions required to break fibers of specific
mechanical properties, and aspect ratios, in any type of flow and any flow domain.

Among the various models based on molecular approach to study the dynamics of rigid
rodlike macromolecules, the most relevant is the one developed by Doi and Edwards [1].
For the shish-kebab model, the rod is regarded as made up of N beads placed along a
straight line. The adequacy of the model for estimating the rotational friction constant of
a rigid rodlike macromolecule has been demonstrated. As originally presented, the shish-
kebab model of Doi and Edwards, deals only with rigid rodlike macromolecules.
However, extension of the model to a class of macromolecules or fibers which are
flexible is straightforward. Along these lines, Yamamoto and Matsuoka [2-5] proposed a
method for simulating the dynamic behavior of rigid and flexible fibers in a flow field.
Similar to the shish-kebab model, the fiber is regarded as made up of spheres that are
lined up and bonded to each neighbor. Each pair of bonded spheres can stretch, bend, and
twist, by changing their bond distance, bond angle, and torsion angle, respectively.
Although Yamamoto and Matsuoka showed that the proposed model successfully
reproduced the dynamic behavior of rigid and flexible fibers in a shear flow, we found
that the numerical results were artificially enforced to match those of Jeffery’s theory [6].
In fact, to ensure that the nonslip conditions between bonded spheres were not broken in
their model, the angles of spheres were manually adjusted at each time step to satisfy the
nonslip conditions. Without any adjustment of the angles of spheres, the model failed to
predict the orbit period of fiber rotation. Since the bending deformation in that model was
not correctly handled, such an adjustment was necessary to match results already
published in the literature. Indeed, we did various numerical validations of the model
without adjustment, and found that the period of fiber rotation was not constant, and
depended on the initial orientation of the fiber. Furthermore, in the different studies of
Yamamoto and Matsuoka, the twist deformation, which is rather difficult to handle, was
only addressed superficially. Recently, Qi [7] developed a method for direct simulations
of flexible filament suspensions in a non-zero Reynolds number flow. For fluid domain,
simulations were based on a lattice Boltzmann equation, while for solid domain, a slender
solid body was discretized into a chain of consecutive spherical segments contacting each
other. A constraint force algorithm was proposed to warrant constant bonding distance
between two neighboring segments and non-slip velocity conditions at the contacting
points so that the flexible filament moves and rotates as a whole body. The fibre could be
bent and twisted in the model. The method was tested by using a rigid particle method
when the fibre stiffness is very large and by comparing the results with theoretical and
experimental results. Ning and Melrose [8] presented a numerical method for simulating



the mechanical behavior of flexible fibers. The fiber was made up by a number of short
cylinders and bonded to each neighbor. Bending deflection and twist movement occur
respectively in the bending and torsion planes. The numerical model was applied to study
rotation of rigid and flexible fibers in a shear flow. Ross and Klingenberg [9], and
Skjetne et al. [10] employed a particle-level simulation method to study the dynamics of
flowing suspensions of rigid and flexible fibers. Fibers were modeled as chains of prolate
spheroids connected through ball and socket joints. By varying the resistance in the
joints, both flexible and rigid fibers were modeled. Lindstrom and Uesaka [11] proposed
a model for fibers suspended in a viscous fluid. Flexible fibers were modeled as chains of
fiber segments. Quantitative predictions were made, and showed good agreement with
experimental data. As far as fiber degradation is concerned, Salinas and Pittman [12]
made an experimental study of fiber breakage in sheared suspensions, and derived two
correlations that can be used to predict breaking conditions for fibers of known Young’s
modulus and ultimate tensile strength. Franzén et al. [13] reported measurements of fiber
degradation in short fiber reinforced thermoplastics subjected to various compounding
methods. In their study, it appeared difficult to relate the fiber length reduction to a single
dominant mechanism. Nevertheless, they observed that the fiber concentration has only a
limited effect on the final length distribution, while the buckling could be a key factor
among the various possible causes of fibre degradation.

