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Abstract

The automatic coding of clinical documents

is an important task for today’s healthcare

providers. Though it can be viewed as

multi-label document classification, the cod-

ing problem has the interesting property that

most code assignments can be supported by

a single phrase found in the input docu-

ment. We propose a Lexically-Triggered Hid-

den Markov Model (LT-HMM) that leverages

these phrases to improve coding accuracy. The

LT-HMM works in two stages: first, a lexical

match is performed against a term dictionary

to collect a set of candidate codes for a docu-

ment. Next, a discriminative HMM selects the

best subset of codes to assign to the document

by tagging candidates as present or absent.

By confirming codes proposed by a dictio-

nary, the LT-HMM can share features across

codes, enabling strong performance even on

rare codes. In fact, we are able to recover

codes that do not occur in the training set at

all. Our approach achieves the best ever per-

formance on the 2007 Medical NLP Challenge

test set, with an F-measure of 89.84.

1 Introduction

The clinical domain presents a number of interesting

challenges for natural language processing. Con-

ventionally, most clinical documentation, such as

doctor’s notes, discharge summaries and referrals,

are written in a free-text form. This narrative form

is flexible, allowing healthcare professionals to ex-

press any kind of concept or event, but it is not

particularly suited for large-scale analysis, search,

or decision support. Converting clinical narratives

into a structured form would support essential activi-

ties such as administrative reporting, quality control,

biosurveillance and biomedical research (Meystre

et al., 2008). One way of representing a docu-

ment is to code the patient’s conditions and the per-

formed procedures into a nomenclature of clinical

codes. The International Classification of Diseases,

9th and 10th revisions, Clinical Modification (ICD-

9-CM, ICD-10-CM) are the official administrative

coding schemes for healthcare organizations in sev-

eral countries, including the US and Canada. Typi-

cally, coding is performed by trained coding profes-

sionals, but this process can be both costly and error-

prone. Automated methods can speed-up the cod-

ing process, improve the accuracy and consistency

of internal documentation, and even result in higher

reimbursement for the healthcare organization (Ben-

son, 2006).

Traditionally, statistical document coding is

viewed as multi-class multi-label document classifi-

cation, where each clinical free-text document is la-

belled with one or several codes from a pre-defined,

possibly very large set of codes (Patrick et al., 2007;

Suominen et al., 2008). One classification model is

learned for each code, and then all models are ap-

plied in turn to a new document to determine which

codes should be assigned to the document. The

drawback of this approach is poor predictive perfor-

mance on low-frequency codes, which are ubiqui-

tous in the clinical domain.

This paper presents a novel approach to document

coding that simultaneously models code-specific as

well as general patterns in the data. This allows



us to predict any code label, even codes for which

no training data is available. Our approach, the

lexically-triggered HMM (LT-HMM), is based on

the fact that a code assignment is often indicated

by short lexical triggers in the text. Consequently,

a two-stage coding method is proposed. First, the

LT-HMM identifies candidate codes by matching

terms from a medical terminology dictionary. Then,

it confirms or rejects each of the candidates by ap-

plying a discriminative sequence model. In this ar-

chitecture, low-frequency codes can still be matched

and confirmed using general characteristics of their

trigger’s local context, leading to better prediction

performance on these codes.

2 Document Coding and Lexical Triggers

Document coding is a special case of multi-class

multi-label text classification. Given a fixed set of

possible codes, the ultimate goal is to assign a set of

codes to documents, based on their content. Further-

more, we observe that for each code assigned to a

document, there is generally at least one correspond-

ing trigger term in the text that accounts for the

code’s assignment. For example, if an ICD-9-CM

coding professional were to see “allergic bronchitis”

somewhere in a clinical narrative, he or she would

immediately consider adding code 493.9 (Asthma,

unspecified) to the document’s code set. The pres-

ence of these trigger terms separates document cod-

ing from text classification tasks, such as topic or

genre classification, where evidence for a particular

label is built up throughout a document. However,

this does not make document coding a term recogni-

tion task, concerned only with the detection of trig-

gers. Codes are assigned to a document as a whole,

and code assignment decisions within a document

may interact. It is an interesting combination of sen-

tence and document-level processing.

