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ABSTRACT

Time-resolved laser-induced incandescence is a powerful
tool for determining the physical characteristics of aerosol
dispersions of refractory mano-particles. In this procedure,
particles within a small aerosol volume are heated with a nano-
second laser pulse, and the temporal incandescence of the
particles is then measured as they retum to the ambient gas
temperature. It is possible to infer particle size distribution
from the temporal decay of the LII signal since the cooling rate
of an individual particle depends on its area-to-volume ratio.
This requires solving a mathematically ili-posed inverse
problem, however, since the measured LII signal is due to the
incandescence contributed by all particle sizes within the
aerosol volume.

This paper reviews techniques proposed in the literature
for recovering particle size distributions from time-resolved LIT
data. The characteristics of this ill-posed problem are then
discussed in detail, particularly the issues of solution stability
and uniqueness. Finally, the accuracy and stability of each
method is evaluated by performing a perfurbation analysis, and
the overall performance of the techniques is compared.

INTRODUCTION
The development of effective and accurate techniques for

measuring particle size distributions in aerosols is important in -

wany applications. For example, particle sizing is used to
predict the impact of anthroporgenically-generated soot
particles on human health [1} and the ecosystem [2]. Soot
particle size also has a pronounced effect on radiation heat
transfer in engines and furnaces [3], so determining parficle
morphology  within these devices is paramount when
optimizing their performance. Finally, accurate particle size
measurement is crucial when manufacturing engineered
nanoparticles [4].

Since its introduction by Melton [5], time-resolved laser-
induced incandescence has become a powerful tool for making
in-situ property measurements of aerosol dispersions, including
the particle size distribution. In this procedure, a laser pulse
heats a small volume of aerosol to temperatures substantially
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higher than the ambient gas temperature, typically 3000-3500
K in particle-sizing experiments. The particles then cool to the
ambient gas temperature in microseconds, primarily by
conduction to the swrrounding gas. If sublimation and radiant
heat loss effects are negligible, which is usually the case in
low-fluence experiments, the particle temperature is governed

by

rd;, dT,lt. d

613 % =i (t' dp )‘ G cond (t' dp )’
where g.(¢, d;) is the energy absorbed by the particle during the
excitation laser pulse and g,..{t, d,) is the conduction heat loss
from the particle to the surrounding gas. If the excitation laser
operates at a wavelength 1, the rate of laser energy absorption
by the particle is given by

(1

pe

wd?

Gin (t' dp )= FO Q(t) Qa!:u',le (dp )-T:r&'
where Fj is the total laser fluence and ¢(f) is the pulsed laser
temporal power density. If the particle absorbs in the Rayleigh
limit (nd,/A, < 0.3 [6]), the particle absorption efficiency is
equal to QOusild) = 4ml/AE(m,), where E(m,) is the
absorption function of the complex index of refraction.
[Aggregated soot particles can also be madeled using Eq. (7},
provided the primary particle diameters are within the Rayleigh
limit [7].] At atmospheric pressures, heat conduction from the
particle to the surrounding gas usually occurs within the free-
molecular regime and is governed by [8]

@)

zd? P, (r,)
4 2T,

Q.:and(t’dp)=a?‘ :* ti [Tp(tJdp )_Tg ] €]

where gy 18 the thermal accommodation coefficient, 'yt is
defined from

1 1t oar

1 7,0, J—1‘Tiy(T)—1’
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and E(Z‘g )= Jgkng/ﬂ' mg . Equation (1) can be solved for the

temperature of a particle of diameter d, at any time ¢ after the

peak temperature. (Although aggregate shiclding effects are
important [9], they are neglected in this paper for simplicity.) ™

Because the particle cooling rate is inversely proportional
to the particle volume-to-surface area ratio, the size distribution
of particles in the measurement volume can be inferred from
the incandescence decay rate. The spectral incandescence of
the measurement volume ai the detection wavelength Ais
related to the particle temperatures through a Volterra integral
equation of the first kind,

ATAE c;jf,, (@, )5, a,)ad,. ()

where fld,) is the probabtl)lity distribution function of the
particie sizes and C; is a constant dependent on the particle
volume fraction and the optical measurement system. The
kernel of Eq. (6) is given by

zd?