Taking advantage of these insights, we carry out a direct simulation study to analyze the
effect of fiber rigidity on fiber motion in a simple shear flow. The fiber model is similar
to that used by Doi and Edwards for the shish-kebab model and Yamamoto and
Matsuoka. However, unlike Yamamoto and Matsuoka, in the present study the bending
deformation made by two adjacent bonds defined by three adjacent spheres, is estimated
by taking the vector products of bonds connected the spheres, while the three Euler
angles are introduced to track the torsional deformation. As the bending and torsional
motions are correctly handled, numerical adjustments of the angles of spheres at each
time step, to artificially enforce the nonslip conditions between bonded spheres, like
Yamamoto and Matsuoka, are no longer required. Such a study may be used to
investigate the critical parameters controlling the breakage of flexible fibers during
processing. The paper is organized as follows: We first present the fiber model and the
simulation method. Next, we introduce the basic equations of motion of the fiber model.
Then, we derive explicitly the hydrodynamic and non- hydrodynamic forces and torques
exerted on spheres of the fiber model. In the subsequent section, we analyse the behavior
of the underlying model in a simple shear flow, and perform quantitative comparisons
with the experimental data provided by Trevelyan and Mason [14]. A final discussion on
the various mechanisms for fiber breakage concludes the paper.

Il. MODEL

We model the flexible fiber of contour length, L, as a series of N =5Lf rigid spheres
a

(beads) of diameter 2a, connected successively, in three-dimensional space, by N -1
stiff springs (bonds) of equilibrium length, 2a, as illustrated in Fig. 1. A similar model



has been first used by Doi and Edwards for the shish-kebab model to estimate the
rotational friction constant of a rigid rod, and subsequently by Yamamoto and Matsuoka.
Here, the instantaneous configuration of the flexible fiber of N rigid spheres, in three-
dimensional space, is described by a set of sphere position vectors, {r }n=w’ each of

components r, = (7.7 ,,7), measured from a fixed reference space frame {x,v,z},
and three Euler angles, (¢,.6,.v,),, . for each individual sphere, specifying the

orientation of the ith sphere, for a given location of its center. These three Euler angles
represent three composed rotations that move a fixed reference frame to a given referred
frame. To specify the orientations of the spheres placed along the fiber, a set of local
body coordinate unit vectors, {m,.n,.z, }r=l,N~1 , defining the local orthogonal coordinate

frames is assigned to all paired spheres, (i,i+1) , ,_,, i.e., to all bonds of the fiber model,

such that the unit bond vector, #,, pointing to the center of the sphere i+1 from the
center of the sphere i, is defined as

r,—r
t'- - i+1 i , (1)
s =,
where, |1, — r,.|, is the distance between the spheres i and i+ 1. The unit vectors, m,, and

n,, are chosen in the plane perpendicular to #,. To compare the orientations of the fixed
reference space coordinate system, {X, Y.z }, and the local body coordinate system,
{m,.,n t}, attached to a pair of bonded spheres, (i,i+1), the three Euler angles (¢,6,y)

are employed. If the reference space coordinate system is rotated through these three
Euler angles, it will be brought into alignment with the body axes. This sequence of three
rotations is illustrated in Fig. 2, where the x-convention of the Euler angles is used. Then,
the three Euler angles (¢,8,) between the two frames can be obtained as follows

t;
¢ = arccos| — "xz ) (2)
w/l—t,.‘z

6= arccos(t,‘z ), (3)

n:’,z
NI ' @

The three Euler angles (¢,6,y) are uniquely determined except for the singular cases
that occur when & approaches 0 or 7. These cases must be handled specially. Before
going any further and to avoid confusion at this stage, let us consider a pair of bonded
spheres, (i,i+1), positioned at r; and r;., along the fiber. It is important to emphasize

W = arccos

that the Euler angle, y; as expressed by Eq. (4) defines precisely the intrinsic or rigid
angular displacements, ", and ", of the paired spheres (i,i+1) around the unit bond



vector #;, as a result of their spatial locations, i.e., ¥ =y, = w . Furthermore, since the

orientation of the local body axes changes along the fiber contour length, the Euler
angles, (¢, 0,y). also vary at any point along the fiber.