Formally, we define the document coding task

as follows: given a set of documents X and a set

of available codes C, assign to each document xi

a subset of codes Ci ⊂ C. We also assume ac-

cess to a (noisy) mechanism to detect candidate trig-

gers in a document. In particular, we will assume

that an (incomplete) dictionary D(c) exists for each

code c ∈ C, which lists specific code terms asso-

ciated with c.1 To continue our running example:

D(493.9) would include the term “allergic bron-

chitis”. Each code can have several corresponding

terms while each term indicates the presence of ex-

actly one code. A candidate code c is proposed each

time a term from D(c) is found in a document.

2.1 From triggers to codes

The presence of a term from D(c) does not automat-

ically imply the assignment of code c to a document.

Even with extremely precise dictionaries, there are

three main reasons why a candidate code may not

appear in a document’s code subset.

1. The context of the trigger term might indicate

the irrelevancy of the code. In the clinical do-

main, such irrelevancy can be specified by a

negative or speculative statement (e.g., “evalu-

ate for pneumonia”) or a family-related context

(e.g., “family history of diabetes”). Only defi-

nite diagnosis of the patient should be coded.

2. There can be several closely related candidate

codes; yet only one, the best fitted code should

be assigned to the document. For example, the

triggers “left-sided flank pain” (code 789.09)

and “abdominal pain” (code 789.00) may both

appear in the same clinical report, but only the

most specific code, 789.09, should end up in

the document code set.

3. The domain can have code dependency rules.

For example, the ICD-9-CM coding rules state

that no symptom codes should be given to

a document if a definite diagnosis is present.

That is, if a document is coded with pneumo-

nia, it should not be coded with a fever or

cough. On the other hand, if the diagnosis is

uncertain, then codes for the symptoms should

be assigned.

This suggests a paradigm where a candidate code,

suggested by a detected trigger term, is assessed

in terms of both its local context (item 1) and the

presence of other candidate codes for the document

(items 2 and 3).

1Note that dictionary-based trigger detection could be re-

placed by tagging approaches similar to those used in named-

entity-recognition or information extraction.



2.2 ICD-9-CM Coding

As a specific application we have chosen the task

of assigning ICD-9-CM codes to free-form clinical

narratives. We use the dataset collected for the 2007

Medical NLP Challenge organized by the Compu-

tational Medicine Center in Cincinnati, Ohio, here-

after refereed to as “CMC Challenge” (Pestian et al.,

2007). For this challenge, 1954 radiology reports

on outpatient chest x-ray and renal procedures were

collected, disambiguated, and anonymized. The re-

ports were annotated with ICD-9-CM codes by three

coding companies, and the majority codes were se-

lected as a gold standard. In total, 45 distinct codes

were used.

For this task, our use of a dictionary to detect lex-

ical triggers is quite reasonable. The medical do-

main is rich with manually-created and carefully-

maintained knowledge resources. In particular, the

ICD-9-CM coding guidelines come with an index

file that contains hundreds of thousands of terms

mapped to corresponding codes. Another valuable

resource is Metathesaurus from the Unified Medical

Language System (UMLS) (Lindberg et al., 1993).

It has millions of terms related to medical problems,

procedures, treatments, organizations, etc. Often,

hospitals, clinics, and other healthcare organizations

maintain their own vocabularies to introduce con-

sistency in their internal and external documenta-

tion and to support reporting, reviewing, and meta-

analysis.

This task has some very challenging properties.

As mentioned above, the ICD-9-CM coding rules

create strong code dependencies: codes are assigned

to a document as a set and not individually. Fur-

thermore, the code distribution throughout the CMC

training documents has a very heavy tail; that is,

there are a few heavily-used codes and a large

number of codes that are used only occasionally.

An ideal approach will work well with both high-

frequency and low-frequency codes.

3 Related work

Automated clinical coding has received much atten-

tion in the medical informatics literature. Stanfill et

al. reviewed 113 studies on automated coding pub-

lished in the last 40 years (Stanfill et al., 2010). The

authors conclude that there exists a variety of tools

covering different purposes, healthcare specialties,

and clinical document types; however, these tools

are not generalizable and neither are their evaluation

results. One major obstacle that hinders the progress

in this domain is data privacy issues. To overcome

this obstacle, the CMC Challenge was organized in

2007. The purpose of the challenge was to provide

a common realistic dataset to stimulate the research

in the area and to assess the current level of perfor-

mance on the task. Forty-four teams participated in

the challenge. The top-performing system achieved

micro-averaged F1-score of 0.8908, and the mean

score was 0.7670.