K d,)=E,,(.d,) 0uild,) L)
where Fj 41, d,) is the spectral emissive power of a blackbody
af a temperature T,(t, d,) and wavelength A;. Instead of relying
on a single spectral incandescence measurement to determine
the size distribution, many researchers measure the aerosol
incandescence at iwo detection wavelengths and then calculate
an effective femperature,

TE[t:fd(dp)]=

M

hefky (1/ A -l ;a_

E(m‘u) Ja2 t’fd(dp)_[ﬁ]ﬁ
By} T .t’fd(dp) 4 ®)
which is an implicit funciion of f{d,) through Eq. (7).

The spectral incandescence or effective temperature curve
corresponding to a particular size distribution can be calculated
directly from the above equations; we refer to this process as
solving the mathematically well-posed jforward problem. More
often, however, the objective is to solve the inverse of this
problem, i.e. to determine the size distribution that produced an
experimentally-observed J, or T, decay. This procedure is
refatively siraightforward if particle sizes are assumed to be
monodisperse, in which case all particles have the same
temperature decay curve and d, is found directly from the time
constant. This procedure was first used by Will et al. [10] and
Mewes and Seitzman [11] to determine an average primary
particle size of a soot aerosol using TR~ LIl measurements.

In reality, however, particle sizes in most aerosols are
polydispserse and f{d,) can only be found by solving Egs. (6)
or (7). This is a far more difficult procedure because integral
equations of the first-kind like Eq. (6} are mathematically ill-
posed. The formal distinction between well-posed and ill-
posed problems was first made by Hadamard {12], who defined
well-posed problems as those that (i) have a solution (ii} that is
unique and (iii) stable under small perturbations in the problem

In
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definition or input data; problems that fail to satisfy any of the
above criteria are ill-posed. In this problem Hadamard’s first
criterion is satisfied since there must be at least one particle
size distribution that produces the observed incandescence
decay. There is, however, no pguarantee that only one
distribution produces the observed LII signal, at least within the
resolution of the experimental apparatus. Furthermore, a
particle size distribution that satisfies Eq. (7) may be very
sensitive to small perturbations in the incandescence data and
modeling errors, The latter is a particular concern, since many
of the model parameters are not generally known with
certainfy.

" The above properties make ill-posed problems very
difficult to solve, so special mathematical techniques must be
employed to recover the particle size distribution from time-
resolved LII data. Mathematically ill-posed inverse problems
can be solved in one of two ways: in the explicit methodology,
the unknown parameter is usually selved for directly by first
transforming the ili-posed governing integral equation into an
ill-conditioned mairix eguation that is then solved using
regularization. Roth and Filippov {13] used this approach to
solve Eq. (6) for f{d,) using an iterative regularization scheme
[14, 15]. Although this method has been demonstrated on a test
problem having a known distribution, it has Iimited practical
utility since the maximum and minimum particle sizes must be
known with some accuracy to restrict the null space of the
coeflicient matrix, and these values are rarely known for real
aerosols.

In the implicit methodology, on the other hand, trial
solutions of f{d,) are repeatedly substituted into the forward
problem, either Eq. (6) or Eq. (8), until the modeled variable,
T4 or T f), matches experimentally-observed results
within a specified tolerance. Lehre et al, [16, 17] were the first
to use an implicit scheme to solve for the size distribution of a
polydisperse aerosol using time-resolved LII data. Both
Kuhlmann et al. [18] and Dankers and Leipertz [19] have also
deveioped implicit techniques for finding particle size
distributions using multivariate minimization. Liu et al. {20]
developed an approach that transforms the multivariate
minimization problem into an easier-to-solve univariate
minimization problem.

This paper reviews the implicit methods that have been
presented in the literature for finding the size distribution of
polydisperse aerosols using time-resolved LII data. Each
technique is described in detail and demonstrated by analyzing
a set of artificial data pgenerated using a specified size
distribution. Finally, a discussion of how the ill-posed nature
of the inverse problem affects the accuracy of the recovered
size distributions is presented, and the resilience of each
particle-sizing method to uncertainties in the model parameters
and perturbations to the LII data is assessed.

TEST PROBLEM
The particle sizing technigues are demonstrated throughout
this paper by using them to analyze an aerosol representative of -
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in-flame soot. The particle diameters follow a lognormal

) probability density fonction,

2
1 Ind, /d
d )= exp|—| —2L7Pg | |
fd( p) , ,——zﬁhmg exp {ﬁmo-g] (9)

and the corresponding cumulative distribution function

1 Ind, /d
g

which are plotted in Fig 1. The geometric mean, d,,, and
geometric standard deviation, oy, are set equal o 30 nm and
1.25, respectively, typical values for flame-generated soot
primary particles [20].