Next we consider how to calculate the instantaneous rotation of the spheres of the fiber
model. To this end, let (@, ,.®, ,.®,,) be the components of the angular velocity, @, of

i,x?
the ith sphere relative to the fixed reference space coordinate system. It can be shown that

these components may be expressed in terms of the Euler angles, in the fixed reference
space frame, as

@, | |6 cosg +y, sinb,sing,
0=0,X+0,Y+0, Z=|0, |=|6sing -y, sinb cosg, |. (5)
@, é +1r, cos B,

1,z

Inversion of this set of equations, gives the instantaneous rotation of the ith sphere with
respect to the fixed reference space coordinate system in terms of the components of its
angular velocity, @, as

@, @,, —(®,, sing, —®,  cosg )cosb,/sind,
6 |=|w, cosg +w, sing, ‘ (6)

1

¥, | |(@,sing, -, cosg)/sinb,

By using the standard Euler integration of Eq. (6), the explicit expression for the angular
displacement of the ith sphere around the unit bond vector #;, or the torsional angle, ¥,

at each time step can be written as

w! =yl +AL(@], sing] - @ cosg)/sing)" . (7

It is apparent from Eq. (7), that the angular displacement, ", depends upon the angular

velocity at current time, @". This equation allows us to define, in a transparent manner,

the link between the torsional angle of the sphere 7 at each stage of deformation and its
angular velocity. Since the rotational motions of the spheres are considered explicitly, Eq.
(7) will be useful in the calculation of the torsional restoring torque acting on each sphere
of the fiber model.

We shall now summarize the basic equations of the fiber motion on which our subsequent

analysis is based. The translational and rotational motion of each sphere, i, of the fiber,
immersed in an incompressible fluid may be described by the equations of motion

m—-=F"+F" (8)



v
I % -M"+M", 9)

i

dar A . ;
where u, = ?' and @, = I are, respectively, the translational velocity and the angular
! 4

velocity of the sphere i, 8, = (8, .6,

L =diy3

6, .) is the angular position relative to the fixed
reference space coordinate system, m; and I, =2m,a; /5 are, respectively, the mass and
the moment of inertia, F" and M are, respectively, the force and the torque exerted by

the fluid on sphere i, and F™ and M" are, respectively, the total non-hydrodynamic

force and torque on this sphere. In the linear regime considered here the velocities and the
angular velocities of the spheres are related to the forces and torques exerted on them by
the fluid, by a set of coupled linear equations of the form [15]

u—uy(r)=—H -F'-H" -M], (10)

o, ~o,(r)=-H" -F/ ~H"-M]. (11

7

Here u,(r,), and @,(r,) are, respectively, the velocity and the vorticity of the fluid
evaluated at the position of the sphere i, H," is the translational mobility tensor, H "
the rotational mobility tensor, and the matrices H,;* and H," couple translational and

rotational motion between spheres i and j. Note that u;, @, F, " and M ,.” are vectors and

therefore each component of the mobility tensors is a tensor. Explicit expressions for
these mobility tensors have been presented by Mazur and Van Saarloss [15] up to order

&
|r1 -rj‘ . The leading terms of each component of the mobility tensors for two-sphere

interactions are

0
g =P ’ 12
i, é"[‘ ( )
. 1 (ri,a Ve er',ﬁ ~¥18 )
5 = 5 + 2 13)
ijoff 87 |r,. _rj‘ af ‘r, . ",|2 (
RR Jﬂrﬁ

Hiop == (8

R



RR 1 (rl,&’ =¥ 5 )(rf.,b’ = rj,ﬂ)
s = 3 ~8, |- (15)
ij.ceff ]67[1?\}'{ —]'Ir |rj _rf‘Z 7i]
Hyop = Higp=0, (16)
. | (., -r.)
Hiy=—H =~ By (17
.ol Ji.ep 811?]1!‘, _rj}z By ‘ri _rjl

where i and j label the individual spheres, while @, 3,7 =x,y,z label the Cartesian

coordinates, & is the permutation symbol, ¢, =6zna and (,=8mna’ are,

ofly
respectively, the translational and the rotational friction constants of the sphere. The
components, H,",, H,%,, and H,,, only depend on the spatial arrangement of the
spheres. In order to reduce the volume of computation, we neglect the presence of
translational and rotational coupling motion by setting, H,'5; = H,", = 0. Indeed, in the
calculation of diffusion constants for rigid molecules modeled as collections of spheres,
Goldstein [16] and Wilson and Bloomfield [17] noted that the neglect of H," and H "
is quite reasonable when the distance between the center of molecular rotation and a
sphere in a rigid molecule, is much larger than the radius of the sphere. However, as
noted by Dickinson, Allison and McCammon [18], translational and rotational coupling
motion should be allowed for any calculation which attempts to treat translational
mobilities at a level more precise than Oseen hydrodynamic.