Several teams, including the winner, built pure

symbolic (i.e., hand-crafted rule-based) systems

(e.g., (Goldstein et al., 2007)). This approach is fea-

sible for the small code set used in the challenge,

but it is questionable in real-life settings where thou-

sands of codes need to be considered. Later, the

winning team showed how their hand-crafted rules

can be built in a semi-automatic way: the initial set

of rules adopted from the official coding guidelines

were automatically extended with additional syn-

onyms and code dependency rules generated from

the training data (Farkas and Szarvas, 2008).

Statistical systems trained on only text-derived

features (such as n-grams) did not show good per-

formance due to a wide variety of medical language

and a relatively small training set (Goldstein et al.,

2007). This led to the creation of hybrid systems:

symbolic and statistical classifiers used together in

an ensemble or cascade (Aronson et al., 2007; Cram-

mer et al., 2007) or a symbolic component provid-

ing features for a statistical component (Patrick et

al., 2007; Suominen et al., 2008). Strong competi-

tion systems had good answers for dealing with neg-

ative and speculative contexts, taking advantage of

the competition’s limited set of possible code com-

binations, and handling of low-frequency codes.

Our proposed approach is a combination system

as well. We combine a symbolic component that

matches lexical strings of a document against a med-

ical dictionary to determine possible codes (Lussier

et al., 2000; Kevers and Medori, 2010) and a sta-

tistical component that finalizes the assignment of

codes to the document. Our statistical component

is similar to that of Crammer et al. (2007), in that

we train a single model for all codes with code-



specific and generic features. However, Crammer

et al. (2007) did not employ our lexical trigger step

or our sequence-modeling formulation. In fact, they

considered all possible code subsets, which can be

infeasible in real-life settings.

4 Method

To address the task of document coding, our

lexically-triggered HMM operates using a two-stage

procedure:

1. Lexically match text to the dictionary to get a

set of candidate codes;

2. Using features derived from the candidates and

the document, select the best code subset.

In the first stage, dictionary terms are detected in the

document using exact string matching. All codes

corresponding to matches become candidate codes,

and no other codes can be proposed for this docu-

ment.

In the second stage, a single classifier is trained to

select the best code subset from the matched candi-

dates. By training a single classifier, we use all of

the training data to assign binary labels (present or

absent) to candidates. This is the key distinction of

our method from the traditional statistical approach

where a separate classifier is trained for each code.

The LT-HMM allows features learned from a doc-

ument coded with ci to transfer at test time to pre-

dict code cj , provided their respective triggers ap-

pear in similar contexts. Training one common clas-

sifier improves our chances to reliably predict codes

that have few training instances, and even codes that

do not appear at all in the training data.

4.1 Trigger Detection

We have manually assembled a dictionary of terms

for each of the 45 codes used in the CMC chal-

lenge.2 The dictionaries were built by collecting rel-

evant medical terminology from UMLS, the ICD-9-

CM coding guidelines, and the CMC training data.

The test data was not consulted during dictionary

construction. The dictionaries contain 440 terms,

with 9.78 terms per code on average. Given these

dictionaries, the exact-matching of terms to input

2
Online at https://sites.google.com/site/

colinacherry/ICD9CM ACL11.txt

documents is straightforward. In our experiments,

this process finds on average 1.83 distinct candidate

codes per document.

The quality of the dictionary significantly affects

the prediction performance of the proposed two-

stage approach. Especially important is the cover-

age of the dictionary. If a trigger term is missing

from the dictionary and, as the result, the code is not

selected as a candidate code, it will not be recov-

ered in the following stage, resulting in a false neg-

ative. Preliminary experiments show that our dictio-

nary recovers 94.42% of the codes in the training set

and 93.20% in the test set. These numbers provide

an upper bound on recall for the overall approach.

4.2 Sequence Construction

After trigger detection, we view the input document

as a sequence of candidate codes, each correspond-

ing to a detected trigger (see Figure 1). By tagging

these candidates in sequence, we can label each can-

didate code as present or absent and use previous

tagging decisions to model code interactions. The

final code subset is constructed by collecting all can-

didate codes tagged as present.

Our training data consists of [document, code set]

pairs, augmented with the trigger terms detected

through dictionary matching. We transform this into

a sequence to be tagged using the following steps:

Ordering: The candidate code sequence is pre-

sented in reverse chronological order, according to

when their corresponding trigger terms appear in the

document. That is, the last candidate to be detected

by the dictionary will be the first code to appear in

our candidate sequence. Reverse order was chosen

because clinical documents often close with a final

(and informative) diagnosis.

