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Abstract. We describe the application of mathematical models in the study of
disease epidemics with particular focus on pandemic influenza. We outline the
general mathematical approach and the complications arising from attempts
to apply it for disease outbreak management in a real public health context.

1. Introduction. A standard scientific practice is to formulate an explanation for
an observed phenomenon and then test this formulation by projecting the out-
come of various experiments under pertinent conditions. Projections are generally
compared with experimental data. If there is agreement, the explanation can be ac-
cepted as a valid theory, whereas discrepancies point to a need for reformulation of
the explanation. A model that describes the main features of the phenomenon, often
represented mathematically, can frequently be used for this purpose. If the phenom-
enon is the spread of an infectious disease in a population, a model may provide an
explanation that may be applicable to a future epidemic with similar characteristics
or for near-future or real-time forecasting. Experiments with disease transmission
are, to a large extent, impossible. While small-scale animal experiments have been
performed, they generally fail to represent a true picture of population-wide spread,
and experiments with human diseases are ethically challenging. As a consequence,
the experimental data for model input generally originate from past documented
epidemics. For example, concern about an influenza pandemic led to much study
of the 1918 influenza pandemic [68].

Although models for disease outbreaks [36, 63] were originally developed by pub-
lic health physicians, the mathematical and public health approaches to the formu-
lation of such models have diverged over the years, and a communication gap has
developed. Recently, especially following the Severe Acute Respiratory Syndrome
(SARS) epidemic in 2003, there have been strenuous efforts to bridge this gap. The
magnitude of such efforts is highlighted particularly for pandemic influenza planning
through the development of mathematical models for evaluation of disease mitiga-
tion strategies. Participants at a Canadian pandemic preparedness workshop held
in 2008 noted that models are most useful when they are developed in synergistic
cooperation between modellers, public health planners, and policy decision makers
[52].

Modellers, public health planners, and policy decision makers may have different
perspectives and goals. Modellers may be mainly interested in answers to mathe-
matical questions and better understanding of the mechanisms of disease transmis-
sion from a scientific standpoint, while public health planners would need detailed
estimates for specific scenarios in order to answer policy questions. Policy decision
makers are usually influenced by political considerations, and need sound scientific
information to factor into their decisions. Collaboration is needed so that modelling
activities will be directed towards addressing the right questions to support complex
decision making, and it is also crucial for a timely response to emerging infectious
diseases such as the 2009 crisis of pandemic influenza A virus (H1N1).

This essay attempts to provide an overview of fundamental principles of disease
modelling, with application of mathematical models to a pandemic scenario, but
contains more mathematical details than an earlier overview [58] that was targeted
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at an audience with a rather scant mathematical background. It is divided into
sections on principles of epidemic modelling, model fitting to data, models for pan-
demic influenza, treatment possibilities for influenza, multiple pandemic waves, and
conclusions.

2. Principles of epidemic modelling. Daniel Bernoulli’s study of smallpox [8]
was probably the first example of a compartmental disease transmission model.
Bernoulli was not primarily interested in explaining recurrent outbreaks or in pre-
dicting the inter-epidemic interval that have received a great deal of attention more
recently. His motivation was to predict the expected gain in life expectancy that
would result from smallpox control measures. One of his statements, “I simply wish
that, in a matter which so closely concerns the well-being of the human race, no de-
cision shall be made without all the knowledge which a little analysis and calculation
can provide”, summarizes the arguments in favor of making use of mathematical
models for studying disease transmission.

Over many centuries pathogens have invaded human populations, transmitted
from one population to another by some form of contact, spread through a part of
the population and then disappeared without infecting the entire population. The
simple model first introduced by Kermack and McKendrick in 1927 [36] exhibits this
behavior. They assumed only that the invading disease could be transmitted to a
susceptible person by a person who is infectious during a period of time (referred
to as the infectious period). Their model consisted of two differential equations
describing the rate at which disease-susceptible individuals become infected through
contact with infectious individuals and the rate at which infected individuals recover
with immunity against re-infection.

The Kermack-McKendrick model is a compartmental model, dividing the pop-
ulation into compartments of susceptible (not infected but could be infected by
contact), infectious (infected and able to pass on infection by contact with sus-
ceptibles), and removed (immune, because of recovery from infection, vaccination,
death from disease, or naturally immune from previous exposure) members. Mod-
ellers have been accustomed to use the term infective to describe individuals who
transmit infection, but we will use the term infectious to conform to public health
terminology. We may also speak of infected members, meaning people to whom
infection has been transmitted but who may not yet be able to pass the infection
on to others.

The model assumptions describe the rates at which individuals flow from one
compartment to another, and these assumptions lead to the differential equations
that express the model mathematically. During the course of an epidemic the
number of new infections increases initially, and then as the number of susceptible
individuals decreases, the number of new infections decreases, slowing the spread
of disease and eventually ending the epidemic.