We will now derive the explicit forms of the non-hydrodynamic forces included in the
translational equation of motion. In the bead-spring model used in this study to represent
a flexible fiber, the total non-hydrodynamic force in Eq. (8) is given by

FP=f'+fF+ 17, (18)

where, f,°, are the spring forces on the sphere i, £ are the bending forces on this sphere

and f° are the total contact forces exerted on the sphere i by the adjacent spheres, i.e...
i—1and i+1.

The net spring forces, {f;r }i=2.N—I’ exerted on each sphere to recover the equilibrium
bonding distance are given by

.fjj :_ka-qrr w—"1—11_261)&—1 +k5(]rf ri‘_za)t" (19)

¥1

For the first and the last spheres, these forces are, respectively, given by



£ =k,(r,—n|-2a)1,, (20)
and
I =_karN_rN—l|_2a)tN—l' (21)

Here, &, is the stretching modulus or the spring constant. For an isotropic elastic cylinder
with radius, a, the spring constant, £;, is determined by the Young’s modulus, E, as

k. =maE/l2. (22)

The bending forces can be derived as follows. Let 8, be the equilibrium bending angle.

We consider a uniform fiber of homogeneous material subjected to only a moment at one
end and an equal and opposite moment at the other end as shown in Fig. 3. Then the
bending moments at each end, required to produce the change of curvature is given by

Mb

i+l

=k, (6] —6,)b,, (23)
ML ==k, (aib —6,)b,. (24)
Here, b;, is the unit vector normal to the bending plane, and is defined by,

X%
b, = i—1 t.' ] (25)
t_ %t

while 8’ is the bending angle made by two adjacent bonds, defined by three adjacent

spheres. Its value is estimated by taking the vector products of bonds connected the
spheres, as

cos@’ =t _ -t.. (26)
Therefore, the bending restore forces acting on spheres, i —1, i, and i +1, are given by

1

b e =—5Mf+1><t.= (27)
b L es

-f.r'—l = EM:—] X tl—l ] (28)

fr=-rt+ 1. (29)

The bending constant, k, , in Egs. (23) and (24) is defined by the Young’s modulus as
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k,=ma’E/8. (30)

As far as the degradation or rupture of fibers is concerned, let, R, be the critical radius to
break the fibers and 8, _ the corresponding critical bending angle. According to the thin

bcrit

rod theory, R;, is given by

- = 31)

where, &, is the ultimate tensile strength of the fiber. Hence, if the property, E/o,, is

known, the calculated minimum value of the radius of curvature along the fiber,
R/a=2/86,, at any stage of deformation can be used to predict the critical flow

conditions to break the fibers.

Finally, the total contact force, f,°, exerted on the sphere, i, is written as
I = Lot Lo (32)

where f ,and f,,, are the contact forces exerted on the sphere, i, by the adjacent

spheres, i—1, and i+1. The reaction forces the sphere, i, exerts on the adjacent spheres,
i—-1,and i+1are f°, =—f", and f 6 =-f", . respectively.

As far as the rotational motion of the spheres is concerned, let’s consider a pair of bonded
spheres, (i,i+1), and the local body coordinate system, {m,,n,.t, }, attached to that pair
of bonded spheres. As described above, to compare the orientations of the fixed reference
space coordinate system, {X, Y,Z }, and the local body coordinate system, {m, ST }, the
three Euler angles (¢,6,y) are employed. If the reference space coordinate system is

rotated through these three Euler angles, it will be brought into alignment with the body
axes. For the rotational motion, the explicit forms of the torsional torques exerted on each
sphere of the fiber model are obtained as follows. A pair of bonded spheres, (7,i+1), may

be subjected to a torsional torque and be twisted by an angle v, ., =w,,, =, , where, ¥,
and y,,,, are, respectively, the angular displacement of the spheres i and i+1 around the
unit bond vector, #;. The angular displacement of the ith sphere, y,, is given by Eq. (7),

and depends on its angular velocity, @. Then the following torques, {M . }i exert on

