
Publisher’s version  /   Version de l'éditeur: 

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez 

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous 
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 
first page of the publication for their contact information. 

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

2005 ASME Summer Heat Transfer Conference [Proceedings], 2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=d123902b-93aa-47fd-b486-beefd58209f5

https://publications-cnrc.canada.ca/fra/voir/objet/?id=d123902b-93aa-47fd-b486-beefd58209f5

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. 
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

On the implementation of stream-wise periodic boundary conditions
Beale, Steven



 1 Copyright © 2005 National Research Council of Canada 

Proceedings of HT2005 
2005 ASME Summer Heat Transfer Conference 

July 17-22, 2005, San Francisco, California, USA 

HT2005-72271 

ON THE IMPLEMENTATION OF STREAM-WISE PERIODIC BOUNDARY CONDITIONS 
 

Steven B. Beale 
 

National Research Council 
Montreal Road 

Ottawa Ontario K1A 0R6 Canada 
steven.beale@nrc-cnrc.gc.ca 

 
 
ABSTRACT 

Fully-developed periodic boundary conditions have 
frequently been employed to perform calculations on the 
performance of typical elements of heat exchangers. Many such 
calculations have been achieved by transforming the equations 
of motion to obtain a new set of state variables which are cyclic 
in the stream-wise direction. In others, primitive variables, 
based on substitution schemes are employed. In this paper; a 
review of existing procedures is provided, and a new method is 
proposed. The method is based on the use of primitive variables 
with periodic boundary conditions combined with the use of 
slip values. Either pressure difference or mass flow rate may be 
prescribed, and both constant wall temperature and constant 
heat flux wall conditions may be considered. The example of an 
offset-fin plate-fin heat exchanger is used to illustrate the 
application of the procedure.  The scope and limitations of the 
method are discussed in detail, and the mathematical basis by 
which the method may be extended to the consideration of 
problems involving mass transfer, with associated continuity, 
momentum, and species source/sinks is proposed.  

 
INTRODUCTION 

In the application of computational fluid dynamics to heat 
exchanger design, it has long been recognized that much 
computational effort may be spared by considering elements 
deep within the design where the flow is ‘fully-developed’; for 
example; Thom and Alpelt [1], LeFeuvre [2], and Massey [3] 
considered fully-developed flow in tube banks assuming a 
cyclical 2-D stream function/vorticity formulation. In [2,3] 
temperature was also solved-for. 

More recently, the equations of motion are usually solved 
in terms of primitive variables, for which the steady-state form 
is typically written, subject to certain simplifications, as: 

 ( ) 0div =ρu , (1) 

 ( ) ( )uuu graddivgrad;div µ+−=ρ p  (2) 

 ( ) ( )TkTcp graddivdiv =ρ u  (3) 

For convenience, and without loss of generality it is 
assumed that the region has been tessellated with a structured 
mesh with associated finite-volume equations [4]: 

 
( ) ( ) ( ) ( )

( ) ( ) 0=+φ−φ+φ−φ+
φ−φ+φ−φ+φ−φ+φ−φ

Saa

aaaa

PHHPLL

PNNPSSPEEPWW
 (4) 

where Twvup ,,,,=φ  is a general state-variable, and the well-

known compass notation [4] has been employed. The source-
term in Eq. (4) is frequently linearized according to 

 ( )PVCS φ−=  (5) 

where S is referred to as a source-term coefficient and V is a 
source-term value. 

A problem frequently encountered is that it is difficult to 
construct a mesh large enough to describe the gross motion of 
the fluid within the entire heat exchanger, and yet fine enough 
to capture the boundary-layer detail around individual elements 
[5,6].  Often a single ‘typical’ module, or perhaps a small group 
of such modules, is considered, with the flow taken as being 
‘fully-developed’ in the stream-wise direction, 

 ( ) ( )zylzy ,,,,0 uu =  (6) 

 ( ) ( ) 0,,,,0 pzylpzyp ∆+=  (7) 

where 0p∆  is the pressure drop over characteristic length, l. 