The temperature of the spherical particles are calculated as
they are heated from the ambient gas temperature, 1700 K, to a
peak temperature of approximately 3300 K by the laser pulse
and then cool back to the ambient gas temperature by solving
Eq. (1) using a fourth-order Runge-Kutta scheme. The
accommodation coefficient, ay, is set equal to 0.3 and E(m;) =
0.3 over all wavelengths. Temperature-dependent properties of
soot and the flame gases are defined in a previous study [20].

The transieni temperature distribution is then substituted

. into Eqgs. {6-8) to obtain simuiated spectral incandescence

measurements at 4; = 400 nm and A; = 780 nm along with the
derived effective temperature, which are plotted in Fig. 2.
(Simulated data for a monedisperse aerosol with 4, = 30 nm is
also shown.) A sampling interval of two nanoseconds is
assumed, which is typical of many experiments.
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Fig. 1: Lognormal particle size distribution.
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Fig. 2: Simulated incandescence and effective
temperature data.
IMPLICIT SOLUTION SCHEMES

Implicit solution schemes work by repeatedly solving the
well-posed  forward problem, ie  determining the
incandescence intensity or effective temperature decay
corresponding to frial particle size distributions, until the
predicted quantity, either J"™%(#) or 7,"%(s), matches the
experimentally-observed one. The most efficient way to do this
is to recast the problem as a least-squares minimization
problem,

min  [F(x)]= mmx[%llb”” —pmd (lej an

where F(x) is the objective function, the elements of x specify
the particle size distribution, and vectors 57 and »™x)
contain experimentally-observed and modeled data. In aerosols
containing soot the pariicle size distribution is most often
assumed to be log-normat, so x is usually defined as x = {d,,,
ln(o;;)}r. [Using In{e,) instead of o, improves the scaling of
the minimization problem.] Nonlinear programming is then
used to find the value of x' that satisfies F(x*') = min[F{x)],
which also defines the particle size distribution most likely to
have produced the observed experimental data.

Many different nonlinear programming technigues have
heen developed to solve multivariate minimization problems
like Eq. (11). These techniques minimize F{x) iteratively; at
the 4" iteration, the solution is updated by x™' = x* + p*of
where p* is a search direction and o is a step size, both of
which are chosen based on the local topography of F{x%), If
F{x) is modeled accurately as a quadratic function in the
vicinity of x*, the most efficient choice for p* is Newton’s
direction [21],

v2F(xt)p* = —vE(x*), (12)

where the gradient vector and Hessian matrix contain first- and
second-order objective function sensitivities, VF, W) =

-
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BF(xN/0x, and V*F, (oF) = BF()/x,0x,, and o is set equal to
unity. This approach, cailed Newton’s methad [21], usually
requires the fewest iterations to find x of all the nonlinear
programming methods, although the computational effort
required to evaluate” the second-order sensitivities make it
unsuitable when F(x)} is expensive to calculate, which is the
case in the present problem.

Instead, in most least-squares objective functions the
Hessian is approximated accurately by VZF(x") = JI(x")JI(x5
where J(») is the Jacobian of f{x), J,,(x*) = —8*p"",(x")/ox,.
Substituting this approximation for into Eg. (12) results in a
procedure known as Gauss-Newfon minimization [21], which
is more computationally-efficient than Newton’s method.

Unfortunately, in this problem both the Hessian and
Jacobian matrices are ill-conditioned in the vicinity of x* due to
the ill-posedness of the underlying problem; consequently,
while there exists a unigue solution to Eq. (12), there are also a
large set of search directions that almost satisfy Eq. (12} with a
very small residual. The Levenburg-Marguardt method
stabilizes the calculation of p* by approximating the Hessian
with V2F(x") = JTF(x") + 2L, where 4 is a regnlarization
parameter and I is the identity matrix. Although some
implementations rely on the analyst to specify a satisfactory
value of A, most often the Levenburg-Marquardt method is
implemented as a trust region method in which A is specified
implicitly through the size of the trust region, A, which forces
[Pl < A® at each iteration [22].