Merging: Each detected trigger corresponds to

exactly one code; however, several triggers may be

detected for the same code throughout a document.

If a code has several triggers, we keep only the last

occurrence. When possible, we collect relevant fea-

tures (such as negation information) of all occur-

rences and associate them with this last occurrence.

Labelling: Each candidate code is assigned a bi-

nary label (present or absent) based on whether it

appears in the gold-standard code set. Note that this



Cough, fever in 9‐year‐

old male. IMPRESSION: 

1. Right middle lobe 

pneumonia. 2. Minimal 

pleural thickening on 

the right may represent 

small pleural effusion.  

486 

pneumonia 

context=pos 

sem=disease 

 

N Y  N N 

511.9 

pleural effusion 

context=neg 

sem=disease 

 

780.6 

fever 

context=pos 

sem=symptom 

 

786.2 

cough 

context=pos 

sem=symptom 

 

Gold code set: {486} 

Figure 1: An example document and its corresponding gold-standard tag sequence. The top binary layer is the correct

output tag sequence, which confirms or rejects the presence of candidate codes. The bottom layer shows the candidate

code sequence derived from the text, with corresponding trigger phrases and some prominent features.

process can not introduce gold-standard codes that

were not proposed by the dictionary.

The final output of these steps is depicted in Fig-

ure 1. To the left, we have an input text with un-

derlined trigger phrases, as detected by our dictio-

nary. This implies an input sequence (bottom right),

which consists of detected codes and their corre-

sponding trigger phrases. The gold-standard code

set for the document is used to infer a gold-standard

label sequence for these codes (top right). At test

time, the goal of the classifier is to correctly predict

the correct binary label sequence for new inputs. We

discuss the construction of the features used to make

this prediction in section 4.3.

4.3 Model

We model this sequence data using a discriminative

SVM-HMM (Taskar et al., 2003; Altun et al., 2003).

This allows us to use rich, over-lapping features of

the input while also modeling interactions between

labels. A discriminative HMM has two major cate-

gories of features: emission features, which charac-

terize a candidate’s tag in terms of the input docu-

ment x, and transition features, which characterize

a tag in terms of the tags that have come before it.

We describe these two feature categories and then

our training mechanism. All feature engineering dis-

cussed below was carried out using 10-fold cross-

validation on the training set.

Transition Features

The transition features are modeled as simple in-

dicators over n-grams of present codes, for values of

n up to 10, the largest number of codes proposed by

our dictionary in the training set.3 This allows the

system to learn sequences of codes that are (and are

not) likely to occur in the gold-standard data.

We found it useful to pad our n-grams with “be-

ginning of document” tokens for sequences when

fewer than n codes have been labelled as present,

but found it harmful to include an end-of-document

tag once labelling is complete. We suspect that the

small training set for the challenge makes the system

prone to over-fit when modeling code-set length.

Emission Features

The vast majority of our training signal comes

from emission features, which carefully model both

the trigger term’s local context and the document as

a whole. For each candidate code, three types of

features are generated: document features, ConText

features, and code-semantics features (Table 1).

Document: Document features include indicators

on all individual words, 2-grams, 3-grams, and 4-

grams found in the document. These n-gram fea-

tures have the candidate code appended to them,

making them similar to features traditionally used

in multiclass document categorization.

ConText: We take advantage of the ConText algo-

rithm’s output. ConText is publicly available soft-

ware that determines the presence of negated, hypo-

thetical, historical, and family-related context for a

given phrase in a clinical text (Harkema et al., 2009).

3We can easily afford such a long history because input se-

quences are generally short and the tagging is binary, resulting

in only a small number of possible histories for a document.



Features gen. spec.

Document

n-gram x

ConText

current match

context x x

only in context x x

more than once in context x x

other matches

present x x

present in context = pos x x

code present in context x x

Code Semantics

current match

sem type x

other matches

sem type, context = pos x x

Table 1: The emission features used in LT-HMM.

Typeset words represent variables replaced with spe-

cific values, i.e. context ∈ {pos,neg}, sem type ∈
{symptom,disease}, code is one of 45 challenge codes,

n-gram is a document n-gram. Features can come in

generic and/or code-specific version.