NOMENCLATURE 
 
A Area, m2 
a Coefficient in finite-volume equation 
B Mass transfer driving force 
b Width, m 
C Value in linearized source term 
cp Specific heat, J/kgK 
f Friction factor 
j Heat transfer factor 
k Thermal conductivity, W/mK 
l Length, m 
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T Temperature, K 
u Stream-wise velocity component, m/s 
v Cross-wise velocity component, m/s 
w Cross-wise velocity component, m/s 
p Pressure, Pa, pitch, m 
V Value in linearized source term 
Vp Volume of cell P, m3 
x Stream-wise displacement component, m 
y Cross-wise displacement component, m 
z Cross-wise displacement component, m 
 
Greek Letters 

β Volumetric term 
δ Fin thickness 
φ Generalized state variable 
Γ Exchange coefficient, kg/ms 
θ Non-dimensional temperature 
ρ Density, kg/m3 
σ Volumetric term 
τ Characteristic time, s 
ω Weighting factor 
 

REVIEW OF PREVIOUS WORK 

Transformed variable approach 
Patankar Liu and Sparrow [7] transformed the state-

variables to a set of equations which were truly cyclic in the 
sense: 

 ( ) ( )zylxzyx ,,,, +φ=φ  (8) 

This was achieved in the momentum equations by defining 

a ‘reduced’ pressure, p~ , according to: 

 xpp β−=~  (9) 

where lp0∆=β  and ( ) ( )lppp 000 0 −=∆  is a reference 

pressure difference. The reduced pressure, p~ , is thus cyclic in 

the sense of Eq. (8); the pressure, p, may be obtained 
algebraically at the end of the computational cycle, if required. 
The momentum equation may readily be written in the form, 

 ( ) ( )uuu graddiv~gradˆ;div µ+−β=ρ pi  (10) 

Thus when solving for p~ , a volumetric source term, 

pVS β=  is introduced into the x-direction momentum 

equation. Pressure gradient, as opposed to mass flux or 
Reynolds number must be prescribed. Subsequently, Murthy 

and Mathur [8] suggested a rationale whereby β may be 
systematically adjusted until the desired mass flux is obtained. 

For heat transfer at constant wall flux, ''wallq� , an 

essentially similar situation exists with, 

 0),,(),,( TzylxTzyxT ∆++=  (11) 

A reduced temperature, T
~

, may be defined as, 

 xTT γ−=
~

 (12) 

where lT0∆=γ and T
~

 is cyclic. The transformed energy 

equation is: 

 ( ) ( )TkuTc p

~
graddiv

~
div =γ+ρ u  (13) 

and a source term pVuS γ−=  is introduced in the energy 

equation. 

For constant wall temperature Twall, a non-dimensional 

temperature, θ, may be defined as; 

 
wall0

wall

TT

TT

−
−

=θ  (14) 

where T0(x) is some suitably-defined module reference 
temperature; for example, the local bulk temperature at x. The 

non-dimensional form of the energy equation with θ as state-
variable is less straightforward 

 ( ) ( ) σ+θ=θρ graddivdiv kcpu  (15) 

where 
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These various implementations have been adopted by 
numerous researchers, for example Patankar and Prakash [9], 
and at least one commercial CFD code has been modified to 
allow for solutions to equations of the form (10)-(16) to be 
incorporated for stream-wise periodic problems. The reader 
will note that it is necessary to modify wall boundary 
conditions in the reduced form of the transport equations, see 
[7] for details.  

Because of the additional complexity associated with the 
solution of Eqs. (15) and (16); alternative formulations, Kelkar 
and Patankar [10], have been proposed based on a primitive-
variable formulation, for constant Twall problems. In this paper, 
all solved-for variables are primitive variables, regardless of the 
choice of wall boundary conditions. 

Primitive variable approach 
The present author did not adopt the methodology [7] but 

instead worked directly with the primitive variables, p, u, v, w, 
T, in previous work [11-13]. The reasons for this were as 
follows: (a) There is no need to introduce new state-variables: 
(b) Reynolds’ number can be directly stipulated; (c) Constant 
Twall boundary conditions may readily be prescribed; (d) Flow 
symmetry may be exploited for staggered or offset geometries, 
halving the required number of grid cells. In the primitive 
formulation, the temperature, T, is given by, 

 ( ) ( ) 21 ,,,,0 czylTczyT +=  (17) 

where 
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�

�  (18) 

The periodic boundary conditions were implemented by 
the addition of an additional line of ‘halo’ cells downstream, at 

1+= nxi ; a procedure which had been adopted previously by 
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Antonopoulos [14-16]. This approach was employed because 
non-standard grids, which could not readily be connected 
together in a structured manner, were employed. 

