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ABSTRACT: The process of pavement design requires the provision of material properties. 

For mechanistic–empirical design methods, the resilient modulus represents the most suitable 

alternative for describing the behavior of aggregate materials commonly used in sub-base and 

base layers. However, the adoption of the resilient modulus has been slow due to the 

complicated nature of the laboratory test used to obtain the parameter and its cost. Attempts to 

correlate the resilient modulus to the widely used California Bearing Ratio and other 

empirical parameters in the past fall short of providing reasonably accurate estimates of the 

parameter. With the renewed interest in using the resilient modulus as advocated by the 

AASHTO 2002 Guide, a quick and inexpensive solution to providing accurate estimates of 

this parameter is needed. This paper presents the artificial neural network (ANN) technique as 

a promising method that can help designers have a good first-step estimation of the resilient 

modulus based on data accumulated over the years. The study highlights the use of the ANN 

technique, which utilizes simple parameters as input to predict the resilient modulus of 

unbound granular materials. Results of ANN simulations confirm the potential of the 

technique to predict the resilient modulus of compacted samples tested at various compaction 

densities, states of stress and moisture contents. Such a tool represents an attractive alternative 

to laboratory testing for small jurisdictions with limited budgets and personnel. 
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1 INTRODUCTION 

Adequate characterization of pavement materials is a prerequisite to the development and use 

of any mechanistic – empirical design method. It also constitutes an important economic 

factor when evaluating viable design alternatives. However, due to the complex nature of 

materials used in roads, current characterization techniques involve many simplifying 

assumptions and require special testing capabilities to obtain the needed material parameters. 

With the advent of the new AASHTO Design Guide, much focus was given to the use of the 

resilient modulus (Mr) as the parameter of choice to characterize the load deformation 

response of unbound materials used in base and subbase layers. It is advocated that the 

mechanical response of these layers under traffic and in-service environmental conditions will 

be best described by the Mr parameter. Many techniques including laboratory testing, non-

destructive in-situ testing and correlations with empirical parameters, were proposed to 

measure the resilient modulus. However, laboratory determination, in the form of repeated 

loading tests, has been regarded as the most accurate method of obtaining the Mr property. 

The Mr is defined as the ratio of the deviatoric stress (σd) to the resilient strain (εr): 
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Laboratory determination of the resilient modulus of aggregate materials is elaborate and 

requires capital investment and special training. Currently, few jurisdictions in Canada have 

the required testing capabilities to determine the resilient behaviour of their unbound 

materials. Accordingly, other alternatives are needed to obtain this property.  

The AASHTO Design Guide incorporates the use of the resilient modulus at its three 

levels of design. At the advanced level (level 1), the new guide requires performing the actual 

resilient modulus test. At the other two basic levels (levels 2 and 3), no laboratory testing is 

sought, however, the provision of empirical inputs such as the California Bearing Ratio 

(CBR), the R-value or the material physical properties is required to estimate the mechanistic 

parameter. The accuracy of the resilient modulus obtained in this way is usually compromised 

due to its poor correlation with the CBR and other physical properties. 

The above-discussed difficulties encountered in obtaining the Mr property, pose a 

challenge to road authorities seeking to implement the new design guide. To remedy the 

situation and facilitate the task of Canadian jurisdictions in embracing the new design guide, 

the National Research Council Canada (NRCC) took the challenge of developing a master 

database that covers the main unbound material types found across Canada. Such a database 

will eliminate the need for extensive testing and will result in more accurate estimation of the 

resilient modulus property. The NRCC initiative has been faced with an enormous amount of 

testing required to cover different construction quality, traffic and environmental conditions 

and variations in materials encountered across Canada. This paper presents an attempt to use 

the artificial neural network technique as a tool to estimate the resilient modulus from 

accumulated test results and to populate the database to cover the wide range of factors known 

to affect the resilient behaviour of unbound materials. Section 2 presents an overview of the 

neural network modeling concept while Section 3 discusses the construction of the actual 

network used in the current research and its optimization. Sections 4 and 5 discuss the 

adequacy of the technique to recognize known tendencies in resilient modulus behaviour and 

the application of the technique to populate the database. Summary of findings are given in 

Section 6. 