In 1911, Sir R.A. Ross introduced the concept of the basic reproduction number,
denoted by R0, defined as the average number of new infections caused by a single
infected individual introduced into a wholly susceptible population over the duration
of the infection of this individual [63]. The Kermack-McKendrick model implies a
fundamental property of the basic reproduction number, namely that in general the
disease outbreak will not develop into an epidemic if R0 is less than one, while an
epidemic will occur whenever R0 exceeds one. Thus, measures that decrease the
basic reproduction number below 1 may bring an epidemic under control even if
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they do not prevent all new infections. This insight, that it is not necessary to treat
every individual in order to control a disease outbreak, has a great practical value.
It is generally difficult, if not impossible, to vaccinate or treat everyone successfully,
but the properties of the basic reproduction number imply that it is not necessary
to do this to control a disease outbreak.

One way to calculate this number is from knowledge of the rate of contact between
individuals and the rate of recovery from the disease. These two rates can in turn be
estimated from seroprevalence and attack rate data, and knowledge of the disease
natural history.

The simplest version of the Kermack-McKendrick epidemic model is the system
of two ordinary differential equations for the susceptible population size S(t) and
the infectious population size I(t),

dS

dt
= −βSI (1)

dI

dt
= βSI − αI.

Here, the mean number of contacts per individual in unit time is βN (N is the
total population size, here assumed constant), new infections arise from a contact
between susceptible and infectious individuals, and α is the recovery rate so that
1/α is the mean infectious period. The units of both α and βN are 1/(time). For
the model (1) the basic reproduction number is given by

R0 =
βN

α
.

The Kermack-McKendrick model is not a good description of the beginning of a
disease outbreak because one of its underlying assumptions is that there is complete
(homogeneous) mixing between susceptible and infectious members of the popula-
tion, and at the start of a disease outbreak, given stochasticity, this assumption is
not necessarily valid. To describe the beginning of a disease outbreak, it is more
realistic to examine the network of person to person contacts. Network models trace
the flow of infections through a population and their recent use has led to significant
improvements in understanding of the development of epidemics [48, 49, 50, 54, 55].
One of the consequences of considering the network of contacts of the first few cases
of infection and stochastic effects early in the outbreak is that, even if the basic
reproduction number is greater than 1, it is possible that there will be only a minor
outbreak without developing into a full-blown epidemic. An elementary description
of the fundamentals of the network approach to disease transmission models may
be found in [48].

While the basic reproduction number provides information on the development of
an epidemic, knowledge of the generation time is also necessary to predict the rate
of growth of an epidemic. The generation time, which introduces a time scale into
the development of an epidemic [71], is the average time from onset of infection in
an individual to the onset of infection in a secondary case caused by this individual.
In an epidemiological context, this is referred to as the serial interval.

Infectious diseases may have a more complicated compartmental structure than
that of the model (1). There may be an exposed period between the acquisition of
infection and the ability to transmit infection; there may be a sequence of infectious
periods with different transmissibilities and durations, and some members of the
population may be removed from one compartment to another compartment due to
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application of some form of intervention, such as treatment. All of these possibilities
can be included in the form of the model that was initially introduced by Kermack
and McKendrick. A model involving the time since becoming infected, known as
the age of infection, can be written in the form

dS

dt
= −βS(t)ϕ(t) (2)

ϕ(t) = ϕ0(t) +

∫ t

0

βS(t− τ)ϕ(t− τ)A(τ)dτ.

In this model, ϕ(t) represents the total infectivity at time t of all infected members
of the population, ϕ0(t) represents the total infectivity at time t of all members
of the population who were already infected at time t = 0, and A(τ) represents
the mean infectivity of all members who were originally infected at τ time units
previously, including those who are no longer infected. The basic reproduction
number of the model (2) is given by

R0 = βN

∫

∞

0

A(τ)dτ.

While this expression is deceptively simple, the calculation of the integral may be
quite complicated [13].

The severity of a disease may be described by the attack rate, or attack ratio
(the term attack ratio would be more appropriate since it is dimension-free, but the
term attack rate is more commonly used), defined as the fraction of the susceptible
population infected during the entire course of an epidemic [11, 46]. The attack
rate is given by the expression

A = 1−
Sf

N
,

where Sf is the number of susceptible individuals at the end of the epidemic. There
is a mathematical relationship between the basic reproduction number and the
attack rate, the so-called final size relation, given by

ln
S0

Sf

= R0A = R0

[

1−
Sf

N

]

.

where S0 is the number of susceptible individuals at the start of the epidemic
(presumably approximately equal to N). This relation holds not only for the simple
model (1) but also for the more general model (2). A more thorough description
of the mathematical analysis of compartmental epidemic models may be found in
[12]. The final size relation is represented graphically in Figure 1, in which the
calculations have been made with 1 initial infectious member in a population of
total size 1000. For example, if the basic reproduction number R0 of a disease is 1.5,
a value comparable to estimates for various influenza epidemics, the corresponding
attack rate is approximately 0.58. If control measures can reduce the reproduction
number to 1.2, the corresponding attack rate is approximately 0.32, a decrease of
45%.