Downstream velocity and temperature values were 
substituted upstream in the continuity, momentum, and energy 
equations in the normal sense as convected inlet boundary 
values; temperatures being scaled according to Eq. (17).  The 
downstream pressure values at 1+= nxi  were fixed to the 

upstream values as ( ) ( ) 0,1,1 pjpjnxp −=+ . The mean 

pressure at 1=i  was chosen as the reference pressure, p0; and 

thus ensured that the mean downstream pressure was zero, as 
the upstream values rose to some finite value. In addition the 
upstream velocity profile was scaled so as to render the desired 
overall Reynolds number.  This scheme corresponded to the 
common practice of prescribing upstream boundary values and 
fixing the outlet pressure. The early methodology presumed no 
re-circulation to occur at the upstream/downstream boundaries; 
a situation sometimes referred to as ‘locally parabolic’ [4]. This 
requirement was subsequently relaxed by means of a double-
substitution process whereby upstream values of velocity and 
temperature were also substituted downstream [12,13]. 

One advantage of the use of primitive variables is that 
transient problems may also be considered [17]; 

 ( ) ( )τ+= tzyltzy ,,,,,,0 uu  (19) 

 ( ) ( ) 21 ,,,,,,0 ctzylTctzyT +τ+=  (20) 

In that case, downstream values were stored in a ‘ring-

buffer’ and substituted upstream after time τ (substantially 
longer than the characteristic period of oscillation of the 
system) has elapsed. This allowed-for span-wise amplification 
of small periodic oscillations (vortex-shedding, wake/shear 
layer instabilities) to be successfully replicated. 

The use of periodic boundary conditions is not confined to 
heat transfer problems. Comini and Croce [18] considered 
periodic mass transfer in tube-fin heat exchangers under 
conditions of prescribed wall value, based on local saturation 
conditions for an ideal gas mixture. Beale [19] considered 
fully-developed mass transfer in plane and square ducts. The 
velocity and scalar profiles were presumed similar according to 

 ( ) ( )lcuu =0  (21) 

with ( ) ( )lvv =0  and ( ) ( )lww =0 ; the upstream bulk velocity 

being fixed to some value u0. 
For scalar transport, a constant transformed substance-

state boundary condition, as opposed to constant wall flux or 
constant value, was presumed. Periodicity is imposed with 

 ( ) ( ) 210 clc +φ=φ  (22) 

by computing ( ) ( )( ) ( ) ( )( )llc wbwb φ−φφ−φ= 001  and 

( ) ( )lcc ww φ−φ= 12 0  in a manner analogous to Eq. (17). The 

upstream wall value must be computed, 

( ) ( ) ( )( ) ( )( )lBlB tbw +φ+φ=φ 100 , where B is a mass transfer 

driving force [20]. 

PRESENT CONTRIBUTION 
The problem addressed in this paper is the means whereby 

periodic boundary conditions may be reduced to cyclic 
conditions in the primitive-variable formulation, without the 
cumbersome step of introducing ‘halo’ cells. The solution is 
achieved by imposing ‘slip’ boundary conditions at the grid 

edges in the x-direction. Slip boundary conditions are naturally 
encountered, for example in the temperature field in radiative 
heat transfer problems, and elsewhere. 

Momentum equation 
No special treatment is required in the continuity (pressure 

correction) equation, or the cross-wise v and w momentum 
equations. For stream-wise u-momentum the situation is 
extremely simple: All that is required is that a constant step be 
imposed as a force corresponding to the overall pressure change 

 0pAS P∆=  (23) 

along a single y-z plane of cells. The pressure slip may be 
applied at any location in the domain, however if it is applied at 
the system boundary, i = nx, there is the superficial advantage 
that graphical post-processing software may not interpolate 
between the two values, producing spurious bands of iso-values 
within the computational domain. Figure 1(a) illustrates the 
notion schematically, for the case of a staggered scheme [21]. 
The in-cell pressure must also be fixed, elsewhere, to some 
reference value at one cell in the computational domain, in 
order to prevent the pressure field from wandering. 