The algorithm is based on regular expression match-

ing of the context to a precompiled list of context

indicators. Regardless of its simplicity, the algo-

rithm has shown very good performance on a vari-

ety of clinical document types. We run ConText for

each trigger term located in the text and produce two

types of features: features related to the candidate

code in question and features related to other candi-

date codes of the document. Negated, hypothetical,

and family-related contexts are clustered into a sin-

gle negative context for the term. Absence of the

negative context implies the positive context.

We used the following ConText derived indicator

features: for the current candidate code, if there is at

least one trigger term found in a positive (negative)

context, if all trigger terms for this code are found

in a positive (negative) context, if there are more

than one trigger terms for the code found in a posi-

tive (negative) context; for other candidate codes of

the document, if there is at least one other candidate

code, if there is another candidate code with at least

one trigger term found in a positive context, if there

is a trigger term for candidate code ci found in a pos-

itive (negative) context.

Code Semantics: We include features that indi-

cate if the code itself corresponds to a disease or a

symptom. This assignment was determined based

on the UMLS semantic type of the code. Like the

ConText features, code features come in two types:

those regarding the candidate code in question and

those regarding other candidate codes from the same

document.

Generic versus Specific: Most of our features

come in two versions: generic and code-specific.

Generic features are concerned with classifying any

candidate as present or absent based on characteris-

tics of its trigger or semantics. Code-specific fea-

tures append the candidate code to the feature. For

example, the feature context=pos represents that

the current candidate has a trigger term in a positive

context, while context=pos:486 adds the infor-

mation that the code in question is 486. Note that

n-grams features are only code-specific, as they are

not connected to any specific trigger term.

To an extent, code-specific features allow us

to replicate the traditional classification approach,

which focuses on one code at a time. Using these

features, the classifier is free to build complex sub-

models for a particular code, provided that this code

has enough training examples. Generic versions of

the features, on the other hand, make it possible to

learn common rules applicable to all codes, includ-

ing low-frequency ones. In this way, even in the ex-

treme case of having zero training examples for a

particular code, the model can still potentially assign

the code to new documents, provided it is detected

by our dictionary. This is impossible in a traditional

document-classification setting.

Training

We train our SVM-HMM with the objective of

separating the correct tag sequence from all others

by a fixed margin of 1, using a primal stochastic

gradient optimization algorithm that follows Shalev-

Shwartz et al. (2007). Let S be a set of training

points (x, y), where x is the input and y is the cor-

responding gold-standard tag sequence. Let φ(x, y)
be a function that transforms complete input-output

pairs into feature vectors. We also use φ(x, y′, y)
as shorthand for the difference in features between



begin

Input: S, λ, n

Initialize: Set w0 to the 0 vector

for t = 1, 2 . . . , n|S|
Choose (x, y) ∈ S at random

Set the learning rate: ηt = 1
λt

Search:

y′ = arg maxy′′ [δ(y, y′′) + wt · φ(x, y′′)]
Update:

wt+1 = wt + ηt

(

φ(x, y, y′) − λwt

)

Adjust:

wt+1 = wt+1 · min
[

1,
1/

√
λ

‖wt+1‖

]

end

Output: wn|S|+1

end

Figure 2: Training an SVM-HMM

two outputs: φ(x, y′, y) = φ(x, y′) − φ(x, y). With

this notation in place, the SVM-HMM minimizes

the regularized hinge-loss:

min
w

λ

2
w2 +

1

|S|

∑

(x,y)∈S

ℓ(w; (x, y)) (1)

where

ℓ(w; (x, y)) = max
y′

[

δ(y, y′) + w · φ(x, y′, y)
]

(2)

and where δ(y, y′) = 0 when y = y′ and 1 oth-

erwise.4 Intuitively, the objective attempts to find

a small weight vector w that separates all incorrect

tag sequences y′ from the correct tag sequence y by

a margin of 1. λ controls the trade-off between reg-

ularization and training hinge-loss.