Another quantity that is important for knowing how easily an outbreak can be
controlled is the proportion of transmission caused by an individual that occurs
before the individual exhibits symptoms [29]. It is harder to control an infection
through isolation, quarantine, or even treatment, if significant transmission has
already occurred by the time that an infected case is identified. This is a common
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Figure 1. Graph of attack rate A as a function of basic reproduc-
tion number R0

situation in influenza infections, referred to as pre-symptomatic infection, where
infected individuals become infectious prior to the onset of disease symptoms.

The models (1) and (2) assume that infected individuals can spread the infection
uniformly across the population. However, these models discount some important
details, including heterogeneity of contact patterns, the local nature of infectious
interactions, and differences in social behaviour. In addition, the public health
response and the evolution of behavior in response to an epidemic can affect sig-
nificantly the spread of disease in the population. These model deficiencies were
highlighted during the SARS epidemic, where estimates of the basic reproduction
number led to predictions of epidemic size that far exceeded what was observed
[7, 49].

To overcome the limitations imposed by the assumption of homogeneously mixing
patterns, models have been developed to account for heterogeneity of interactions
between individuals. Many factors may be considered in these models, such as dif-
ferent rates of contacts among individuals belonging to different age groups that
may also represent different susceptibilities to infection. In addition, modes of com-
munications and transportations are essential in determining who acquires infection
from whom within and between communities [53]. Thus, a better understanding of
the epidemic behaviour would require the development of models with more com-
plex structures, but this would also require more information and data pertinent
to the characteristics of a particular disease and population demographics. Ideally,
the choice of model for studying an epidemic should reflect not only the amount
of data available, but also the questions being asked and the nature of information
to be drawn from model outputs (these criteria may not be compatible). Models
incorporating heterogeneity of behavior may be compartmental, network, or even
agent-based models that give simulations considering each individual separately.

Compartmental models that separate the population into subgroups also have a
final size relation, but now there is a set of equations determining the final epidemic
size in each subgroup [5]. The final size relations depend not only on the basic
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reproduction number but also on a matrix describing the development of secondary
infections caused in one group by infectious members of another group, the so-
called next generation matrix [22, 23, 70]. The elements of the next generation
matrix are all non-negative, and the matrix has properties ensuring that it has a
positive eigenvalue which is larger in absolute value than all other eigenvalues, and
the basic reproduction number R0 is this eigenvalue.

When factors aimed at controlling the spread of disease are incorporated into
a model, it is no longer quite correct to speak of the basic reproduction number,
since control measures generally lead to a decrease in the reproduction number and
therefore in the number of secondary infections. We speak, instead, of a control

reproduction number, often denoted by Rc. Models provide a systematic way to
estimate the control reproduction number of an infectious pathogen, which is cru-
cial for determining the type of public health measures required for disease control,
and evaluating their impact on infection transmission [62]. This is particularly im-
portant when there are multiple intervention strategies available, each with certain
costs, benefits, and potentially adverse epidemiological and clinical consequences.
An example is the level of drug use for treatment of ill individuals when there is a
danger of developing drug-resistant strains of the pathogen.

As more data become available during the course of an epidemic, it should be
possible to refine the models being used in order to make better predictions. For
example, when there are enough data to identify the susceptibility of different age
groups to infection, it may be possible to use this information to decide optimal
allocation of (often limited) treatment resources.

The SARS epidemic of 2003 brought the study of epidemics to public attention,
and resulted in a large number of modelling studies. Since SARS was a previously
unknown disease with no tools available for pharmaceutical management, social
distancing measures including isolation of diagnosed infectious cases and quarantine
of suspected carriers of disease were the only public health means to cope with
its spread [17, 33, 40]. While different groups of researchers were assembled to
investigate strategies for the management of SARS, the rapid spread of disease
through the worldwide air travel network, and the lack of proper understanding
of the pathogen behaviour and its epidemiological characteristics posed significant
challenges for the development and application of mathematical models. These
difficulties, in addition to the lack of timely access to critical data, alarmed public
health planners everywhere and produced recognition that confronting the threat
of emerging infectious diseases requires collaborative efforts through engagement of
scientific, administrative, and political communities across disciplines. Arguably,
this has been the most important lesson learned from SARS as the first major
infectious disease threat of the 21st century, and its effect has flourished in modelling
influenza pandemic preparedness.

One of the lessons learned from SARS is that because of the worldwide air travel
network, a disease could spread very rapidly to any part of the world, and this
stimulated interest in metapopulation models, that is, models for collections of sub-
populations (cities) with links (transport connections) between them [37]. This has
been noted for SARS and influenza, and is in fact an important feature of many
communicable diseases.

A general data analysis problem became apparent during the SARS epidemic.
During the course of an epidemic the number of cases and disease deaths to date
are reported. Then the case fatality rate, defined as the number of disease deaths
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divided by the number of cases, is calculated. As with the attack rate, the case
fatality rate is a dimensionless ratio rather than a rate, but the term case fatality
rate is standard. Because such running reports do not include individuals already
infected who will die of disease later, the case fatality rate will normally appear
to increase over the course of an epidemic until the number of new cases begins to
decrease. This may raise unfounded fears that the disease has evolved into a more
lethal form.