=2,N-1°?
each sphere to recover the equilibrium torsional angle, y,,

M: = _k; (V’H,f — Wt +k, (Ws,;+1 — Yot (33)
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The torques exerted on the first and last spheres are given, respectively, by

M| =k, W2 —Wots (34)
and
ij = _kr (':V,»LI,N ~ Wty (35)

Here, the torsional torque constant, %, , is defined by the shear modulus, G, as
k =ra’Gl4. (36)

Notice that, the rotational motion of spheres enters in the calculation of the torsional
torques, Egs. (33)-(35), through the torsional angles, {y/, },:]‘ v » given by Eq. (7).

A fiber may also break because it is twisted too sharply. According to the thin rod theory,
the critical torsional angle, ¥, , to break the fibers by torsion is given by

y/cril Ti'

2 & 37)

where, 7,, is the ultimate torsional shearing strength of the fiber. Hence, if the property,
G/, , is known, the calculated maximum value of the torsional angle, ¥; along the fiber,

at any stage of deformation can be used to predict the critical flow conditions to break the
fibers in any flow involving torsional deformation.

Finally, the total torque, M, exerted on the sphere, 7, by the contact forces on this
sphere, is written as

M =—at_xf +at.xfi,=at_xXfi +at,xXf] (38)

ii=1 i+l FRE

The resulting equations of motion including all forces and torques exert on each sphere
then become

d’r, (dr, - '
', — “‘“[E“uo(r,)J:Hf(fj +f] =1} -

d’e, _
o Rl +(—'—wo(r.)]=H,f"(M} +M). @)

RN dt
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To determine the contact forces between all paired spheres of the fiber model,
{ff,ﬂ };:; .- We take a view similar to that presented by Doi and Chen [19] to study the

deformation and rupture of aggregating colloids in shear flows. We impose a condition
that spheres can roll but not slip at their contact points. For, i =1, N -1, this constraining

condition is written as

ul + aw; X t; = ul’+l - aa)Hl th . (41)

Differentiating Eq. (41), we have

du, dw, dt, du, do, dt,
—+a—Xt, +a@,X—= — X — Q@ K (42)
dt di dt  dt dt dt

Calculating explicitly, d¥, /dt, assuming, d|r,,, —r|/dt =0, (small extensibility of bonds

compared to other forms of deformations), and substituting Eq. (41), we get the following
equation

du. dw

a
—t+a—Lxt, + o, x(aw, xt, +aw,, xt,)=
dt dt lrHl —r| “3)
duJH da):‘ﬂ a
—-d XI:__—a)i+1x(amxxtj+aa)i+l><tl)
dt dt r,—r

The translational and rotational displacements of the N spheres defining the flexible fiber
are obtained by the integration of Egs. (39), (40) and (43).

In closing this section, it is worthwhile to stress again that, in the fiber model used here,
spheres can roll but not slip at their contact points, to force the fiber, which consists of N
rigid spheres, connected by N —1 bonds, to translate and rotate as whole body. Because
of the continuity of a real fiber, we still consider the nonslip condition even if the fiber
stretches, unless fracture occurs. This condition must be satisfied at each time step,
between all paired spheres of the fiber model, without any numerical adjustment of the
angles of the spheres. Finally, as far as very long fibers are concerned, the excluded
volume interactions should be included, in order to prevent spheres or fiber from overlap.
Addition of such interactions in the present model is straightforward. Here, since we are
mainly interested in modeling the behavior of highly dilute fiber suspensions, of
moderate aspect ratio, we do not explicitly include the excluded volume interactions in
the model.

lll. NUMERICAL RESULTS

To validate the fiber model developed in this study, we analyze in this section the motion
of a fiber with aspect ratio, r,, immersed in a Newtonian fluid with viscosity, 7, whose
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velocity field components are given by, u= 7y, and v=w=0, where 7 is the steady
shear rate, x and y coordinates are in the flow direction and the velocity gradient
direction, respectively. For such a 2D simulation, the twisting deformation is negligible.
We use the free draining approximation known for polymer dynamics. We consider the

regime of low Reynolds number hydrodynamics, and neglect the inertia force of fluid and
the spheres.