The stochastic gradient descent algorithm used

to optimize this objective is shown in Figure 2. It

bears many similarities to perceptron HMM train-

ing (Collins, 2002), with theoretically-motivated al-

terations, such as selecting training points at ran-

dom5 and the explicit inclusion of a learning rate η

4We did not experiment with structured versions of δ that

account for the number of incorrect tags in the label sequence

y′, as a fixed margin was already working very well. We intend

to explore structured costs in future work.
5Like many implementations, we make n passes through S,

shuffling S before each pass, rather than sampling from S with

replacement n|S| times.

training test

# of documents 978 976

# of distinct codes 45 45

# of distinct code subsets 94 94

# of codes with < 10 ex. 24 24

avg # of codes per document 1.25 1.23

Table 2: The training and test set characteristics.

and a regularization term λ. The search step can be

carried out with a two-best version of the Viterbi al-

gorithm; if the one-best answer y′1 matches the gold-

standard y, that is δ(y, y′1) = 0, then y′2 is checked

to see if its loss is higher.

We tune two hyper-parameters using 10-fold

cross-validation: the regularization parameter λ and

a number of passes n through the training data. Us-

ing F1 as measured by 10-fold cross-validation on

the training set, we found values of λ = 0.1 with

n = 5 to prove optimal. Training time is less than

one minute on modern hardware.

5 Experiments

5.1 Data

For testing purposes, we use the CMC Challenge

dataset. The data consists of 978 training and 976

test medical records labelled with one or more ICD-

9-CM codes from a set of 45 codes. The data statis-

tics are presented in Table 2. The training and test

sets have similar, very imbalanced distributions of

codes. In particular, all codes in the test set have at

least one training example. Moreover, for any code

subset assigned to a test document there is at least

one training document labelled with the same code

subset. Notably, more than half of the codes have

less than 10 instances in both training and test sets.

Following the challenge’s protocol, we use micro-

averaged F1-measure for evaluation.

5.2 Baseline

As the first baseline for comparison, we built a

one-classifier-per-code statistical system. A docu-

ment’s code subset is implied by the set of classi-

fiers that assign it a positive label. The classifiers

use a feature set designed to mimic our LT-HMM

as closely as possible, including n-grams, dictionary

matches, ConText output, and symptom/disease se-



mantic types. Each classifier is trained as an SVM

with a linear kernel.

Unlike our approach, this baseline cannot share

features across codes, and it does not allow coding

decisions for a document to inform one another. It

also cannot propose codes that have not been seen in

the training data as it has no model for these codes.

However, one should note that it is a very strong

baseline. Like our proposed system, it is built with

many features derived from dictionary matches and

their contexts, and thus it shares many of our sys-

tem’s strengths. In fact, this baseline system outper-

forms all published statistical approaches tested on

the CMC data.

Our second baseline is a symbolic system, de-

signed to evaluate the quality of our rule-based com-

ponents when used alone. It is based on the same

hand-crafted dictionary, filtered according to the

ConText algorithm and four code dependency rules

from (Farkas and Szarvas, 2008). These rules ad-

dress the problem of overcoding: some symptom

codes should be omitted when a specific disease

code is present.6

This symbolic system has access to the same

hand-crafted resources as our LT-HMM and, there-

fore, has a good chance of predicting low-frequency

and unseen codes. However, it lacks the flexibility of

our statistical solution to accept or reject code candi-

dates based on the whole document text, which pre-

vents it from compensating for dictionary or Con-

Text errors. Similarly, the structure of the code de-

pendency rules may not provide the same flexibility

as our features that look at other detected triggers

and previous code assignments.

5.3 Coding Accuracy

We evaluate the proposed approach on both the

training set (using 10-fold cross-validation) and the

test set (Table 3). The experiments demonstrate the

superiority of the proposed LT-HMM approach over

the one-per-code statistical scheme as well as our

symbolic baseline. Furthermore, the new approach

shows the best results ever achieved on the dataset,

beating the top-performing system in the challenge,

a symbolic method.

6Note that we do not match the performance of the Farkas

and Szarvas system, likely due to our use of a different (and

simpler) dictionary.

Cross-fold Test

Symbolic baseline N/A 85.96

Statistical baseline 87.39 88.26

LT-HMM 89.39 89.84

CMC Best N/A 89.08

Table 3: Micro-averaged F1-scores for statistical and

symbolic baselines, the proposed LT-HMM approach,

and the best CMC hand-crafted rule-based system.

System Prec. Rec. F1

Full 90.91 88.80 89.84

-ConText 88.54 85.89 87.19

-Document 89.89 88.55 89.21

-Code Semantics 90.10 88.38 89.23

-Append code-specific 88.96 88.30 88.63

-Transition 90.79 88.38 89.57

-ConText & Transition 86.91 85.39 86.14

Table 4: Results on the CMC test data with each major

component removed.