It is therefore important to make strong efforts to communicate to the public and
the news media the differences between statistical effects and actual developments.
News media are under pressure to over-simplify and sensationalize information, and
it is paramount that information supplied by scientists use plain language to explain
complex issues. Descriptions including a system of differential equations would not
be convincing, or even informative, to decision makers, news media, or the general
public.

There are a number of different strategies that can be followed to facilitate this
communication. Firstly, modelling teams can select key individuals to serve as me-
dia expert contacts to explain issues and address any existing knowledge gaps a
reporter may have. These media expert contacts should have training in media
relations, that is, these contacts should be familiar with the way in which media
stories are written, the time pressures of media personnel, and should have a ca-
pacity to explain complex material in plain language. Early identification of these
media contact people is imperative. Secondly, presenting risk information in differ-
ent formats (visual/diagrammatic examples, numbers, scenarios) can help improve
understanding of the epidemic state and efforts for its management, in particular for
people who learn best by such diverse strategies. Thirdly, if any risk comparisons
are used to help put risk information into a proper context, it is imperative that
these comparisons are scientifically/ mathematically appropriate (i.e., based on the
same kind of evidence or measured in the same way). Moreover, a risk comparison
may not necessarily increase public acceptance, and may run the risk of trivializing
public concern [20].

3. Fitting models to data. Ideally, we would like to have a model describing
the course of the spread of an infectious disease, depending on some parameters,
and enough data to make it possible to estimate some important parameters, and
be able to use the model to make projections. However, there are some basic
underlying problems in this process. Models are based on events that may not be
observable at the time, such as the transmission of infection from one individual to
another, the beginning and end of the ability of an infected individual to transmit
infection, and the serial interval, defined as the gap between the infection times of
two linked individuals. Data, on the other hand, are based on observable events,
typically collected through epidemiological and clinical manifestations. The clinical
serial interval is not necessarily the same as the serial interval in the sense of the
model. There are also differences in terminology. Public health professionals speak
of the incubation period of an infection, meaning the time from exposure to onset
of clinical symptoms, while modellers speak of the latent period, meaning the time
from exposure to infectiousness. Incorrect or inconsistent use of these terms may
lead to confusion. For influenza there seems to be an infectious pre-symptomatic
period, so that the latent period is shorter than the incubation period.
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An additional problem is that there are various kinds of bias that may arise in
the collection of data. Analysis of clinical data is complicated by administrative
factors such as reporting delays and inconsistencies in classification of clinical cases.
This is particularly important for a disease such as influenza in which many cases
are asymptomatic or sufficiently mild and therefore not diagnosed or reported, and
the definition of reportability may vary from one location to another.

Modellers may fit models to data in order to obtain a curve describing the course
of a disease and to estimate some key transmission parameters, such as the basic
reproduction number. However, fitting curves to data is valid only if the model
produces a curve with the same meaning as the data, and often a model curve may
not give a true picture of observations: this process often amounts to trying to
compare apples to oranges. Epidemic data gives a curve representing the number of
reported cases of infection, while a model attempts to produce a curve representing
the number of actual cases. During a public health crisis such as a pandemic, it is
necessary to blur important distinctions in order to obtain applicable results quickly,
but it is also important to re-examine the results and ask some deeper questions
after the crisis passes.

One common use of data collected for an epidemic is to estimate the basic repro-
duction number based on the observed initial exponential growth rate of infectious
cases. For the simplest compartmental model (1), this rate r is given by the relation

r = α(R0 − 1).

If the initial exponential growth rate can be measured, this provides an easy way to
estimate the basic reproduction number. However, if there is an exposed or latent
period between the transmission of infection and the ability to pass an infection
on, a different model (of SEIR type) is needed and the relation between the initial
exponential growth rate and the basic reproduction number is quite different. For
the age of infection model (2), it is known [71] that the exponential initial growth
rate r is the solution of the equation

βN

∫

∞

0

e−rτA(τ)dτ = 1.

The relation between this rate, the serial interval, and the basic reproduction num-
ber depends very much on the model, and therefore the use of an overly simplified
model or form for A(τ) can lead to erroneous estimates of important parameters.

4. Models for pandemic influenza. Influenza is a very old disease that remains
a new threat every year. It causes more than 2000 deaths annually in Canada [65],
and more than 36,000 deaths in the U.S. [69]. Usually the strains that circulate
are related to strains that have been circulating in the past, and many individuals
may have some residual immunity. Gene reassortment with an animal virus may
lead to a strain readily transmissible between humans for which there is no pre-
existing immunity; this may lead to a pandemic that may spread to many countries
and may also result in a high case fatality rate. Also, in a pandemic, the age
distribution of cases may be quite different from the age distribution of cases in
seasonal influenza. It appears that model parameters for influenza are strongly
age-dependent, and planning requires enough data on age dependence to support
age-structured models.