For a single ellipsoidal particle of aspect ratio, r,, in simple shear flow, the analytical
solution proposed by Jeffery, showed that the particle exhibits periodic motion through
the same orbit, with a dimensionless orbit period of rotation, Ty, that solely depends on

Fp, AS

Ty

Tj= z;{rp +LJ. 44)

A series of investigations by Trevelyan and Mason [14] and Bretherton [20] have shown
that, the rotation of rigid rods of varying aspect ratios, at very low Reynolds numbers are
in excellent agreement with the predictions of Eq. (44), provided that an equivalent
ellipsoidal aspect ratio, r,, calculated from the measured period of rotation, 7, and Eq.
(44), is used instead of 7.

In Fig. 4 we compare the dimensionless orbit period of fiber rotation, 77, plotted as a
function of aspect ratio, r,, for a rigid ellipsoidal particle from Jeffery’s theory with the
experimental data of Trevelyan and Mason for rigid rods and predictions from the current
model. Quantitative predictions of the model are impressive at moderate r,. While the
simulation results display correct trend, we observe a deviation of the predicted orbital
period, Ty, from the experimental data of Trevelyan and Mason around, r,= 50. Such a

deviation was also seen in the numerical results of Ross and Klingenberg. A more careful
scrutiny of the experimental data provided by Trevelyan and Mason in Fig. 4 reveals that
the measured 77 exhibits a change in the slope around, r, =50, in contradiction with

Jeffery’s theory for rigid ellipsoidal particles. According to that theory, the slope of
Ty/2m, for large values of r,, remains constant with increasing 7,, and its value is about
one, as can be seen from Eq. (44). Although Trevelyan and Mason reported that their
experiments were carried out in the rigid rotation regime, a possible origin of such a
change in the slope of the measured T around, r, =50, could be the onset of fiber

buckling. In fact, Forgacs and Mason [21] derived a result for the onset of fiber bending
by considering the axial stresses. They noted that for a given value of the relative strength
of the flow, ny/ E, there exists also a critical value of the aspect ratio of a fiber, P =y

at which the fiber will buckle. The solution corresponding to the first mode of buckling of
the fiber is given by

ny _In2r, =175
E 9t

c

(45)
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From Eq. (45), the relative strength of the flow to buckle a fiber with an aspect ratio of,
r, =100, is around, 77/ E=1.77x10"*. Thus, when the apparent Young’s modulus of

the fiber is around, E=1x10° Nm™, at a value of the flow strength of about
ny =18 Nm™, the fiber will be bent, and the measured orbital period, Ty, will deviate

by changing the slope from that of a fully rigid cylindrical fiber of the same aspect ratio.
Finally, the difference between the predicted 7y from that of Jeffery’s theory is mainly

attributed to the shape difference between ellipsoidal particles used in the Jeffery’s theory
and the current fibre model that uses a chain of spheres to mimic a cylindrical fiber. An
equivalent ellipsoidal aspect ratio, 7., calculated from the predicted period of rotation and
Eq. (44), is used to take into account such a shape difference. Overall, the simulated
results agree qualitatively with the experimental data and Jeffery’s theory. This confirms
the validity of the present model for a single rigid fiber.

We next consider the effect of fiber flexibility on the fiber rotation motion. The orbits of
the ends of the fibers during a 360° rotation, with various bending coefficients ks, in a
simple shear flow are shown in Fig. 5. The fibers were initially aligned with the flow
direction. It is clearly shown in Fig. 5 that the fiber deformation increases with decreasing
the bending rigidity, k. The loci of the ends of the fibers are not symmetric about the y-
axis. These results are supported by experimental data of Forgacs and Mason, who
noticed that such a behavior is due to the compression forces (in the second and forth
quadrants) and extension forces (in the first and third quadrants) experienced by single
fibers during their rotational motion.