Although all implicit techniques work by solving a
problem having the form of Eq. (12}, each technique defines
F(x) in a different way. 'The first and most straightforward
implementation by Lehre et al. [16], who defined #(x) based on
the difference between measured and modeled incandescence
signals at m discrete observation times,

F(x)= 13 bew )73 )]

i=1
In a subsequent publication [17] effective temperature was
substituted in place of monochromatic incandescence,

F (x)=%i[?"f"" )-1 (e, )] (14)

Equations {13) and (14) are plotted in Figs. 3 (a) and (5),
respectively. '

Kuhlmann et al. [18] developed a more sophisticated
approach based on the method of cumulants. If a distribution
AD) is related to a measured signal g(f) through a Laplacian
integral equation,

) [ (D)onl-To)ar,

(13)

(15

then the exponential decay of g(f) can be expressed as a power-
series of 1,

2
In[g(:)]= K +22

+...t+ , (16)

408

where the coefficients {K;, i=1, 2, ...} are the cumulants of
JT). If the distribution of T is log-normal, then A1) is defined
completely by the first two cumulants, 2, = K,/K,*+1 and dyg
= K)/20,. Unfortunately, this does not apply to Voterra integral
equations of the first-kind in general, which can have more
complicated kemels like Eq. (7). Instead, Kuhlmann et al. [18]
derive cumulant-like parameters, K;*F and K™, from a
quadratic regression of the log of experimentally-measured
monechromatic incandescence signals, {In[.5,"F(£)]}, following
Eq. (16). The least-squared objective function is then defined
as

Fle)= 2 {li - g - P}

which is plotted in Fig. 3 (¢).

Dankers and Leipertz [19] developed a similar method
based on fitting two exponential curves to the monochromatic
incandescence signal over two different time domains, Az, and
Aty. The first time domain starts approximately 100 ns after the
laser pulse and lasts 150-200 ns, while As typically starts at
600 ns and lasts 200 ns provided the particles are sufficiently
large and the ambient gas temperature is high. The particle size
distribution 1s then found by comparing the time constants of
the exponential curves, 47 and 6™, fo databases of model-
generated time constants formed by varying 4, and o, over a
range of values. This is equivalent to minimizing

2 PN
F(x):%{[rlﬂp —rl'"_"d(x)] +[r§rp —'rg"’d(x)] }, (18)
which 1s plotted in Fig. 3 (d).

Although all the above implicit methods minimize
different objective functions, Fig. 3 shows that these functions
all feature a long, shallow valley surrounding a strong local
minimum at x". This topography is due to the findamental
nature of the ill-posed problem; each objective function has at
least one minimizer x°, so Hadamard’s first criterion requiring
the existence of at least one solution is satisfied. Furthermore,
the objective functions have only one minimizer [at least over
the plotted range of 4,, and In(a;)], which means that
Hadamard’s second criterion demanding solution unigueness is
also satisfied. The problem is ill-posed because any point
%" along the floor of the valley surrounding x” specifies a
particle size distribution that almost minimizes Flx), ie. it
produces modeled TR-LII data that closely resembles the
experimentally observed data, cven though ¥ and x* specify
completely different distributions. Because of this, Hadamard’s

second criterion is glmost violated, and as we will show later in
the paper, Hadamard’s third criterion is violated.

Crown Copyright © 2006 National Research Council of Canada
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Fig 3: Plots of Least-squares objective functions for different implicit solution techniques (a) Eq. (13), (b} Eq. (14),
{c) Eq. (17) and (d) Eq. (18). Objective functions are normalized and plotied on an exponential scale.

A technique proposed by Liu et al. [20] further elucidates
the ill-posed nature of the problem. It is based on the
observation that, if the particles are heated to the same peak
temperature at 1,4, the initial effective temperature decay rate
is governed by

dIn(r, - T, )| c
ot

dp37

max

where

_dar Byl
4 pc T, |y -1 {20)

and d,s; is the Sauter mean diameter,

3 2
Ay = If(dp)d,, ddp/ff(dp)dp dd,, @
0 ]
which for a lognormal distribution is equal to

dy3 =d,, exp[S/Z lll(O'g )2] . (22)

|- , (19)

Equations (19)-(21) provide a relationship between o, and d,,
and show that particle size distributions having the same Sauter
mean diameter also have the same initial effective temperature
decay after the laser pulse. At later times in the cooling
process, however, the effective lemperature decay rate becomes
unique to a particular particle size distributton. In this
approach, the first step is to calculate dy3, by performing a
linear regression on a set of {In[T,*#(r,)-T,]} data, where £, <
< fue + 100 8. Once dp3; has been found, the lognormal size
distribution is specified by only one parameter, say ,. The
next step is to find the value of o that canses the modeled
effective temperature to match the measured effective
temperature at some time {, after the peak soot temperature,
which can be done by minimizing

F(O"g )= [T;—‘P (tf ]_ Te"wd (zc » O-E.' )]2 . (23)