Soon after the SARS epidemic, concerns developed about the possibility of a
new influenza pandemic with viruses that have crossed species barriers and caused
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deadly disease in humans [57]. Triggered by poultry outbreaks of avian influenza
A virus H5N1 that have been recurring sporadically since 1997, a large number
of epidemiological, clinical, public health and modelling studies were conducted.
Stochastic models were employed in 2005 to simulate potential outbreaks of the
influenza H5N1 strain in rural Southeast Asia and assess the effectiveness of antivi-
ral drugs for treatment of infectious cases and prophylaxis of their close contacts
[27, 44]. Based on social networks and close contacts in household clusters, schools,
workplaces, and other social settings, these models predicted that a pandemic could
be contained at the origin through a combination of targeted blanket prophylaxis
and social distancing. A key assumption was that the virus would remain less
transmissible than pandemic viruses of the last century, so that the basic repro-
duction number of disease transmission would stay below 1.8. The predictions of
these models, however, depend strongly on the specific location of an initial out-
break, patterns of exposure to infection in localities, and how quickly infected cases
are diagnosed and treated, and their contacts offered prophylaxis. Since then, the
modelling literature on evaluation of various containment strategies in general and
also in the context of specific population settings has expanded greatly.

It was recognized that because the basic reproduction number of an emerg-
ing infection could not be known in advance, plans for coping would have to
be developed for a range of reproduction numbers. The hope was that early in
an epidemic the basic reproduction number could be estimated and then policies
formulated in advance could be adopted and implemented, and therefore many
countries developed pandemic preparedness plans on the basis of mathematical
models. Most of the pandemic plans relied on simulations of very complicated
models, which divided the population into multiple groups and took into account
the contacts and variability in susceptibility to infection of the various groups
[18, 19, 25, 26, 27, 28, 31, 34, 42, 43, 61, 62, 66]. These models were also used
to compare the results of different management approaches. The advantage of us-
ing a model with detailed structure is that it is possible to draw detailed conclusions
on the effects of treating different portions of the population in different ways. How-
ever, it can be more difficult to understand the relationship between model inputs
and outputs without rigorous sensitivity or uncertainty analysis, and this can be a
difficult task that is not always carried out.

Some useful conclusions may be drawn from simpler models such as systems of
a small number of differential equations [4], although detailed planning requires
more complex models, which could be systems of many differential equations, inte-
gral equations, partial differential equations, or stochastic models. The usefulness
of any model depends on the accuracy of the data used for estimation of param-
eters of the model. Thus, it would appear that early collection of usable data,
and methodologies for dealing with parameter uncertainty are the keys to provide
recommendations for effective management of an influenza pandemic.

However, as the contemporary philosopher Yogi Berra has said, “In theory, theory
and practice are the same. In practice, they’re different”. Early in an epidemic
data are incomplete and unreliable. This was a major problem with SARS, where
many early cases were misdiagnosed, and this will inevitably be the case for a new
disease. For influenza, it is an even more serious problem because many cases
are asymptomatic or mild enough that they are not diagnosed and therefore not
reported in data. Influenza-like illnesses (ILIs) generally constitute a significant
proportion of cases of respiratory diseases and can lead to overestimates of the
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burden of influenza infection. They can also lead to the diversion of resources
such as clinical tests being performed for individuals who do not have influenza.
The influenza H1N1 epidemic of 2009, with a new strain combining avian, swine,
and human strains, appears to have begun in Mexico and some cases may have
been confused with a seasonal strain. Early in the epidemic it appeared that the
case fatality rate was much higher in Mexico than when it appeared later in other
countries, and this created major fears of a pandemic causing a very large number of
deaths. However, influenza has some properties not shared by all epidemic diseases.
Not all infected individuals develop symptoms; a significant fraction of infected
individuals are asymptomatic and able to transmit infections without showing any
signs of illness. Also, many cases are mild enough not to be reported, and influenza
data will always be incomplete. The number of cases becomes too large to count
early in a pandemic, making it even more difficult to estimate the number of “true”
cases. As a result, only laboratory-confirmed cases are counted, and it is very
difficult to estimate how many cases there are in a community per confirmed case;
in 2009 expert opinion ranged from 10 to 500 cases per laboratory-confirmed case.

The initial data from Mexico reported mainly severe cases. Thus the number of
cases was much higher than what was believed originally and the case fatality rate
was much lower. In fact, it was very similar to what was observed later in other
countries. However, this analysis was not available until the epidemic had been
building for at least a month [30]. This indeed attests to the fact that it is very
difficult to estimate some key parameters of a suitable model quickly. It required
more than a month to obtain good estimates for the influenza epidemic that began
in Mexico, and control measures for an epidemic must be implemented quickly to
be effective. As a result, it is possible, even probable, that control strategies must
be adopted based on a profile of the epidemic that is different from what eventually
turns out to be the case. To paraphrase the warnings of Peter Sandman, “At the
beginning of an epidemic the situation looks exactly like a developing catastrophe.
It also looks exactly like a potential false alarm. As the epidemic proceeds, it may
be possible to get a better idea which it is. The approach must be to hope for the
best but prepare for the worst”. Nevertheless, work is underway to develop novel
approaches to the analysis of data in order to estimate parameters more rapidly
[60].

