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Abstract: Environmental indices (EI) are common communication tool used to describe the overall 

status of environmental systems (e.g. air, water, soil). Development of EI entails the use of 

mathematical operators to aggregate various non-commensurate input parameters in a logical 

manner. Ordered weighted averaging (OWA) operator is a general mean type operator that provides 

flexibility in the aggregation process such that the aggregated value is bounded between minimum 

and maximum values of the input parameters. This flexibility of OWA operator is realized through 

the concept of orness, which is a surrogate for decision maker’s attitude.  

For the development of environmental indices, the type of input parameters also affects the choice of 

aggregation operators. If the input parameters are linguistic or fuzzy, the aggregation through OWA 

operators is not possible, and the use of fuzzy arithmetic is warranted. To develop EI, the concept of 

FN-OWA (fuzzy number OWA) operators is explored to handle the situations when one ore more 

input parameter has fuzzy (or linguistic) values. The proposed approach is demonstrated using data 

provided in an earlier study by Swamee and Tyagi (2000) for establishing water quality indices. 

Multiple hypothetical scenarios are also generated to highlight the utility and the sensitivity of the 

proposed approach. 

Keywords: Environmental indices, fuzzy number ordered weight averaging (FN-OWA), similarity 

measures, and fuzzy arithmetic. 
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INTRODUCTION 

Environmental indices (EI) are used as a communication tool to describe overall status of the 

environmental systems (including land, air, water etc.). EI can be used to summarize a large numbers 

of environmental indicators in a meaningful way (Ott 1978). EI can also help in selecting 

appropriate decision actions for the improvement of environmental quality by considering various 

conflicting factors. Significant literature is available on the use of statistical and mathematical 

aggregation methods to develop indices for air, water and sediment quality. These data aggregation 

methods generally include logical operators (and, or), averaging or compromising operators 

(arithmetic average, weighted average, geometric mean, weighted product), and other methods such 

as simple addition, root sum power, root sum-square, and multiplicative forms (Somlikova and 

Wachowiak 2001; Silvert 2000; Ott 1978). Swamee and Tyagi (2000) have discussed the advantages 

and shortcomings of different aggregation techniques to develop EI. Detailed discussions on the 

selection of appropriate aggregation operators can be found in Klir and Yuan (1995), and Smolikova 

and Wachowiak (2001).  

Recognition of two potential pitfalls, namely exaggeration and eclipsing is very important in the 

aggregation process (Ott 1978). Exaggeration is a case when all environmental quality indicators 

individually posses lower value (i.e., acceptable range), yet the EI comes out unacceptably high. 

Eclipsing is the converse phenomenon, where one or more of the environmental quality indicators 

are of relatively high value (i.e., in an unacceptable range), yet the estimated EI comes out as 

unacceptably low. These phenomena are typically affected by the method of aggregation, thus the 

challenge is to determine the best aggregation method that can simultaneously reduce both 

exaggeration and eclipsing. 

To maintain ‘acceptable’ environmental quality, the guidelines and standards for certain 

environmental indicators (including physico-chemical, microbiological, aesthetic) are established 

and consequently linked to the possible adverse health impacts on humans and ecological entities. 

Therefore, numerous environmental indicators can be linked to some sort of crisp ‘acceptability’ 

measure. Silvert (2000) argued that the concept of ‘acceptability’ itself is fuzzy because we may 

measure ‘health’ effects more accurately than we can evaluate their ‘importance’. Recently, a large 

number of water and air quality indices have been reported in the literature using fuzzy synthetic 

evaluation (including techniques like fuzzy classification, fuzzy similarity method and fuzzy 



comprehensive assessment) and fuzzy rule-based modelling (Sadiq et al. 2007; Sadiq and Rodriguez 

2004; Lu and Lo 2002;Chang et al. 2001; Lu et al. 1999; Tao and Xinmiao 1998).  

