NRC Publications Archive
 Archives des publications du CNRC

Fundamentals of soil action under vehicles (part two)
 Bekker, M. G.

Publisher's version / Version de l'éditeur:

Technical Memorandum (National Research Council of Canada. Division of Building Research); no. DBR-TM-8, 1947-06-01

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://hrc-publications.canada.ca/eng/view/object/?id=cb7d614b-31ac-47ff-bf65-3f685bdae5af https://publications-cnrc.canada.ca/fra/voir/objet/?id=cb7d614b-31ac-47ff-bf65-3f685bdae5af

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.
Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

TECHNICAL MEMORANDUM NO. 8

FUNDAMENTALS OF SOIL ACTION UNDER VHHICLES
(PART TWO)

ANALYZED

By
M. G. BEKKKER
(Directorate of Vehicle Development Department of National Defence.)

OTTAWA, CANADA.
JUNE 1947.

ABSTRACT

This paper presents a mathematical analysis of the stability of a model representing a wheel or track of a moving vehicle.

The proposed method of determining a trafficability curve is based on accepted theories of Soil Mechanics and represents a continuation of the work described in Technical Memorandum No. 6.

A cohesionless medium and the stability of a single wheel or a single track shoe with or without grouser is alone considered. The proposed method, however, is general in scope, and may be easily extended over cohesive soils and several wheels and shoes.

TECHNICAL MEMORANDUM NC. 8

Fundementals of Soil action Under Vehicles. (Part Two)

Contents
Page
Introduction 3
Froblem 3
Proposed Solution 4
Numericel Example 10
Conciusions 11

This work presents furthor development of the theory on the relationGhe betwarn the Soil and Vehioje Modela as presented in the Techniagl Vemoran-
 NitIOMA GLEEDRG QOMOLL OF CANADA.

The araiysis outlined in the present work ie based on well estabif shed metaods of borl Mergenics. Students of this paper would be egsiated in followase the ling f thonght by reading "Theoretical Soil liechenics" by Karl PerahGII SGQpman and jali ita. London, and John wiley and Son, New York - 19441 from Whor thaptars los. VIT and VIII are especially recomended: ipassive Earth Fresmio" (uages ion-w05, 109-110) and "Bearing Capacity" (Fages 120-129).

Fistiematicel symbols used in this peper are those accepted by the
 his "Thonetiogi woll Mechanios'). A few new symbols which result from the menisu asasoter of whe work have been explained in the text

EROBIEM

 abtantabar detemmae the stability of a cominuous footine.

Fi Gax secn amonstrated already thet the stability of suok a mel
 wifet of of the soin it also depende on the shoe leseth S gracer

 \because wen acraitors of two diferent types of veniale faidure in rigotictime the ?

$$
H=V \frac{h+s \tan \phi}{\sigma-h \tan \phi}
$$

The above equation enabies one to calculate immediately the drawbar pull H which causes the grip fiilure, once the vertical load V, friction ancle and model dimensions $\}$ and h are given.

The second function which defines conditions of ground failure was detemined eranhically by applying the Logarithmic spiral method. This functicn was traced in a few particular cases and resembled a hyperbola of an unspecificd equation.

The graphic method adopted, as well as any other similar method applicable in this field requires considerable amount of work and involves a grest deal of cumbersome computation. It appears advisable therefore, that a matheratical analysis of the stability of a model be made with the purpose of determining an approximate equation of ground failure.

This would not only shorten the work required for determinine both types of TRAFFICAEIIITY CURVES, but also will form a broader basis for future discussion of the stability of vehicles and their performance.

FROPOSED SOLUTION

Take an indefinitely long grouser plate which is shown in Fig. 1. Phe action of this plate loaded with a vertical load V los. and a horizontal pull if los. may be replaced by the action of an imaginary continous footing ab which is slop-a to the horizon at an angle。

$$
\theta=\tan ^{-1}\left(\frac{H}{V}\right)
$$

In tilic case trajectories of principal stresses have their foci in points a and b. If the engie enclosed between the shos plate, sand the hyoteruse \bar{s} is β end if the angle of internal friction is ϕ, then the aneles, referred to the dimensions and to the location of the imaginery footine $\overline{a b}$, Gre tiose shown in Fig. 1.