5.4 Ablation

Our system employs a number of emission feature

templates. We measure the impact of each by re-

moving the template, re-training, and testing on the

challenge test data, as shown in Table 4. By far the

most important component of our system is the out-

put of the ConText algorithm.

We also tested a version of the system that does

not create a parallel code-specific feature set by ap-

pending the candidate code to emission features.

This system tags code-candidates without any code-

specific components, but it still does very well, out-

performing the baselines.

Removing the sequence-based transition features

from our system has only a small impact on accu-

racy. This is because several of our emission fea-

tures look at features of other candidate codes. This

provides a strong approximation to the actual tag-

ging decisions for these candidates. If we remove

the ConText features, the HMM’s transition features

become more important (compare line 2 of Table 4

to line 7).

5.5 Low-frequency codes

As one can see from Table 2, more than half of the

available codes appear fewer than 10 times in the



System Prec. Rec. F1

Symbolic baseline 42.53 56.06 48.37

Statistical baseline 73.33 33.33 45.83

LT-HMM 70.00 53.03 60.34

Table 5: Results on the CMC test set, looking only at the

codes with fewer than 10 examples in the training set.

System Prec. Rec. F1

Symbolic baseline 60.00 80.00 68.57

All training data 72.92 74.47 73.68

One code held out 79.31 48.94 60.53

Table 6: Results on the CMC test set when all instances

of a low-frequency code are held-out during training.

training documents. This does not provide much

training data for a one-classifier-per-code approach,

which has been a major motivating factor in the de-

sign of our LT-HMM. In Table 5, we compare our

system to the baselines on the CMC test set, con-

sidering only these low-frequency codes. We show

a 15-point gain in F1 over the statistical baseline

on these hard cases, brought on by an substantial

increase in recall. Similarly, we improve over the

symbolic baseline, due to a much higher precision.

In this way, the LT-HMM captures the strengths of

both approaches.

Our system also has the ability to predict codes

that have not been seen during training, by labelling

a dictionary match for a code as present according to

its local context. We simulate this setting by drop-

ping training data. For each low-frequency code c,

we hold out all training documents that include c in

their gold-standard code set. We then train our sys-

tem on the reduced training set and measure its abil-

ity to detect c on the unseen test data. 11 of the 24

low-frequency codes have no dictionary matches in

our test data; we omit them from our analysis as we

are unable to predict them. The micro-averaged re-

sults for the remaining 13 low-frequency codes are

shown in Table 6, with the results from the symbolic

baseline and from our system trained on the com-

plete training data provided for comparison.

We were able to recover 49% of the test-time oc-

currences of codes withheld from training, while

maintaining our full system’s precision. Consider-

ing that traditional statistical strategies would lead

to recall dropping uniformly to 0, this is a vast im-

provement. However, the symbolic baseline recalls

80% of occurrences in aggregate, indicating that we

are not yet making optimal use of the dictionary for

cases when a code is missing from the training data.

By holding out only correct occurrences of a code

c, our system becomes biased against it: all trigger

terms for c that are found in the training data must

be labelled absent. Nonetheless, out of the 13 codes

with dictionary matches, there were 9 codes that we

were able to recall at a rate of 50% or more, and 5

codes that achieved 100% recall.

6 Conclusion

We have presented the lexically-triggered HMM, a

novel and effective approach for clinical document

coding. The LT-HMM takes advantage of lexical

triggers for clinical codes by operating in two stages:

first, a lexical match is performed against a trigger

term dictionary to collect a set of candidates codes

for a document; next, a discriminative HMM se-

lects the best subset of codes to assign to the docu-

ment. Using both generic and code-specific features,

the LT-HMM outperforms a traditional one-per-

code statistical classification method, with substan-

tial improvements on low-frequency codes. Also,

it achieves the best ever performance on a common

testbed, beating the top-performer of the 2007 CMC

Challenge, a hand-crafted rule-based system. Fi-

nally, we have demonstrated that the LT-HMM can

correctly predict codes never seen in the training set,

a vital characteristic missing from previous statisti-

cal methods.

In the future, we would like to augment our

dictionary-based matching component with entity-

recognition technology. It would be interesting to

model triggers as latent variables in the document

coding process, in a manner similar to how latent

subjective sentences have been used in document-

level sentiment analysis (Yessenalina et al., 2010).

This would allow us to employ a learned matching

component that is trained to compliment our classi-

fication component.
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