2 ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks (ANN) are made of a number of neurons that are connected 

together in a way similar to the architecture of the human brain. This computational technique 

has the ability to learn in a way similar to people. It is capable of recognizing, capturing and 

mapping features known as patterns contained in a set of data mainly due to the high 

interconnections of neurons that process information in parallel. A network that has learned 

the patterns defining the relationship between the input and output of a certain test or process 

can later be used to predict new conditions for which the results (output) are not known. 

Presenting a network with facts for which the input and output are known to delineate the 

embedded patterns is an integral part of the ANN modeling process. 

 A network is made up of three or more layers. The first layer contains the input 

parameters while the last layer contains the output (solution). One or more layers known as 

hidden layers are usually placed between the input and output layers. The hidden layers 

constitute the network’s means of delineating and learning the patterns governing the data that 

the network is presented with.  

 There are many ways a neural network can be trained. The back propagation technique 

is the most popular process and has been used in many fields of science and engineering such 
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as construction simulation (Flood 1990 and Moslehi et al. 1991), constitutive modeling 

(Rogers 1994) and structural analysis (Garrett et al. 1992). In a back propagation learning 

process, training is accomplished by assigning random connection weights to the connections 

and calculating the output using the present connection weights. At a second stage, the 

process involves back propagating the error defined as the difference between the actual and 

computed output through the hidden layer(s). This procedure is repeated for all training facts 

until the error is within a certain tolerance. The final network with final connection weights is 

then saved to serve as a prediction model. 

3 NETWORK BUILDING AND OPTIMIZATION 

In general, the development of ANN involves defining the number of inputs, outputs, and 

nodes in one or more hidden layers. The input layer size is generally predetermined based on 

the parameters known or suspected to affect the targeted output(s). However, the number of 

hidden layers as well their nodes is usually determined by a-trial-and-error procedure. 

Determination of the number of hidden layers and their nodes involves training, and testing 

the built network against test sets made of examples with known input and output (database). 

3.1 Planning the Mr Investigation 

Previous experimental work performed in the last four decades showed that the resilient 

modulus of unbound granular materials is influenced by a number of factors. Much of the 

research focused on quantifying the effects of these factors on the resilient modulus. Several 

studies (Hicks 1970, Robinson 1974, and Rada and Witczak 1981) showed that increasing 

compaction density results in a corresponding increase in the resilient modulus. On the other 

hand, increasing the moisture content of the material beyond its optimum was found to 

decrease the resilient modulus (Hicks 1970, and Dawson et al. 1996). The state of stress that 

the material is subjected to was also found to influence the resilient modulus to varying 

degrees. Hicks (1970), Smith and Nair (1973) and Sweere (1990) have shown that the 

resilient modulus increases with an increase in confining pressure. Hicks (1970) reported that 

the deviator stress has almost no effect on the resilient modulus while Brown (1974) showed 

that this parameter has a significant effect on the resilient modulus, especially, at high stress 

levels. Recent work completed at NRCC (Khogali and ElHussein, 2004) showed that the 

amount of percent fines passing sieve # 200 (0.075 mm) has a major impact on the resilient 

modulus of unbound materials. 

Using a data set of laboratory determined Mr values from earlier research work 

performed at NRCC, an ANN investigation was initiated to examine the effectiveness of the 

analytical technique in expanding the database without the need for further testing. The 

laboratory database used included Mr values that were obtained under different conditions of 

density (89 – 98% of Modified Proctor density), moisture (3 – 7% representing 2.5% dry of 

optimum to 1.5% wet of optimum), deviator stress (30 – 85 kPa) and percent fines (2 – 18%).  