Liu et al. [20] found that the maximum sensitivity of T,(¢} to g,
was found by setting ¢, = 1.5 g5 Figure 4 shows the curve dj;
= dpgexp[S/ZIn(cg)z] plotted over the topography of Eq. (14)
generated with J;°(r;) data collected between £, and £, +

Crown Copyright © 2006 National Research Council of Canada




100 ns, Note that the Sauter mean curve corresponds to the
floor of the valley swrounding x’, since different size

distributions having the same 43 produce similar
incandescence curves. This is afmost a violation of
Hadamard’s second ériteria and causes a violation of
Hadamard’s third criterion, which is demonstrated in the next
section.

0.25 prer

0:21
0.20

35

9.’1925

g [nm}k' Eq. (22)

Fig. 4: Eq. (22) plotted over Eq. (14), generated using
data measured up to 100 ns after the laser pulse.

SOLUTION ACCURACY AND STABILITY

In the previous section we showed particle sizing through
inverse analysis of time-resolved LII data requires the solution
of an ill-posed problem that violates Hadamard’s third criteria,
ie. that the recovered solution is highly sensitive to
perturbations to the problem definition. In this problem, the
perturbations are due to uncertainties in the model parameters
and noise in the measured data. - :

Model Parameter Uncertainty

Many of the model parameters in time-resolved laser-
imduced incandescence studies are not known with a high
degree of certainty, as recently highlighted by Schulz et al. [23]
amongst others. In particular, the majority of LII studies on in-
flame soot in the recent literature report values of ap ranging
from 0.23 to 0.37 [24] and wavelength-averaged values of
E(m) that range from 0.2 to 0.4 [25). Lehre et al. [17] also
suggest that particle sizing is sensitive io errors in gas
temperature measurement; the accuracy of 7, depends on how
it is measured, bit even the most accurate in-flame
measurement fechmiques are subject 1o measurement
uncertainties of at least 5%. (The uncertainties of high-fluence
LII are manifold and are not discussed here.)

The relative sensitivity of the size distributions recovered
by the implicit techniques described ahove to model parameter

uncertainties is assessed by performing a perturbation analysis,
In this procedure, artificial monochromatic and dichromatic
incandescence is first generated using the nominal model
parameters, oy = 0.3, E(m) = 0.3, and 7= 1700 K, and the
particle size distribution shown in Fig. 1. The five implicit
techniques are then used to recover the particle size distribution
from these artificial data sets, except the model parameters are
perturbed to maximum and minimum values representative of
the parameter uncertainties summarized in Table 1. In each
case, the accuracy of the recovered distribution is quantified by
the Cramér-Von Mises (CVM) goodness-of-fit parameter {26],
defined as the area contained befween the recovered and exact
particle size cumulative distribution functions,

e = [l x)-r b, N aa,, @o
which is shown graphi[z:ally in Fig. 5.

Table 1: Nominal model parameters and

perturbations.
Model Parameter Nominal Value Perturbation
i 0.3 +0.05
E(m) 0.3 +0.1
T 1700 K +20K
1.00
0.75
-
=
L 0507
0.257 T xejac(lzf nm. 123)
—_— X = (30 nm, 1.25)
0.00 i
10 20 30 40 50

dp [nim]

Fig. 5: Graphical representation of the Cramér-Von
Mises goodness-of-fit statistic.

The maximum CVM siafistic associated with each

_ perturbation is summarized in Table 2. The first column shows

the CVM statistics of the unperturbed recovered distributions,
which are slightly larger than zero because the cooling models
neglect residual laser heating after the peak temperature. Table
2 shows that the implicii schemes are most sensitive to
accommodation coefficient unceriainties and are relatively
insensitive to uncertainties in E(m) and T,. In fact, methods
based on two-wavelength pyrometry are completely insensitive’

Crown Copyright © 2006 National Research Council of Canada
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to EQr) if it is truly wavelength-independent. Figure 6 shows

the patticle size distributions recovered using Eq. (14) with
perturbed accommodation coefficient values.

The above observations assume that the peak particle
temperature is measured using two-color pyrometry, Eq. (8).
Alternatively, one can avoid two-color measurements and
instead estimate the peak temperature by solving Eq. (1), which
is sometimes done with techniques that otherwise rely only on
monochromatic incandescence measurements. The CVM
statistics  assocfated with this technique are included
parenthetically in the E{m) column, and show that it is highly
sensitive to uncertainties in E(m1).