In such situations where data are initially limited, techniques of uncertainty and
sensitivity analyses may be useful to determine which information is most crucial
for reliable projection of outcomes. In uncertainty analysis, the impact of unknown
parameters or missing data on the model outputs is investigated. In the closely-
related method of sensitivity analysis, the variation of model outputs in response to
changes in input parameter values is investigated. Both methods are widely used in
decision analysis and are now gaining traction in infectious disease modelling, where
they can help to identify which parameter values most influence model projections
and hence are most urgently needed [9]. The use of sensitivity and uncertainty
analyses has grown in parallel with the development of more complicated models,
as both often require computer-intensive simulations.

Because there are many asymptomatic and mild cases, possibly one third to one
half of all cases, if not more [30], the danger of an influenza pandemic may be
overstated by news media. Thus the symptomatic attack rate (the fraction of the
population that develops symptoms) is considerably less than the clinical attack
rate (the fraction of the population that becomes infected and can be identified
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by clinical tests, including individuals who do not develop symptoms). A clinical
attack rate of 0.6 translates into a symptomatic attack rate of 0.3 to 0.4 (assuming
a fraction 1/2 to 2/3 of clinical cases becoming symptomatic) and a much smaller
attack rate of serious cases. It is also important to note that a pandemic concerns
wide spread of disease, and does not necessarily imply a high case fatality rate
(the fraction of individuals who are infected that die of the disease). The 2009
H1N1 pandemic appears to have a case fatality rate of less than 1% [30], which is
even slightly less than the case fatality rate reported for some seasonal influenza
epidemics. In evaluating news media reports of the number of influenza cases in an
epidemic or pandemic, it is also important for everyone to remember that most cases
are very mild and may be asymptomatic. In most influenza epidemics many of the
deaths are associated with individuals who suffer from underlying health problems.

5. Intervention strategies for influenza. There are generally two approaches
against the spread of influenza. The first is containment, and attempts to limit the
spread of disease outside a known source area. In this stage, travel restrictions and
non-pharmaceutical interventions may be effective. The ideal would be to contain a
pandemic at the source before it has a chance to spread to other locations [27, 44],
but this may be impossible, as was observed in the 2009 H1N1 influenza pandemic.
Frequently, an epidemic starts in a remote location and it is not possible to diagnose
the first cases quickly or to bring the necessary resources to the source before the
disease spreads. This is especially significant for a disease like influenza where a
significant fraction of transmission is caused by individuals who do not show or do
not yet have symptoms, and the difficulty is compounded by the fact that there
is usually a delay in identifying the disease. The challenges are even greater when
the disease begins to spread in a community that has limited health care resources,
and may even lack sanitary systems or running water. This stage is really a pre-
pandemic scenario during which the number of point sources is limited enough that
there is hope of wiping out the epidemic there.

In the second stage, there is widespread propagation of disease in many locations.
Containment becomes impossible and we move into a mitigation mode. There
are three main kinds of mitigation strategies, namely behavioural changes (e.g.,
social distancing), vaccination before and during an epidemic, and treatment and
prophylaxis during an epidemic.

Some of the decisions on how to deal with an epidemic, especially behavioural
changes such as increased hand washing, covering of coughs, avoidance of large
public gatherings and school closures are mainly made to decrease contacts that are
likely to contribute to disease transmission [14, 26, 59]. They may be encouraged by
public service announcements. In the 1918 influenza pandemic, although no vaccines
or antiviral drugs were available, non-pharmaceutical interventions appeared to be
effective in decreasing the number of infections [10].

Other decisions are made by political leaders, presumably guided to some extent
by the advice of public health experts. It would be beneficial if this advice is based in
part on the results of model analysis, but modellers should not expect model analysis
to influence political leaders directly. It is important to improve communication
between modellers and public health officials so that modellers understand what
results would be useful, and public health officials also recognize the potential and
limitations of modelling.
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If persons who are infected stay home from work, transmission of infection is
reduced, but there are economic costs and people may be unwilling to stay home.
Cancellation of large public gatherings and closing of public facilities also decrease
the transmission of infection but has economic costs. Interventions that have been
considered in published mathematical models of influenza transmission include sev-
eral social distancing measures. For example, school closures may be implemented
during pandemic outbreaks in order to diminish contacts between children and
therefore reduce transmission in the wider community. However, this strategy may
result in redistribution of contacts in the venues where children may gather (e.g.,
day care centers, cinemas, churches, food stores, malls, and athletic arenas). Parents
might need to stay home from work to care for children, which could result in high
absenteeism rates and stress in critical services, including health care [21, 34, 64].
Travel restrictions may also be considered for interruption of disease transmission
and prevention of case importation, but the associated societal and economic costs
could be staggering.

Isolation of infectious cases and quarantine of potentially infectious (but asymp-
tomatic) contacts are also measures that would decrease the spread of infection, but
also have economic costs and may not be as widely adopted. Integration of eco-
nomic and transmission modelling may be useful in guiding decisions about when
to apply disruptive measures such as school closure and quarantine in pandemic
situations [64]. Economic evaluation is useful to estimate whether an intervention,
disruptive or not, gives good value for the cost.