Careful examination of the lab data revealed inconsistency of some of the Mr values, which 

was believed to be attributed to measurement errors and/or equipment malfunction. Based on 

this observation, it was decided to perform the ANN simulations in two stages: one using the 

full set and another using a sub-set of the database after eliminating values that are suspected 

to be incorrect. In the following discussion the full set will be referred to as Set 1 while the 

reduced set will be referred to as Set 2.  
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3.2 Network Architecture  

In this study, a single output (Mr) is chosen. The inputs included compaction density, 

moisture content, deviator stress and percent fines passing sieve # 200 (75μm). Through trial 

and error it was found that using more than one hidden layer did not improve the accuracy of 

the predictions, leaving the number of nodes in the single hidden layer as the only unknown 

parameter to be determined.  

The number of nodes in the hidden layer was investigated to arrive at a robust network 

with acceptable predictions. The investigation consisted of two stages. In the first stage, the 

complete data (Set 1) was used to train the network with varying number of nodes in the 

hidden layer. Ten percent of the data was randomly set aside for testing the trained network 

and another ten percent of the data was reserved for comparing the predictions of the built 

network with laboratory obtained data. The effect of the number of hidden nodes on the 

accuracy of the network was measured by the percentage “Absolute value of the Relative 

Error” (ARE) defined as: 

 

ARE = abs. {(Xprediction-Xactual)/Xactual} x 100%..................................................................... (2)   

 

 The effect of the number of hidden nodes on ARE, using Set 1, is displayed in Figure 1 

as run 1. It is clear that the number of nodes in the hidden layer plays a major role in the 

accuracy of the network. From the results of the investigation that was carried out on Set 1, an 

optimal number of 12 was found to provide the greatest accuracy for the trained network. To 

confirm the results obtained in run 1 and to check the robustness of the network developed, 

another run was performed. This time the ten percent of the data set aside for predictions 

initially was put back into the database and a new training session was performed. The result 

of this exercise was the curve labeled as run 2 in Figure 1. Examination of run 2 reveals that 

there is no optimal number of hidden nodes that minimizes the ARE value. This trend, which 

contradicts the results obtained before for run 1, hints at the existence of contradictions within 

the laboratory data set. This observation confirms the initial belief that some of the Mr values 

contained in the original database may be in error.  

 The inconsistency observed when Set 1 was chosen for training, motivated re-training 

of the network using the data contained in the smaller set (Set 2). The exercise involved 

training different networks with varying number of nodes in the hidden layer as was done 

before with data Set 1. Two runs (1 & 2) were again performed in a manner similar to that 

done for Set 1 and the results obtained are depicted in Figure 2. Interestingly, the optimum 

number of nodes was found to coincide with that determined previously for Set 1 i.e. 12 

nodes. This time, however, the two runs produced the same consistent results, which confirm 

the adequacy and robustness of the newly trained network. This network was retained and was 

later used to check known trends in resilient modulus behaviour. Furthermore, the newly 

developed network was used to populate a generic material library that can be used to provide 

Mr material input for design and analysis exercises involving unbound road layers.  
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Figure 1: Effect of number of hidden nodes on the accuracy of the trained network using Set 1  

 

 

Figure 2: Effect of number of hidden nodes on the accuracy of the trained network using Set 2 
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4 ADEQUACY OF THE TECHNIQUE 

To ensure that the ANN model (Section 3) had effectively learned the features that are known 

to affect the resilient modulus, the trained network was used to check known material 

behaviour trends related to variations in density and moisture content. Predictions generated 

by the ANN model were compared with trends established in the literature for these two 

variables. Figure 3 shows the results of predictions obtained for an aggregate material with 

7% fines content, which was compacted at its optimum moisture content of 5.3% and tested 

under a stress level of 50 kPa. It is evident that the ANN model is capable of reproducing the 

known effect of density on the resilient modulus. Upon increasing compaction density, while 

keeping all other factors constant, the resilient modulus increases. An increase in density of 

4% (from 90 to 94%) for example, produced an increase in the resilient modulus of about 

25% (from 139 to 179 MPa). Figure 4 displays predictions made for the same aggregate 

material (with 7% fines), compacted at 90% of its maximum Modified Proctor density and 

under a stress level of 50 kPa. Examining Figure 4 confirms again the ability of the ANN 

model to delineate the effect of moisture content on the resilient modulus (an increase in 

moisture is accompanied by a decrease in Mr). 