Table 2: Maximum CVM statistics due to model
parameter unceriainty.

Method | Nominal | gr20.05 | T, 220K | Em) £ 0.1
Ref. [16] 0.021 1.206 0.179 0.021
(2.578)
Ref. [17] 0.168 1.165 0.241 0.168
Ref. [18] 0.010 1.058 0.073 0.010
(0.843)
Ref. [19] 0.013 1.055 0.068 0.013
(1.153)
Ref. [20] 0.305 1.311 0.385° 0.305
.08
e ur = 0.3
— wr=0.25, W=1.08
0.06 - 0T = 035, W = 099
5
-5 0.04
0.02 ]

10 20 30 40 50 B0
dp [nm]

Fig. 6: Effect of aruncertainty on size distributions
recovered with the method of Lehre et al. {17]

Measurement Noise

In order to assess the sensitivity of the implicit solution
methods to measurement noise, the synthetic incandescence
data was contaminated with artificial photomultiplier shot noise
according to

Jl(ti):‘],l(ti)_l' El(ti)' (25)

411

The time-dependent error, £(#;), is sampled from an unbiased
Gaussian  distribution having a standard deviation of

K, / VN oty 7 ;,if;), which is consistent with the operating

theory of photodetectors [27]. In this work, K is set equal to
five percent of the maximum signal sirength and N
represents the number of single-shot measurements used for
variance reduction. The simulated 10-shot averaged LII data
plotted in Fig. 7 shows that signals collected at short
wavelengths are most susceptible to noise and that the signal-
to-noise ratio increases with time, which are both characteristic
of experimental data. Figure 7 also shows that calculating an
effective temperature using two-wavelength pyrometry

amplifies the experimental noise substantially, as observed by
Kuhimann et al. [18].

3500
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Fig. 7: Synthetic 10-shot averaged LIl data

The influence of objective function topography on error
propagation is demonstrated in Fig. 8 which shows 40
solutions recovered from perturbed 10-shot averaged LII data
uging the method of Kuhimann et al, [18] and plotted over the
contours of the corresponding objective function. All the
solutions lie in the vicinity of the shallow valley surrounding
x', a topographical feature characteristic of ill-posed problems
that violate Hadamard’s third criterion, since sclutions that lie
in this valley almost minimize F({x) and produce modeled LII
signals that closely resemble the unperturbed LI signal
corresponding to the true distribution.  The locus of solutions
is slightly skewed from the valley of the objective fimction,
however, because the measurement noise biased towards longer
cooling times. The perturbed solutions actually follow the
locus of distributions having the same Sauter mean diameter,
since this value depends only on the initial rate of cooling and
the corresponding data is relatively unperturbed.
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Fig. 8: Solutions obtained using the Kuhimann et al.

method [18] on perturbed 10-shot data, plotted over
the corresponding objective function contours.

The sensitivity of the implicit sizing techniques io
measurement noise is compared by using them to recover size
distributions from 40 independent sets of incandescence data
contaminated with artificial noise, and with different values of
Npors for variance reduction. The average CVM parameters are
plotted in Fig, 9, and show that techniques based on
monochromatic  incandescence are less susceptible to
measurement noise compared to those based on effective
temperature. The different sensitivities of the implicit sizing
techniques o measurement noise has little to do with the
relative objective function topography, and instead depends on
noise amplification caused by the derived variables that define
the least-squares objective function. Figure 10 shows that
while there is very minor noise amplification associated with
the parameters of the Kuhlmann et al. method [18] and the
Dankers and Leipertz method [19], substantial noise
amplification occurs when using methods based on effective
temperature. The method of Liu et al. [24] is most sensitive to
measurement noise because Eq. (23} is derived using only on a
single effective temperature; in contrast, Eq. (14) relies on a
large set of effeciive temperatores, which somewhat mitigates
the noise in the effective temperature data.

CONCLUSIONS

This paper has shown that using time-resolved LII data to
recover the particle distribution ir an aerosol involves solving
an ill-posed inverse problem that violates Hadamard’s third
criterion.  Although both explicit and implicit solution
techniques have heen proposed in the literature, implicit
solution techniques based on least-squares mintmization are the
most viable way of solving this problem.

Because the problem is ili~posed, the recovered particle
size distribution is sensitive to both model parameter
uncertainty and measurement noise.  All implicit methods are
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roughly equally sensitive to wuncertainties in the model
parameters, the thermal accommodation coefficient in
particular, Techniques based on monochromatic
incandescence are least susceptible to measurement noise.