If it is desired that the bulk velocity, u , or Reynolds’ 

number, be prescribed; the imposed pressure difference, ∆p0, 
may be adjusted: 

 '* 000 ppp ∆+∆=∆  (24) 

where *0p∆ is the value of the pressure difference at the 

previous iteration, and '0p∆ is a pressure correction. Since in 

the SIMPLE algorithm [22] ( )'' EPe ppbu −=  where 

EePe aApub =∂∂= , it may be concluded that, 

( ) ∑∑ −=∆ eee Auuap *'0  or ( )*'0 euuRp −=∆ . The choice 

of R is not critical, and need only be sufficiently accurate as to 
procure rapid convergence. Neglecting stream-wise diffusion 
and applying an order of magnitude analysis yields the 
following simplified relation; 

 ( )*'0 uuup −ρ=∆  (25) 

which is identically true in the lim uu →* . This methodology 

is similar to, but simpler than that given in ref. [8]. 

Heat transfer 
For the temperature field there is a slip; not in the flux or 

source, but in the actual value across the boundary faces: A 
different treatment is required: It is necessary to prescribe a 
source/sink pair.  The reader will note that these are not 
necessarily equal and opposite, owing to the well-known non-
linear property of the convection-diffusion system of equations 
[4]. 

Various means to code the slip temperatures at x = 0 and 
x = l. are available; (i) If the user has access to the neighbor 

values, φW and φE, in the finite-volume equation, Eq. (4); it will 
be possible to directly add/subtract the T∆  slip-values, from 
the neighbors, TE and TW. (ii) If, however, the user does not 
have access to the neighbor values, as is more often the case, 
then it is convenient to introduce a pair of linearized source 
terms: 

 ( )PWW TTaS −∆=     at i = 1 (26) 
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 ( )PEE TTaS −∆=     at i = nx (27) 

 
 

Figure 1 Slip boundary conditions for a staggered 
scheme, constant wall flux, . 

 

where the slip values, WT∆  and ET∆ , are the differences 

between the actual temperatures and the ‘apparent’ 
temperatures that would arise if the field were truly periodic. If 

WT∆ is positive then ET∆  is negative, and vice-versa. 

These source terms are easily coded simply by setting 

C = anb and V = ∆Tnb in Eq. (5) where the subscript ‘nb’ refers 
to the east or west neighbor value. The linking coefficients aE 
and aW must be computed using exactly the same scheme 
employed in the CFD solver. 

For the case of constant wall flux, ''wallq� , the temperature 

difference is constant, 0TTW ∆=∆ , 0TTE ∆−=∆ , and Fig. 1(b) 

illustrates schematically the coding of the source-sink pair. It is, 

in theory, possible to directly obtain pcmqT ��=∆ 0 [7], and code 

this as a fixed flux (source): However, the in-cell temperature 
must then be prescribed to a constant value at some chosen 
location, T = Tref, as above. The temperature (enthalpy) slip 
must precisely balance the net heat flux at the wall. If there is 
even the slightest error in the value of the computed value of 

0T∆ , e.g. for complex geometry, the error will be manifested as 

distortion in the region near the cell with fixed temperature.  
For this reason the author chooses to prescribe the temperature 

as a linearized source term; for example WaC =  and 

0TV ∆±= , upstream in Eq. (5). The source-term value is 

adjusted iteratively until the upstream in-cell temperature 
reaches the desired reference value, 

 ( ) ( )lTTT 000 0 −=∆  (28) 

In other words T0(l) is a fetched-value of T at some chosen 
location, or the mean-value downstream, during the iterative 
cycle, whereas T0(0) is a constant value prescribed by the user 
(e.g. T0 = 0). 