The fiber motions in simple shear flow over a wide range of the bending rigidity are
shown in Figs. 6 and 7. The fiber was initially aligned in the x direction, and began to
rotate in the flow gradient plane. The time sequences of orbits of fibers with aspect ratio,

r, =11, are shown in Fig. 6. These results are in qualitative agreement with the

experimental observation of Forgacs and Mason, who noted five regimes of motion: (a)
Rigid motion, (b) S-turn, (c) snake turn, (d) springy rotation, and finally, coil formation
shown in Fig. 7, where the fiber aspect ratio was increased to, r,= 31. We recall that

simulations with such an aspect ratio of, », =31, may give unphysical results as the

excluded volume interactions were not included in the model. To obtain the snake turn
and the springy rotation, the fiber was initially given a small curvature, as shown in Fig.
6. Indeed, Forgacs and Mason also noted that the fiber deformed to an S-shape only when
it was highly symmetrical, i.e., entirely free of any permanent deformations. In Fig. 7 that
displays various stages of coil formation, it is clearly shown that, each end of the fiber
moves independently of the other, in qualitative agreement with the experimental
observation of Forgacs and Mason.

We now apply the model to predict critical flow conditions to break glass fibers, of
known ultimate tensile strength, &, , and Young’s modulus, E, as they rotate and deform

in simple shear flow of a Newtonian fluid. The experimental study on breakage of glass
fibers in simple shear was made by Salinas and Pittman [12]. In their work, the ultimate
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value to break glass fibers, E/o,, was measured for two types of glass fibers. They

noted that the breakage occurred when the radius of curvature along the fiber, R/a, falls
to about 231. They also derived a correlation equation relating, R/a, E/ny, and rp, that

is only valid for fibers with 280 <r, <680. Here, we wish to compare, qualitatively, the

predicted trend of, R/a, with the experimental data reported by Salinas and Pittman for
I1<r, <25, as the relative strength of the flow, 777/ E, increases. In Fig. 8 we show the

predicted minimum radius of curvature, R/a, which occurs at any point along the fiber
at any stage of its rotation as a function of, 1/ E, for various values of the aspect ratio,

rp. While the radius of curvature, R/a, decreases with increasing the flow strength, the
rate at which R/a decreases is an increasing function of 7, in qualitative agreement with
the data reported by Salinas and Pittman. The flow strength, 777/ E, necessary to reach a

radius of curvature of about, R/a =200, is increased by a factor of 10 as the aspect ratio,
#p, is reduced from 25 to 11. Considering that the critical radius of curvature at which
breakage occurs is about 231, we show in Fig. 9 the critical relative strength of the flow,
ny! E, to break glass fibers in simple shear flow as a function of the aspect ratio, r,. The
critical shear stress, 777/ E, at which fibers broke exhibits an exponential decrease with
increasing the aspect ratio, r,. The overall trend is in qualitative agreement with the data
of Salinas and Pittman, although the experimental data reported by them was for the
range of fiber aspect ratio of 280 <7, <400. These results show that the present model is

able to correctly reproduce, at least qualitatively, the deformation and breakage
conditions of single fibers, rotating in simple shear flow.

IV. CONCLUSIONS

A model for flexible fibers, consisting of a series of spheres, connected by stiff springs,
that incorporates stretching, bending and twisting rigidities was proposed for direct
simulation analysis of fiber deformation, and fiber breakage in simple shear flow. The
effects of some parameters such as bending rigidity, fiber aspect ratio, and flow strength
were discussed. The proposed model was validated. Overall, our numerical predictions
are in qualitative agreement with experimental data provided in the literature. The current
model also provides physical explanations about some mechanisms of fiber breakage. It
is clear that there is no unique route to the fiber breakage process seen in flowing or
processing of long fiber filled systems. Nevertheless, the present study suggests that, in
any complex flow involving a combination of shear, torsional, and extensional flows,
fiber breakage occurs when the minimum value of the ratio, 2/6,, or 2/, along the

fiber, falls to below a prescribed critical value or when the maximum value of the ratio,
qrr _rf'—l
deformation. These ratios depend on the shear stress, 77, the strain rate, £, the

mechanical properties of fibers, E, and G, the fiber aspect ratio, r,, along with the shape
of the flow domain. Although the real picture is more complicated because a more
complete description would also include interaction between fibers and the types of
breakage, the above cited parameters are the key factors for the fiber degradation process.