10
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Fig. 9: Relative sensitivity of the implicit particle
sizing techniques to measurement noise.
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Fig. 10: Noise amplification caused by the derived
least-squared objective function variables.
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NOMENCLATURE
Ly Vector containing experimentally~-measured data

4% Vecter containing modeled data

¢ Specific heat, JikgK

z Mean melecular speed, ms™

C, Calibration constant

d, Particle diameter, m

dyg Geometric mean particle diameter, m

dyz Sauter mean diameter, Eq. (21), m

Eudt d2) Spectral emissive power of particles having
diameter d,

E(my) Absorption function of the complex index of
refraction.

Jidp) Probability density function of 4,

FAdy) Cumulative distribution function of 4,

Flx) Least-squares objective function

I Identity matrix :

Jio Monochromatic incandescence signal

365 Jacobian matrix of F{x)

kg Boltzmann’s constant, 1.38 x 1072 Jmolecule K

Kit, d) Kemel of Eq. (7)

My Molecular mass of the gas, kg

Nipors Number of single-shot measuremeunts for variance
reduction

r Search direction

Quwi(d,)  Absorption efficiency of particles having a
diameter 4,

¢ Time, s

Tl Effective temperature, K

T, Gas temperature, K

Tole, 1) Particle temperature, X

W Cramér-Von Mises parameter, Eq. (24)

X Vector specifying f{d,)

o Thermal accommodation coefficient

o Step size

AF Trust region size

£(n Synthetic measurement noise

12 Temperature-averaged adiabatic gas constant

A, Laser excitation wavelength

A First detection wavelength, 400 nm

Ay Second detection wavelength, 780 nm

i Regularization parameter

P Density, kg/m’

a, Geometric standard deviation

REFERENCES

[1] Oberdérster, G., Oberdorster, £., and Oberdérster, 1., 2003,
"Nanotoxicology: An Emerging Discipline Evolving from
Studies of Ultrafine Particles,” Environmental Health
Perspectives, 113, 7, pp. 823-839."

{2] Jacobson, M. Z., 2002, “Control of Fossil-Fuel Particulate
Carbon Black and Organic Matter, Possibly the Most Effective

Method of Slowing Global Warming,”
Research, 107, D19,

J. Geophysical

[3] Viskanta, R., and Mengug, M. P, 1987, “Radiation Heat
Transfer in Combustion  Systerns,” Progress in Energy and
Cormbustion Science, 13, 2, pp. 97-160. '

[4] Dankers, S., Leipertz, A., Will, S., Amdt, J., Vogel, K.,
Schraml, 8., Hemm, A., 2003, “In-situ Measurement of Primary

* Particle Sizes during Carbon Black Production,” Chemical

413

Engineering Technology, 26, 9, pp. 966-969.

[5] Melton, L. A., 1984, “Soot Diagnostics based on Laser
Heating,” Applied Optics, 23, 13, pp. 2202-2208.

[6] Kerker, M, The Scattering of Light, Academic Press, New
York, NY, 1969.

[7] Farias, T. L., Kéyl, U. O., and Carvalho, M. G, 1996,
“Range of Validity of the Rayleigh-Debye Gans Theory for
Optics of Fractal Aggregates,” Applied Optics, 35, 33, pp.
6560-6567.

[8] Filippov, A. V., and Rosner, . E., 2000, “Energy Transfer
between an Aerosol Particle and Gas at High Temperature
Ratios in the Knudsen Transition Regime,” ITHMT, 43, 12, pp.
127-138.

{9 Filippov, A. V,, Zurita, M., and Rosner, D. E., 2000,
“Fractal-like Aggregates: Relation between Momphology and
Physical Properties,” J. Colloid Interface Sci., 229, 1 pp. 261-
273,

[10] Will, S., Schraml, S., and Leipertz, A. 1995, “Two-
Dimensional Soot-Particle Sizing by Time-Resclved Laser-
Induced Incandescence,” Optical Letters, 20 22, pp. 2341-
2344,

[11] Mewes, B., and Seitzman, I, M., 1997, “Soot Volume
Fraction and Particle Size Measurements with Laser-Induced
Incandescence,” Applied Optics, 36, 3, pp. 709-717.

{12] Hadamard, 3., 1923, Lectures on Cauchy’s Problem in
Linear Partial Differential Equations, Yale University Press,
New Haven, CT.