For the case of constant Twall, WE TT ∆−≠∆ , the 

implementation is similar to that in [10]. It is readily apparent 
that the temperature slip may be obtained from, 

 
( ) ( )

wallwall0

00

wall )(

0

TT

T

TlT

TlT

TT

T

W

W

E

E

−
∆

−=
−
−

=
−

∆
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From whence the source-term values for the general case may 
be written as; 

 ( ) 21 1 cTcV W +−=     at i = 1 (30) 

 ( ) 211 cTcV E −−=     at i = nx (31) 

where TW is the west neighbor at i = 1 (i.e. TP at i = 1) and TE is 
the east neighbor at i = nx (i.e. TP at i = 1). Once again, the 
source-term coefficients in Eq. (5) are just aW and aE.. Eqs. (30) 
and (31) may be written in compact form as 

( ) 2nb11 cTcV ∓−±= . 

CASE STUDY: OFFSET-FIN HEAT EXCHANGER 
The problem considered to illustrate the methodology is 

that of fully-developed conjugate heat transfer in a 3-D offset-
fin plate-fin heat exchanger under laminar flow conditions. 
Numerical solutions to this problem were previously presented 
in [11,12] using the ‘halo’ cell method. Figure 3 shows the 
geometry. The design selected was Core 105 from Shah and 
London [23,24]. Two plates separated by a distance b are 
considered to be at constant wall temperature Twall.  A 

rectangular strip-fin, length, l, thickness δ, is offset at pitch, p. 

A computational domain of 2l×p/2×b corresponding to two 
complete modules was constructed. Geometry and properties 
are given in Tables 1 and 2, respectively. 

The flow Reynolds number was prescribed and the 

resulting ∆p0 adjusted according to Eq. (25). Temperature slip 
was prescribed according to Eqs. (30) and (31) with the 
constants c1 and c2 computed according to Eq. (18). Figures 2, 
4, and 6 display velocity vectors, pressure and temperature 
contours for plan and elevation views of the heat exchanger. 

Overall friction and heat transfer factors are computed 
according to 

 
2

0

2 b

h

ul

pD
f

ρ

∆
=  (32) 

 ( )1

32 lnPr c
A

A
j c=  (33) 

where ( )( )δ−δ−= pbAc 2  is the minimum free-flow area and 

( ) ( ) ( )δδ−+δ+δ−+δ−= pbplblA 222  is the area for heat 

transfer. These are compared to experimental values in Fig. 5. It 
can be seen that agreement in the laminar flow regime is quite 
good. 
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 Figure 2 Velocity vectors, Re = 500. 

 

 

 

Figure 3 Offset-fin plate-fin geometry.  Figure 4 Pressure contours, Re = 500. 
 

 

Figure 5 Friction and heat transfer factors compared 
with available experimental data. 

 Figure 6 Temperature contours, Re = 500. 

 
 
 

Table 1. Dimensions for Core 105. 

  
 
 

Table 2. Fluid properties. 
Quantity Value 

(mm) 
b  1.905 
p   1.054 
l  2.822 

δ 0.1016  

 Quantity Value   

ρf 0.9944  (kg/m3) 

µf 20.82x10-6 Pa.s 

k 0.03035 W/mK 
cp 1.016 x10-3 J/kg.K  
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DISCUSSION 
The results show that it is possible to code stream-wise 

periodic problems in primitive form with cyclic boundary 
conditions, by the selective introduction of slip boundaries. For 
problems involving fluid mechanics and heat transfer, the 
approach proposed in this work offers the advantages that 
storage does not require to be allocated for additional ‘reduced’ 
variables. Moreover the implementation of the slip boundary 
value is essentially replicating, in a mathematical manner, that 
which occurs naturally. It is true that the slip conditions must 
be coded, but this is offset by the fact that the wall boundary 
conditions are in the standard form, i.e. do not require 
modification. 

Of course it might be argued that even if Eqs. (15) and (16) 
are somewhat inelegant; provided the implementation of 
reduced variables is hidden from the user, the means is 
inconsequential to the engineer; so long as a correct solution is 
obtained. Notwithstanding the above, the primitive variable 
formulation is easy to code and offers clear advantages, not 
only for the constant wall temperature problem, but potentially 
for fully-developed mass transfer problems. 

The reader will note for the case of locally-parabolic flow 
at sufficiently high Reynolds number; upstream 

wP TuAcS ∆ρ= , and downstream 0=S  as expected. For the 

case of pure conduction; ( ) xTTAS p δ−∆Γ= , both upstream 

and downstream. The reader will note that for constant Twall the 

∆T slip values are not necessary equal on either side of the 
boundary.  