To simultaneously reduce both exaggeration and eclipsing, in this paper ordered weighted 

averaging (OWA) operators (Yager 1988) is used. The OWA operator provides flexible aggregation 

that is bounded between the minimum and maximum operators. The OWA weight generation 

incorporates decision maker’s attitude or tolerance, which can also be related to perceived 

importance of the environmental system under study. There are numerous reported applications of 

OWA operators in the disciplines of Civil and Environmental Engineering (Sadiq and Tesfamariam 

2007; Makropoulos and Butler 2006; Smith 2006). However, to incorporate the fuzzy ‘acceptability’ 

measures, a fuzzy number OWA (FN-OWA) is further proposed so that it can handle fuzzy or 

linguistic values and deal with uncertainty by specifying ‘acceptable’ environmental quality. The 

outline of the paper is as following. Section 2 will explore the concept of fuzzy number OWA and a 

primer on fuzzy arithmetic operations. Section 3 shows application of the proposed method using an 

example from Swamee and Tyagi (2000) for establishing water quality indices. Sections 4 and 5 

provide discussions and conclusions, respectively.  

FUZZY NUMBER OWA (FN-OWA)  

The OWA operators are used for aggregating crisp numbers (or fuzzy singletons). In this paper, the 

use of OWA operator is extended to fuzzy numbers, which is also called FN-OWA operator. 

Recently, many attempts have been made in this direction, which include Ahn (2006); and Chang et 

al. (2006); Chen and Chen (2005, 2003a); Xu and Da (2002); Carlsson and Fullér (2000); Mitchell 

and Estrakh (1998). To help understand the concept of FN-OWA, first fuzzy arithmetic and later 

OWA operators are discussed. 

Fuzzy arithmetic 

Fuzzy arithmetic is a generalized form of interval analysis, which is used to address uncertain and/or 

vague information. A fuzzy number describes the relationship between an uncertain quantity x  and 

a membership function μx, which ranges between 0 and 1. A fuzzy set is an extension of the classical 

set theory (in which x  is either a member of set  or not) in that an A x  can be a member of set  

with a certain membership function μ

A

x. Fuzzy sets qualify as fuzzy numbers if they are normal, 

convex and bounded (Klir and Yuan 1995). Different shapes of fuzzy numbers are possible (e.g., 
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bell, triangular, trapezoidal, Gaussian). In this paper, trapezoidal fuzzy numbers (ZFN) are used for 

the analysis. Trapezoidal fuzzy number can be represented by four vertices (a, b, c, d) on the 

universe of discourse (scale X on which a criterion is defined), representing the minimum, most likely 

interval, and maximum values, respectively. Triangular fuzzy number (TFN) is a special case of 

ZFN, where b = c. 

One important feature of fuzzy numbers (sets) is the concept of α-cuts. The α-cut of a fuzzy set  is 

a crisp set (interval) A

A

α
 that contains all the elements of the universal set X whose membership 

grades in  are greater than or equal to the specified value of an α, i.e., . Fuzzy 

arithmetic is performed based on two properties (Klir and Yuan 1995): a) each fuzzy number, can 

fully and uniquely be represented by its α-cut; and b) α-cuts of each fuzzy number are closed 

intervals of real numbers for all . Hence, once the interval is defined, traditional interval 

analysis can be used (Ferson and Hajagos 2004). Some commonly used interval analysis operations 

are listed in Table 1, which can be used to carry out fuzzy arithmetic at various predefined α-cut 

levels, e.g.,  (0, 0.1, 0.2,…, 1). 

A { }αμα ≥= xxA |

]1,0(∈α

Ordered weighted averaging (OWA) operators 

Most multi-criteria decision analysis problems neither require strict “anding” (minimum) nor require 

strict “oring” of the s-norm (maximum). For example, these two extremes for mutually exclusive 

probabilities correspond to multiplication (and-gate) and summation (or-gate) of a fault tree 

analysis. To generalize this idea, Yager (1988) introduced a new family of aggregation techniques 

called the ordered weighted averaging (OWA) operators, which form a general mean type operator. 

The OWA operator provides a flexibility to utilize the range of “anding” (or “oring”) to include the 

attitude of a decision maker in the aggregation process. The OWA operation involves three steps – 

(1) reorder the input arguments, (2) determine weights associated with the OWA operators, and (3) 

aggregate. 