[13] Roth, P, and Filippov, A. V, 1996, “In Sitn Ultrafine
Particle Sizing by a Combination of Pulsed Laser Heatup and
Particle Thermal Emission,” J, Aerosol Sci., 27, 1, pp. 95-104,

[14] Twomey, S. 1975, “Comparison of Constrained Linear
Iversion and an Tterative Nonlinear Algorithm Applied to the
Indirect Estimate of Particle Size Distributions,” J.
Computational Physics, 18, pp. 188-200.

Crown Copyright © 2006 National Research Council of Canada




[15] Markowski, G. R., 1987, “Improving Twomey’s Algorithm
for Inversion of Aerosol Méasurement Data,” Aerosol Sci. and
Tech., 7, 2, pp. 127-141. |

[16] Lehre, T. Bockhom, H., Jungfleisch, B., and Suntz, K,
2003, “Development of a Measuring Technique for
Simultaneous In Situ Detection of Nanoscaled Particle Size
Distributions and Gas Temperatures,” Chemosphere, 51, 10,
pp- 1055-1061.

[17] Lehre, T. Jungfleisch, B., Suntz, R., and Bockhorn, H.
2003, “Size Distributions of Nanoscaled Particles and Gas
Temperatures from Time-Resolved Laser-Induced
Incandescence Measurements,” Applied Optics, 42, 12, pp.
2021-2029.

[18] Kuhimann, 8. A., Schumacher, J., Reimann, J., and Will,
S., 2004, “Evaluation and Improvement of Laser-Induced
Incandescence for Nanoparticle Sizing,” PARTEC 2004,
Nuremburg, Germany, March 16-18.

[19] Dankers, S. and Leipertz, A., 2004, “Determination of
Primary Particle Size Disiributions from Time-Resolved Laser-
Induced Incandescence Measurements,” Applied Optics, 43,
138, pp. 3726-3730.

[20] Liu, F., Stagg, B. J., Snelling, D. R., and Smallwood, G J.,
2006, “Effects of Primary Soot Particle Size Distribution on the
‘Temperature of Soot Particles Heated by a Nanosecond Pulsed
Laser in an Atmospheric Laminar Diffusion Flame.” TJHMT,
49 pp. 777-788.

1217 Gill, P. E., Murray, W., Wright, M. H., 1986, Practical
Optimization, Academic Press, San Diego, CA.

[22] More, J. J., and Sorensen, D. C., 1983, “Computing a
Trust Region Step,” SIAM J. Sci. Statist. Comput. 4, 3, pp.
553-572.

[23] Schulz, C., Kock, B. F., Hofmann, M., Michelsen, .,
Will, S., Bougie, B., Suntz, R., and Smallwood, G. I., 2006,
“Laser-Indoced Incandescence: Recent Trends and Current
Questions,” Applied Physics B, 83, 3, pp. 333-354.

[24]1 Liu, F., Snelling, D. R., and Smallwood, G. J., 2006, “A
Critical Evaluation of the Thermal Accommodation Coefficient

of Soot Determined by the Laser-Induced Incandescence
Technique,” 13th THTC, Sydney, Australia, Aug. 13-18.

[25] Lin, E Daun, K. J., and Smaliwood, G. J., 2006, “Some
Theoretical Considerations for Modeling Laser-Induced
Incandescence at Small Pressures,” 2nd Intl. Bunsen Meeting
and Workshop, Bad Herrenalb, Germany, Aug. 2-4.

414

[26] Stephens, M. A., 1970, “Use of the Kolmogorov-Smirnov,
Cramer-Von Mises and Related Statistics Without Extensive
Tables,” J. Royal Statistical Soc. B, 32, 1, pp. 115-122.

[27] Yariv, A., 1971, Introduction to Optical Electronics, Holt,
Reinhold and Winston, Inc., New York, NY, pp. 254-256.

Crown Copyright © 2006 Natjonal Research Council of Canada




HTD-Vol. 377-3

Proceedings of the ASME

HEAT TRANSFER DIVISION
- 2006 -

VOLUME 3

HEAT TRANSFER IN ELECTRONIC EQUIPMENT
LOW TEMPERATURE

ENVIRONMENTAL HEAT TRANSFER
COMPUTATIONAL HEAT TRANSFER
EDUCATION

VISUALIZATION OF HEAT TRANSFER

presented at

2006 ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION
NOVEMBER 5-10, 2006
CHICAGO, IILINOIS USA

sponsored by
- THE HEAT TRANSFER DIVISION, ASME

A S ME

Three Park Avenue ® New York, N.Y. 10016