As in the classica. dase which determines the bearing capacity of a strip load thet has a width $\overline{\mathrm{ab}}$, the task is to determine the passive earth resistence on retainine wails $\overline{\mathrm{a} a}$ and $\overline{\mathrm{db}}$.

Ginco wall $\overline{d b}$ is the weaker element of our structure, it may be aseumed that its failure determines the stability limit of our model. In consequence the bearing capacity of the strip load $\overline{a b}$ is assumed to be equal

ERRATA - TEC NICAL MMMORANDA \# 8

to twice the aspire esth wrspure exercised by the soil on the well db.
 and do not eppest fo distort the fine result which nay be checked by experiments.

Consider, first, e component P_{P}^{\prime} of tie passive earth pressure due to the surcharges exerases by the soil layer which here the thickness k, (Fig. 2).

The magnitude of this component has been shown by Terwaghi. Regpectively modified, it is

$$
P_{P}^{\prime}=\frac{h_{1}}{\sin (\phi+\theta) \cos \phi} k_{,} \gamma K_{P \theta}
$$

where h is the acth of the retaining wall, and $K_{p g}$ is a pure number whose value does not serena on γ or or the depth h,
respective venues of K_{l} and h, may be determined from Fifo. 1

$$
\bar{c} \bar{b}=\frac{\sqrt{h^{2}+\sigma^{2}}}{2} \cos (\beta-\theta)
$$

hence

$$
b \bar{d}=\frac{\sqrt{h^{2}+s^{2}}}{2 \cos \phi} \cos (\beta-\theta)
$$

and

$$
h_{1}=\overrightarrow{b f}=\frac{\sqrt{h^{2}+s^{2}}}{2 \cos \phi} \cos (\beta-\theta) \sin (\phi+\theta)
$$

but

$$
\begin{aligned}
& \cos 3=\frac{5}{\sqrt{h^{2}+J^{2}}} \\
& \sin \beta=\frac{h}{\sqrt{h^{2}+J^{2}}}
\end{aligned}
$$

and finally

$$
h, \frac{J}{2 \cos \phi}\left(\cos \theta+\frac{b}{j} \sin \theta\right) \sin (\phi+\theta)
$$

In a similar way:

$$
b \bar{g}=\sqrt{h^{2}+s^{2}} \sin (\beta-\theta)
$$

and

$$
\bar{b} \bar{j}=k_{1}=b \bar{g} \cos \theta=\sqrt{h^{2}+\sigma^{2}} \sin (\beta-\theta) \cos \theta
$$

or, after having expresect sim $\beta, \cos \beta$ by respective functions of h and δ

$$
k_{1}=3 \cos \theta\left(\frac{h}{J} \cos \theta-\sin \theta\right)
$$

The double component of P^{\prime} from equation a may be then determined by combining this equation with equations 2 and 3 .

$$
2 p_{p}^{\prime}=\frac{J^{2} \gamma \cos \theta}{\cos ^{2} \phi} K_{P q}\left(\cos \theta+\frac{h}{J} \sin \theta\right)\left(\frac{h}{J} \cos \theta-\sin \theta\right)
$$

If the model is bunas ot natant depth \mathcal{K}_{2} (fie. 2) which does not change with the adele θ as in the previous case, ties the additional component of the passive esth pressure dust to the above constant surcharge is (Terzaghi):

$$
\left(P_{p}^{\prime}\right)=\frac{h_{1}}{\sin (\phi+\theta) \cos \phi} k_{2} \gamma k_{p \theta}
$$

 5 and 2:

$$
2\left(P_{p}^{\prime}\right)=\frac{\sigma K_{2} \gamma}{\cos ^{2} \phi} K_{p g}\left(\cos \theta+\frac{h}{J} \sin \theta\right)
$$