Because the newly emerged influenza H1N1 strain spread rapidly around the
globe via air travel, a frequently posed question was whether travel restriction would
slow the spread of this virus. Mathematical models suggest that extremely strin-
gent travel restrictions (i.e., a reduction of more 95%) could delay the onset of an
influenza pandemic, but at best would buy time for additional preparedness activi-
ties [6, 18, 26], and could risk pushing local epidemics forward until seasonal factors
result in a more severe initial wave of infection. International Health Regulations
(IHR) are biased against restrictions on movements of people and goods, and the
fear of such restrictions may have been a reason why the World Health Organiza-
tion deferred the decision on declaring a pandemic until June 11, 2009, about three
months past the emergence of the novel H1N1 virus.

If the policies adopted to try to control an epidemic are successful but involve
economic costs, it is almost certain that there will be a public reaction claiming
that the measures were not needed because the epidemic turned out not to be
serious and the measures did not justify the costs incurred. Also, if an epidemic
takes off, there will be a public reaction clamoring for control measures which would
have been needed earlier to be effective and to which there would have been strong
objections earlier. Public health measures in the face of a possible pandemic with
substantial uncertainties, whatever decisions are made, will almost certainly be
controversial. News media reporting on the progress of an epidemic will have much
influence on public opinion, and it is essential that the information circulated to
the media be balanced, not sensationalized, and (perhaps most importantly) able
to be condensed into a succinct plain language statement. News reports that many
millions will be stricken by a global pandemic without the additional information
that an overwhelming majority of cases will be asymptomatic or very mild can lead
to unnecessary panic. In addition, if a pandemic turns out to be less serious than
originally feared, the public may dismiss warnings about a second wave that could
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be much more serious. Public response is a key ingredient to epidemic management,
and must be taken into account. What is paramount is that the communication
of uncertain information needs to emphasize the uncertainty and to address the
fact that public health preparations are designed for the worst case scenario while
hoping for the best outcome. It is important that communications between public
health officials and the news media emphasize that information is based on what is
known “today”, and tomorrow the evidence may suggest that a different direction
is needed.

A second aspect of mitigation is vaccination. Every year predictions are made
about the influenza strains that are most likely to circulate during the upcoming
season and a strain-specific vaccine is produced. For a new strain, such as the
2009 influenza A (H1N1), no vaccine was available, and it took about six months
to develop one using egg-based technology (cell-based technology allows for more
rapid development but the vaccine tends to be less efficacious [72]).

However, older people may have some residual immunity due to prior exposure
to a similar strain that may reduce susceptibility or infectivity if infection occurs,
and in a pandemic older people may be less susceptible than others. Questions then
may arise as to which segments of the population should be prioritized to receive
vaccination when a strain-specific vaccine is made available, possibly in a limited
number of doses. Even after the onset of a pandemic, vaccination is still an option,
as immunization programs are effective so long as protection is increased in some
fraction of the population before the epidemic peaks [32].

The third aspect of mitigation is treatment after the onset of an epidemic. With-
out a strain-specific vaccine, antiviral drugs will be the main treatment. The use of
drugs for treatment will probably take precedence over their preventive (prophylac-
tic) use, but prophylactic treatment of contacts of index cases for about ten days
may be useful [44]. Compared to vaccination, the cost of antiviral treatment or
prophylaxis is prohibitive, yet far more economical than hospitalized care. Treat-
ment of confirmed cases would normally be continued for about five days. The
primary goal in treatment is to limit the severity of illness and reduce the period of
infection. Initial investigations indicated that the novel H1N1 virus was susceptible
to the antiviral drugs oseltamivir and zanamivir [15]. However, influenza viruses
have a propensity to acquire resistance rapidly and oseltamivir resistance to H1N1
has already emerged [16, 38]; therefore strategic use of drugs is crucial for not only
mitigating the disease in the short-term, but also preventing the emergence and
wide-spread resistance in the longer term. Models suggest that in the absence of
resistance, early and aggressive use of drugs could control influenza epidemics when
R0 is small, but if the early control effort is not successful, the development of drug
resistance may make things worse. When resistant viruses are present, more con-
servative initial use of drugs may be a better strategy for preventing large resistant
outbreaks [3, 40, 51, 52, 62, 66].

Programmatic uncertainty can be a serious problem in considering mitigation
strategies [32]. It is very important to begin mitigation measures early and effec-
tively, before much is known about how the epidemic will develop. For example, the
effectiveness of a vaccination campaign depends very critically on when the vaccine
will be available for distribution, and this may not be known enough in advance to
decide what other strategies might be effective. It may not be necessary to consider
such possibly controversial measures as school closures if vaccination can be started
early enough [32]. At the beginning of a pandemic, there may be many possible
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intervention strategies, and the effects of different interventions tend to offset one
another; decisions must be made in the face of considerable uncertainty.