The OWA operator of dimension n  is a mapping of , which has an associated  weighting 

vector , where 

RR n → n

T

nwww ),,,(w 21 L= ]1,0[∈jw  and . Hence, for a given n-input 

parameters vector (

∑ ==
n
j jw1 1

nxxx ~,...,~,~
21 ), the OWA operator determines the environmental index as follows: 

4



( ) ∑==
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j
jjn ywxxxOWAEIIndextalEnvironmen

1
21

~)~,...,~,~(  (1)

where 
j

y~  is the j
th

 largest number in the vector ( nxxx ~,...,~,~
21 ), and nyyy ~...~~

21 ≥≥≥ . Therefore, the 

weights  of OWA are not associated with any particular value jw jx~ , rather they are associated to 

the ‘ordinal’ position of jy~ . The linear form of OWA equation aggregates n-input parameters vector 

( nxxx ~,...,~,~
21 ), and provides a nonlinear solution (Yager and Filev 1994). 

The range between minimum and maximum values can be determined through the concept of orness 

( β ), which is defined as (Yager 1988):  

∑ −
−

=
=

n

i
i inw

n 1

)(
1

1β ,         and    ]1,0[∈β  (2)

The orness characterizes the degree to which the aggregation is like an or operator. The β  = 0, 

refers to a scenario that vector w becomes (0, 0, …, 1), i.e., an input parameter with the minimum 

value in the n-input parameters vector ( nxxx ~,...,~,~
21 ) is assigned the full weight, which implies that 

the OWA becomes a minimum operator. When β  = 1, the OWA vector w becomes (1, 0, …, 0), i.e., 

an input parameter with a maximum value in the n-input parameters vector ( nxxx ~,...,~,~
21 ) is assigned 

complete weight, which implies that the OWA collapses to maximum operator. Similarly, when β  = 

0.5, the OWA vector w becomes (1/n, 1/n, …, 1/n), i.e., an arithmetic mean of the input parameter 

vector ( nxxx ~,...,~,~
21 ). 

Determining OWA weights 

One of the major challenges in OWA method is to generate weights. Different methods of OWA 

weights generation are reported in the literature. A class of function used to generate OWA weights, 

called regularly increasing monotone (RIM) quantifier, was first proposed by Yager (1988). The 

RIM functions are bounded by two linguistic quantifiers “there exists”  (OR) and “for all”, 

 (AND). Thus, for any RIM quantifier , the limit holds true (Yager 

and Filev 1994). The OWA weights can be generated using a RIM quantifier  as follows:  

)(rQ∗

)(rQ∗ )(rQ )()()( rQrQrQ ∗
∗ ≤≤

)(rQ
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Yager (1996) defined a parameterized class of fuzzy subsets, which provide families of RIM 

quantifiers that change continuously between  and : )(rQ∗ )(rQ∗

δrrQ =)(                           0≥r (4) 

(1) For δ =1; Q(r) = r (a linear function) called the unitor quantifier 

(2) For ∞→δ ; , the universal quantifier (and-type) )(rQ∗

(3) For 0→δ ; , the existential quantifier (or-type) )(rQ∗

Therefore Equation (3) can be generalized as 

δδ

⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛=

n

i

n

i
wi

1
              ni ,...,2,1= (5) 

where δ  is a degree of a polynomial function.  For δ  = 1, the RIM function is like a uniform 

distribution, i.e., equal weights are assigned to nxxx ~,...,~,~
21  and becomes an arithmetic mean, i.e., wi 

= 1/n. For  > 1, the RIM function leans towards right, i.e., “and-type” operators manifesting 

negatively skewed OWA weight distributions. Similarly, for 

δ

δ  < 1, the RIM function leans towards 

left, i.e., “or-type” operators manifesting positively skewed OWA weight distributions. Discussion 

on the selection of an appropriate value is provided in later sections. δ

Reordering (ranking) of fuzzy numbers using defuzzification 

The OWA operators defined in previous sections can be transformed into FN-OWA, for the n-fuzzy 

input parameters, i.e., described as a set of fuzzy numbers ( nxxx ~,...,~,~
21 ). Three steps required for 

OWA operators are also valid for FN-OWA operators. The only difference is the reordering and 

ranking of an n-fuzzy input parameters vector ( nxxx ~,...,~,~
21 ), which is not trivial.  

Defuzzification is an important step in fuzzy modelling and fuzzy multi-criteria decision-making. 

The defuzzification entails converting the fuzzy value into a crisp value, and determining the ordinal 
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positions of n-fuzzy input parameters vector ( nxxx ~,...,~,~
21 ). Many defuzzification techniques are 

available (Chen and Hwang 1992), but the common defuzzification methods include centre of area, 

first of maximums, last of maximums, and middle of maximums (MoM).  