Figure 3: Effect of density on the resilient modulus as predicted by ANN model 

5 APPLICATION: POPULATING THE DATABASE  

After ensuring the adequacy of the ANN model developed, the analytical technique was used 

to populate the original laboratory database. For the granular material studied in this paper, 

the original database containing an initial 50 test results was expanded to include more than 

5000 data points covering the ranges of variables in increments of 1% for density, 0.5% for 

moisture content, 5 kPa for stress level and 2% of percent fines. An example illustrating the 

population of the database for a single percent fines of 7% and moisture content of 5.0% and 

covering the whole range of density (89 – 98%) under 3 stress levels (35, 45 and 85 kPa) is 

given in Table 1. The original lab values used in this example are the entries shown in shaded 
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colour in Table 1. To further confirm that the trained network is capable of representing 

known trends, the data obtained for two stress levels were compared as shown in Figure 5. 

The curves substantiate again that an increase in density results in an increase in the resilient 

modulus. Furthermore, increasing the stress level also results in a corresponding increase in 

the modulus. Figure 5 also suggests that the rate at which the modulus increases with density 

is higher for higher stress levels and that there is no gain in the modulus beyond the 98% 

density (an observation that is supported in the literature). 

Figure 4: Effect of moisture content on the resilient modulus as predicted by ANN 

 

Figure 5: Stress sensitivity of aggregate material as confirmed by ANN simulations 
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Table 1: Illustration of the population process of database 

Stress level 

(kPa) 

Density 

(% of MMPD*) 

Resilient modulus 

(MPa) 

35 90 140 

35 91 146 

35 92 151 

35 93 156 

35 94 159 

35 95 163 

35 96 167 

35 97 173 

35 98 178 

35 99 180 

35 100 180 

45 90 136 

45 91 138 

45 92 145 

45 93 156 

45 94 170 

45 95 184 

45 96 199 

45 97 212 

45 98 222 

45 99 224 

45 100 226 

85 90 103 

85 91 108 

85 92 115 

85 93 126 

85 94 141 

85 95 162 

85 96 187 

85 97 215 

85 98 242 

85 99 268 

85 100 289 

                             * MMPD: Maximum modified Proctor density 

6 SUMMARY AND CONCLUSIONS 

The 2002 AASHTO design guide requires the use of the resilient modulus to characterize 

unbound materials used in base, subbase and subgrade layers of roads. However, the resilient 

modulus test is elaborate and costly. In addition, only a limited number of jurisdictions have 

the required testing capabilities and human resources to perform such a test. The adoption of 

the design Guide will be hampered by such limitations unless other options are made 

available to generate such material input. This paper presents the artificial neural network as 

an alternative to performing the test to cover the wide spectrum of factors that are known to 

influence the Mr parameter. Results obtained from the current study showed that the ANN 
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technique is a valuable tool that has the capability of picking up known trends and can 

effectively be used to expand existing databases. From the limited results shown in this paper, 

the ANN technique confirmed known influences of density, moisture content and deviator 

stress on the resilient modulus. The study also illustrated the ability of the analytical 

technique to be used as a quality control tool to eliminate data with questionable reliability. 

Although not discussed in this paper, the neural network can also be used to better plan 

laboratory testing activities to cover wider ranges of variables and to permit a more rigorous 

testing of the data generated. 
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