—Za)/ 2a, along the fiber exceeds a prescribed critical value, at any stage of
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Captions for figures

Figure 1. Flexible fiber modeled as a series of N rigid spheres connected by stiff springs.
(a) Configuration of a single fiber showing the bond vectors, ¢, and the bending angle 6, ,

and (b) two successive bonding spheres with the torsional angle v, ., .

Figure 2. The fixed space coordinate system {X, ¥, Z}, the local body coordinate system,
{m,n,t}, and the line of nodes, N. The three Euler angles, (¢,6,), are defined by a

sequence of three rotations. The first rotation is by an angle ¢ about the z-axis, the second
is by an angle @ about the line node N, and the third rotation is by an angle y about the
new f-axis. The resulting frame is {m,n,t}.

Figure 3. Bending deformation made by two adjacent bonds defined by three adjacent
spheres.

Figure 4. Dimensionless orbit period of rotation, 7%, as a function of fiber aspect ratio,

rp, in simple shear flow. Comparison between Jeffery’s theory for rigid ellipsoidal
particles with experimental data of Trevelyan and Mason [14] for cylindrical fibers, and
current model.

Figure 5. Polar plot of the loci of the ends of the fibers during rotation in simple shear
flow, as the flexibility of the fiber is increased from k, =10* (rigid fiber) to k, =107
(moderately flexible fiber).

Figure 6. Snapshots of rotational orbits of fibers with various flexibilities, in simple shear
flow. (a) Rigid motion with k, =10%, (b) S-turn with k, = 107, (c) snake turn with

k, =107, and (d) springy rotation with k, =3x107".

Figure 7. Snapshots of coil formation of a highly flexible fiber with k, =107, in simple
shear flow, at the different stages of coiling.

Figure 8. Minimum radius of curvature, R/a, which occurs at any point along the fiber at
any stage of its rotation in simple shear flow.

Figure 9. Critical shear stress, 777/ E, to break Pyrex glass fibers during flexible rotation
in simple shear flow, as a function of the aspect ratio, 7.
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Figure 1. Flexible fiber modeled as a series of N rigid spheres connected by stiff springs.
(a) Configuration of a single fiber showing the bond vectors, #, and the bending angle 6, ,

and (b) two successive bonding spheres with the torsional angle
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Figure 2. The fixed space coordinate system {X, ¥, Z}, the local body coordinate system,
{m.,n,t}, and the line of nodes, N. The three Euler angles, (¢,8,), are defined by a

sequence of three rotations. The first rotation is by an angle ¢ about the z-axis, the second
is by an angle @ about the line node N, and the third rotation is by an angle y about the
new f-axis. The resulting frame is {m,n,1}.
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Figure 3. Bending deformation made by two adjacent bonds defined by three adjacent
spheres.
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Figure 4. Dimensionless orbit period of rotation, 7%, as a function of fiber aspect ratio,
rp, in simple shear flow. Comparison between Jeffery’s theory for rigid ellipsoidal
particles with experimental data of Trevelyan and Mason [14] for cylindrical fibers, and
current model.
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Figure 5. Polar plot of the loci of the ends of the fibers during rotation in simple shear
flow, as the flexibility of the fiber is increased from k, =10* (rigid fiber) to k, =107

(moderately flexible fiber).
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Figure 6. Snapshots of rotational orbits of fibers with various flexibilities, in simple shear
flow. (a) Rigid motion with %, = 10%, (b) S-turn with k, =107, (c) snake turn with
k, =107, and (d) springy rotation with k, =3x107.



24

ty=0

YN

(=14 @ o 7
X
17=25 - S ;'

ty=30 s W—

ty=38 3,

Figure 7. Snapshots of coil formation of a highly flexible fiber with k, =107, in simple
shear flow, at the different stages of coiling.
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Figure 9. Critical shear stress, ny/ E, to break Pyrex glass fibers during flexible rotation
in simple shear flow, as a function of the aspect ratio, 7).