Me double pat ur of reactive earth resistance, which is due to the weight of soil and to int mineral friction as (Sexzeghi).

$$
2 P_{p}^{\prime \prime}=\frac{h_{1}^{2}}{\sin (\phi+\theta) \cos \phi} \gamma K_{p \gamma}
$$

where $K_{\text {pr }}$ is gain a pro rube mines value use not append on specific

 obtained:

$$
2 P_{p}^{\prime \prime}=\frac{\gamma s^{2}}{4 \cos ^{3} \phi} K_{p \gamma}\left(\cos \theta+\frac{h}{3} \sin \theta\right)^{2} \sin (\phi+\theta)
$$

Finally, total jasatue marin prepare which determines the bearing capeaty of our model 13 time sum at cation 4,6 and 8 .

$$
2 P_{P Q}=2\left(P_{p}^{\prime}\right)+2 P_{P}^{\prime}+2 p_{p}^{\prime \prime}
$$

or

$$
2 P_{P \theta}=\frac{K_{p g} \gamma s K_{2}\left(\cos \theta+\frac{h}{3} \sin \theta\right)}{\cos ^{2} \phi}+\gamma_{3}{ }^{2} / \frac{K_{\operatorname{po}}\left(\cos \theta+\frac{h}{3} \sin \theta\right)\left(\frac{h}{J} \cos \theta-\sin \theta\right) \cos \theta}{\cos ^{2} \phi}
$$

$$
\left.+\frac{K_{p \gamma}\left(\cos \theta+\frac{h}{3} \sin \theta\right)^{2} \sin (\phi+\theta)}{4 \cos ^{3} \phi}\right]
$$

Page 6.

To simplify this expression let:

$$
\begin{aligned}
& K_{p \theta}\left[\frac{\cos \theta+\frac{h}{T} \sin \theta}{\cos ^{2} \phi}\right]=m_{\operatorname{sh} \theta} \\
& \left.K_{P Q}\left[\frac{\left(\cos \theta+\frac{h}{7} \sin \theta\right)\left(\frac{h}{7} \sin \theta-\cos \theta\right) \cos \theta}{\cos ^{3} \phi}\right]+K_{p \gamma}\left[\frac{\left(\cos \theta+\frac{h}{7} \sin \theta\right)^{2} \sin (\phi+\theta)}{4 \cos \phi}\right]=n_{0}^{3}\right]
\end{aligned}
$$

Then, equation 9 may be waiter in the following form:

$$
2 P_{P \theta}=m_{s h \theta} \gamma s k_{2}+n_{s h \theta} \gamma s^{2}
$$

values $M_{s h e}$ and $\eta_{s h}$ depend on ratio h / J angles ϕ and θ. Ko as well as $K_{p q}$ depend only on ϕ and θ, therefore values of m and n an may be determined graphically once and for all, for any even $h / s, \phi$ and θ.

Values $M_{\text {she }}$ and $R_{d o}$ were computed by the miter by means of a logarithmic spiral method for $\phi=35^{\circ}$, various aretes θ and for $h /-3=$ $0,0.25,0.5,0.75,1=$ Respective figures are plotted in graph show m in Fig 4 and 5.

The above graph and formula 10 enable one so trace the trofficgbility curve for any model of the arovenecified h / J ratios in coresionlesa sand, the friction of which is $\phi=35^{\circ}$. This may be done in the following way: From the condition of equilibrium of the model it follows that: (iE. I).

$$
\left(2 P_{P_{\theta}}\right)^{2}=H^{2}+V^{2}
$$

and hence

$$
\begin{aligned}
& H=\left(m_{s h \theta} \gamma_{s} k_{2}+n_{\partial h \theta} \gamma_{s}^{2}\right) \sin \theta \\
& V=\left(m_{s h \theta} \gamma s k_{2}+n_{s h \theta} \gamma_{s}^{2}\right) \cos \theta
\end{aligned}
$$