The simple method devised to adjust the pressure jump 
based on a desired reference bulk velocity or Reynolds number, 
as given in Eq. (25), was found to work well for the problem 
under consideration, and others (not shown). 

Choice of reference values 

The choice of reference value, φo, is not exclusive; One 
obvious possibility is that of the weighted mean value at x =  L, 

 

∫

∫
ω

ωφ
=φ

A

A

dA

dA

0  (34) 

where ω is a weighting factor. The most commonly-used 
weighting factor is the velocity, u=ω , i.e., the so-called bulk 

value, φ=φ0 . It has also been suggested [7] that for re-

circulating flows a more appropriate weighting in Eq. (34) is 

velocity magnitude u=ω ; a discussion of some of the issues 

may be found in [12]. For computing a reference pressure, p0, 
the weighting factor would normally be unity. 

Another basis for the reference value, φo, is a module 
average value, 

 

∫ ∫

∫ ∫ φ
=φ

l

A

l

A

dxudA

dxdAu

0

0
0  (35) 

Another very convenient reference φo, is the in-cell value at 
some particular location, say j = j0, k = k0. Finally it is worth 

noting that φo, need not correspond to any particular x-location; 
i.e., it could be at some offset i = i0+n. Provided a consistent 
practice is adopted, there is a great deal of flexibility in the 

choice of φ0. In other words, the choice of weighting factor is 
rather arbitrary, but is usually chosen to correspond to some 
well-established norm in fluid mechanics or heat transfer. 

Mass transfer 
There are numerous problems involving mass transfer with 

finite wall velocity, vwall. A fully-developed periodic condition 

with a similarity velocity profile, ( ) ( )lcuu =0  can be presumed, 

where ( ) ( )luuc 00 0= . Putting 

 ( ) ( ) wall

flow

wall
000 0 v

A

A
luuu =−=∆  (36) 

In the continuity (pressure-correction) equation, a single 
constant sink equal and opposite to the overall mass source (or 
vice-versa) at the wall is required: 

 ( ) ( )lucAuAS ww 1−ρ−=∆ρ−=  (37) 

In the u-momentum equations it is also necessary to 
introduce a velocity slip, analogous to the temperature slip, on 
either side of the continuity cells for which Eq. (37) is applied, 

 ( ) nb1 ucV −±=  (38) 

The momentum equations may further be complicated by the 
fact that the source-term coefficients may also need to be 
corrected. 

With these modifications; future work will include 
examples of 3-D fully-developed periodic mass transfer 
problems: Previous works on this subject by other authors 
[18,25] were primarily for low mass flow rates; where no 
continuity modifications were implemented. At higher mass 
flow rates injection/suction rates have a significant impact on 
the v-velocity, pressure gradients and scalar transport, which 
cannot be captured merely by neglecting the impact on 
continuity of mass transfer. While it might, in theory, be 
possible to incorporate these effects by defining a ‘reduced 
velocity’ satisfying a cyclic form, Eq. (8), for continuity; the 
resulting momentum equation will contain quadratic terms and 
may not therefore be readily amenable to such a treatment. 

CONCLUSIONS AND FUTURE WORK 
Periodic boundary conditions may readily be coded, based 

on a primitive variable formulation for fluid mechanics and 
heat transfer problems. This is achieved by combining cyclic 
boundary conditions with the use of slip values. The latter are 
introduced as linearized source terms. 

The methodology has the advantages that no new variables 
need be introduced, and that standard wall boundary conditions 
may be used. Moreover it corresponds physically to the actual 
situation at hand. It may readily be implemented in existing 
CFD codes with only minor modifications. Either a mean 
pressure gradient, or a reference velocity/flow Reynolds 
number may be prescribed using a simple algorithm.  

Although the work presented here was based on a finite-
volume method, with a structured mesh, and employing a 
staggered scheme; the technique is quite general and may 
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readily be applied to; unstructured meshes, schemes employing 
co-located variables, and other methodologies such as finite-
element analysis. The technique will be extended in the future, 
to consideration of engineering problems involving mass 
transfer under constant transformed substance state with 
associated variation in the continuity, momentum, and species 
fields. 
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