The use of antiviral drugs is a very delicate question, and better understanding
of the immunology and virology of drug resistance is needed. The allocation of
antiviral drug resources, both in deciding the timing of drug treatment and in
deciding who should be treated, is an important question which may be addressed
by mathematical models. This is a particular concern if the supply of antiviral
drugs is not sufficient to treat everyone [3]. If the drug supply runs out and if drug
resistance is not a concern, then the final size of an epidemic does not depend on
the rate of drug treatment [2], but the development of drug resistance could make
a large difference in the size of the epidemic [2, 3]. If a second drug is available in
limited supply for treatment, models can address the question of optimal timing of a
switch from the primary drug to the secondary drug for minimizing the development
of drug resistance [1, 35, 39].

6. Multiple pandemic waves. It has been observed that small seasonal vari-
ations in epidemic parameters may cause variations in the reproduction number
between values above 1 and values below 1 [24]. There is evidence to indicate that
transmissibility of influenza depends significantly on temperature and humidity [45].
Thus an epidemic that begins in the spring may be mild because transmission de-
creases early in the epidemic, but may recur, possibly in a more severe form, in the
fall when transmission begins to increase again [56, 67]. In some populations, the
influenza pandemic of 1918-19 began in the spring, was essentially dormant in the
summer and then reappeared in a much more severe form in the fall. Also, there
is a seasonal phase shift between hemispheres; the 2009 pandemic appeared in the
Southern Hemisphere in June, while the first wave was fading in the Northern Hemi-
sphere. Seasonal variations in parameters, coupled with genetic drift of influenza
viruses, may be a partial explanation for second and third waves that have occurred
in some pandemics [24, 43, 58]. Often, the second wave is more severe for age groups
that were not hit severely in the first wave, possibly because of immunity obtained
by infection and recovery in the first wave. In a second wave there may also be mu-
tation of the influenza virus to a more lethal strain or potentially severe bacterial
coinfections such as pneumococcal pneumonia that also have seasonal fall/winter
peaks. This suggests that after a pandemic wave, even one that appears not to be
very severe, it is important to develop a vaccine for this strain that may provide at
least partial protection against a more lethal second wave. However, development of
such a vaccine would use some of the resources needed for preparation of a vaccine
for the next seasonal epidemic, and it would be necessary to decide how to allocate
these resources without having any idea of the relative severities of the seasonal
and pandemic strains. It appears that vaccine manufacturing capacity for produc-
ing both seasonal and pandemic vaccines at the same time is limited. Pandemic
strains generally seem to displace the circulating seasonal strains and become the
predominant strain in future influenza seasons.

One suggested explanation for a second wave in a pandemic is seasonal variation
in transmissibility [56, 67], but this is by no means the only plausible explanation.
Another possibility is coinfection with other respiratory diseases [47]. This means
that it is not possible to rely on a model to predict when a second wave may develop
or how severe it may be. Seasonal parameter variation in models will probably
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become very important. Models incorporating seasonal variation are very sensitive
to when during a seasonal cycle a disease outbreak begins.

While we have been considering only deterministic models, it must be recognized
that there are also stochastic effects, unpredictable variations from a deterministic
description. Often, the mean of the predictions of a stochastic model agrees with the
prediction of the corresponding deterministic model, but there are cases in which
systematic biases can result [41]. Small stochastic variations can produce resonance
effects and this may be relevant to the development of pandemic waves [24].

7. Conclusions. Several conclusions may be drawn from the study of models for
infectious diseases in general and influenza in particular.

• In order to develop a model to be used in comparing management strategies
for a disease outbreak, reliable data are needed.

• Data early in a disease outbreak are almost always misleading.
• Diseases such as influenza in which a substantial fraction of transmission is
by individuals without symptoms make estimation of model parameters par-
ticularly difficult.

• Uncertainty and sensitivity analyses can be used to determine which model
parameters have the most impact on model projections.

• Interventions to cope with infectious diseases include social distancing mea-
sures to decrease contacts, isolation of diagnosed infectious individuals, quar-
antine of suspected infectious individuals, vaccines if available, and pharma-
ceutical treatment such as antiviral drugs. Most measures have economic costs
that must be balanced against benefits. Models are useful for comparing the
effects of different control strategies.

• It is important to begin control measures early, probably before the scope
of the epidemic can be estimated. Programmatic uncertainty about what
intervention strategies will be available is a serious problem calling for more
study.

• A new virus may spread more easily and be more dangerous than a virus
for which some people have residual immunity, but a pandemic that spreads
widely is not necessarily more lethal than a seasonal virus.

• Influenza pandemics often have multiple waves, and in some cases a second
wave has been more serious, but the interval between waves may suffice for
development of a vaccine.

• Unpredictable stochastic effects and the dependence of contact rates on age
and on other demographic variables may be an important factor in modelling.

• Strong integrated knowledge translation activities involving public health pol-
icy makers, public health practitioners, and mathematical modellers through-
out the process are pivotal, and should be prioritized in responding to the
threat of emerging infectious diseases.

• Expert media contacts with reporters should receive specific training to fa-
cilitate better communication of complex material in plain language. These
media contacts need to be able to respond to media queries in ways that fit
the time frame of reporters and news outlets.
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