It then becomes evident that the required function which defines the ground failure may be east fy determined in polar coordinates, namely in en angle θ and in a radius $\rho=2 \mathrm{P}_{\mathrm{PO}}$

For this purpose it $1 s$ sufficient to celoulate a series of radii $\mathcal{Z} P_{P}$ for various θ from equation 10 (Fig. 3). Fy oonnoctine the ends of these radii the trafficability curve which defines the critical loses H and V at the moment of ground failure for given h, J and ϕ nay be readily obtained. Loads H and V will be deteminea from equations 11 and 12 , or merely by projecting the respective sectors $2 P_{P e}$ on H and V axis of Car asian coordinates which have then zero point at the beginning of our polar coordinates (Fig. 3)。

Attempts to eliminate parameter
from equations 11 and 12 in order to obtain a single equation in cartesian coordinates H and V seems to be futile as the form of this latter equation $H=F(V \phi \gamma s h)$ is too cumbersome for practical application

Equation 10 may be used as a basis for general consideration. For instance it may be interesting to know when the Grip Failure ceases and when Ground Failure begins under fiver conditions. In other words the position of point A (Fie 3) is to be detemined。

In order to do this, it should be noticed that the required angle θ of radius $\overline{O A}$ may be determined from the formula.

$$
\theta=\tan ^{-1}\left(\frac{h+s \tan \phi}{s-h \tan \phi}\right)
$$

The corresponding values Tho and $H_{\text {Tho }}$ may be immediately ascertained from graphs show i in Fig. 4 and 5 , and the required radius $2 P_{P}=\overrightarrow{O A}$ may be calcurated easily from equation 10 .

Another point of interest may be the maxim obtainable drawbar pull (H max.), with reference to the vertical log V, eraileble for given conditions (ϕ, h and $J)$. Since the differential $d H / d V$ cement be obtained directly, equations 11 and 12 must be differentiated with reference to θ. By dividing $d H / d \theta$ by $d V / d \theta$ and by assuming the result equal to zero a value θ may be found. To do this it is sufficient to solve the $\frac{d H}{d \theta}=0$ equation:

$$
\frac{d H}{d \theta}=\left(\frac{d m}{d \theta} k_{2}+\frac{d n}{d \theta} s\right) \sin \theta+\left(m k_{2}+n s\right) \cos \theta=0
$$

In order to find θ from this formula, functions $m=f(\theta)$ and (Fig. 4 and 5) equation 13 may also be solved graphically by designating $\frac{d m}{d \theta}$ and $\frac{d \eta}{d \theta}$ values as tangents of angles which are enclosed between θ axis and respective lines tangent to M and M curves as shown in Fig. 4 and 5.

The graph plotted in Fig. 6 contains equation 13 solved for $k_{2}=J$. The results indicate that for a surcharge k_{2} equal to the width of the shoe, the maximum drawbar pull H may be obtained if the angle θ which is determined by the corresponding H / V ratio takes the following values:

For a plate: $\mathrm{h} / \mathrm{s}=0 \quad \theta=23^{\circ}$
For grouser plates:

If there is no surcharge $\frac{d m}{d \theta}=0$ and $m=0$. Equation 13 is much simplified and may be solved as shown in Fig. 7。

In this case the maximum obtainable drawbar pull takes place at the following θ values:

For any of the above quoted
angles the respective She and The may be found from graphs shown in Figs 4 and 5 .

By substituting these values in equations 11 and 12 the maximum drawbar pull (H max.) and the corresponding V load may easily be obtained. Hence the location of the maximum point N (Fig.3) may be plotted.

A third matter of interest may be the point E (Fig. 3) in which soil fails due to the vertical load only. This point may he found by substituting in equation 11 and $12 \mathrm{~m}_{\operatorname{sh} \theta}$ and. $n_{\operatorname{sh} \theta}$ values for $\theta=0$ (Fig. 4 and 5)。

It will be noted that in this cess formulae 10 and 12 reduce themselves to an equation which is identical to the equation given by TERZAGFII for the determination of the bearime voracity of a strip load 。 coefficients $\boldsymbol{M}_{\text {she }}$ and $n_{\text {she }}$ become identical with the reachoil's values N_{g} and N_{γ} as quoted in his "Theoretical Soil Mechanics".

NUMERICAL EXAMPLE

Determine polar coordinates and values of H and V in points A, M and B of the Trafficability curve (Pi go) for the following grouser plate: $s=5^{\prime \prime}, h=2.5^{\prime \prime}$. The plate whose width is $w=20^{\prime \prime}$, is acting without a surcharge upon a homogeneous cohestonless sand (friction $\phi=35^{\circ}$ and specific weight $\boldsymbol{\gamma}=0.06 \mathrm{lbs} / \mathrm{cu}$. in.).

Solution

(a) Coordinates and loads of point $A:$

$$
\theta=\tan ^{-1}\left(\frac{2.5+5 \tan 35^{\circ}}{5-2.5 \tan 35^{\circ}}\right) \cong 61^{\circ}
$$

The respective value of $\eta_{\text {she }}$ (for $h / s=2.5 / 5=.5$) is about 3 (Fig. 4). Hence the required radius $\overline{O A}$ is:

$$
2 P_{P Q}=\overline{O A}=3 \times 006 \times 5^{2} \cong 4.5 \mathrm{eb} / \mathrm{in}
$$

and the polar coordinates o point a are: $\theta=61^{\circ}, \int=4.5 \mathrm{lbs} / \mathrm{in}$.
Corresponding drawbar puli H and the vertical load V for the total width $w=20^{\prime \prime}$ of the plate are:

$$
\begin{aligned}
& H=4.5 \times 20 \times \sin 61^{\circ} \cong 78.3 \mathrm{lbs} \\
& V=4.5 \times 20 \times \cos 61^{\circ} \cong 43.5 \mathrm{lbs}
\end{aligned}
$$

(b) Co-ordinates of point \mathbb{N} and maximum obtainable drawbar pull:

From data quoted in this paper, $h / \boldsymbol{s}=0.5$ and $\phi=35^{\circ}$ give the maximum drawbar pull at $\theta=20^{\circ} 30^{\circ}$ (no surcharge). The corresponding The value is about 20 (Fig. 4). Hence \int max. is:

$$
\int_{\text {max }}=20 \times .06 \times 5^{2}=30.0 \mathrm{lb} / \mathrm{in}
$$

Loads which can be safely supported are:

$$
\begin{aligned}
& H_{\text {max }}=30 \times 20 \operatorname{tin}\left(20^{\circ} 30^{\prime}\right)=210 \mathrm{l6} . \\
& V=30 \times 20 \cos \left(20^{\circ} 30^{\prime}\right)=562 \text { los. }
\end{aligned}
$$

(c) Coordinates of point B and the vertical load vi

From the definition of point $3, \quad \boldsymbol{\theta}=0^{\circ}$, and the correaronding $n_{\text {she }}$ value is about 44 (FiB) hence:

$$
S=44 \times .06 \times 5^{2} \cong 66 \mathrm{lb} / \mathrm{in}
$$

and

$$
V=66 \times 20 \times \cos 0^{\circ} \cong 1320 \mathrm{els.}
$$

CONCLUSIONS

The above analytic method enables one to find all or three basic points ($A, M, B-F i g$. 3) of the Trefficability carve which determines the Ground Failure and thus makes it easy to trace this curve for any model.

In order to apply this method to ell conesioniess solis, values $M_{\text {she }}$ and $M_{\text {she }}$ should be computed in the same way as was done in this paper for $\phi=35^{\circ}$. The deduced formula appears to have the same meaning and limits of application as other similar formulae in Soil Mechanics determining the bearing capacity of soil.

FIG. 2

FIG. 3