Different defuzzification techniques extract different levels of information, consequently are prone 

to rank reversal (Prodanovic and Simonovic 2002). In this paper, the MoM is proposed for 

defuzzification to determine the ordering of fuzzy n-input parameters in a vector ( nxxx ~,...,~,~
21 ). The 

MoM method uses the arithmetic mean of the maximum memberships in a given fuzzy set. For 

example, in case of ZFN, it is the middle (mean) value  of the most likely interval. O

jx

Interpreting FN-OWA results for decision-making 

The estimated EI should be assigned a linguistic or a qualitative scale to guide informed decision-

making. These linguistic constants or qualitative scales can also be defined as trapezoidal fuzzy 

numbers ZFNs (ak, bk, ck, dk). We proposed five linguistic constants (k = 1, 2,…,5) over the universe 

of discourse (a quantitative scale on which environmental indices are defined), namely, very poor 

(VP), poor (P), fair (F), good (G) to very good (VG) (Table 2). The estimated EI and linguistic 

constants are superimposed over the universe of discourse. Based on the maximum similarity 

between a linguistic constant and the estimated EI, a linguistic constant is assigned which can be 

related to a specific decision action. Smaller the distance between the estimated EI and a particular 

linguistic constant, higher will be the similarity measure and vice versa. 

Various distance measures (DM) are proposed in the literature to compute similarity between two 

fuzzy sets, e.g. Hamming, Euclidean and Chebyshev (chessboard) distances. Each distance measure 

has its advantages and shortcomings. Chen (1996) proposed a simple technique to estimate similarity 

measure (SM) between two ‘normal’ ZFNs. Chen and Chen (2003b) generalized the Chen’s (1996) 

method by extending to subnormal fuzzy numbers. In this paper, we modified Chen’s (1996) method 

and used weighted mean instead of arithmetic mean. Larger importance weights ( ) are assigned 

to most likely values and smaller weights are assigned to minimum and maximum values. Therefore, 

a similarity between an estimated EI (a

SM

lw

EI, bEI, cEI, dEI), and a given linguistic constant k (ak, bk, ck, 

dk), can be evaluated using following similarity measure (SM) function: 
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(6) 

where  ( } ) are importance weights, which are assigned values of , 

, ,  and . Chen’s (1996) method becomes a special case, where equal 

importance weights are specified, . The factor in the denominator is 

introduced to normalize so that DM and SM∈ [0, 1]. In our case, the denominator is 1 (a maximum 

possible value EI can attain). 

SM

lw 4,3,2,1{=l 2.01 =SMw

3.02 =SMw 3.03 =SMw 2.04 =SMw

25.04321 ==== SMSMSMSM wwww

An illustrative example  

A step-by-step procedure of implementing FN-OWA is illustrated using an example of a 3 input 

parameters vector. The input parameters in a vector ( 321
~,~,~ xxx ) are assumed trapezoidal fuzzy 

numbers defined by four vertices (ai, bi, ci, di). Now further assume that each entry in a vector 

( 321
~,~,~ xxx ) has following values: 

1

~x = (0.15, 0.15, 0.20, 0.50); 

2

~x = (0.40, 0.45, 0.50, 0.55); and 

3

~x = (0.50, 0.60, 0.70, 0.80). 

Step 1) Reorder the input parameters  

First perform defuzzification using MoM method 

Ox1 = (0.15 + 0.20)/2 = 0.175 

Ox
2

= (0.45 + 0.50)/2 = 0.475; and 

Ox3 = (0.60 + 0.70)/2 = 0.650 

Second, reorder using defuzzified values  to produce an ordered vector (O

jx 321
~,~,~ yyy ), where 
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1

~y  = (0.50, 0.60, 0.70, 0.80) 

2

~y = (0.40, 0.45, 0.50, 0.55); and 

3

~y = (0.15, 0.15, 0.20, 0.50); 

Step 2) Determine the OWA weights (n = 3) using RIM function (let δ  = 1/3) 

For δ  = 1/3, the OWA weights (Equation 5) and orness (Equation 2) are calculated to be 

w = (0.69, 0.18, 0.13) and orness β  = 0.78.  

Step 3) Aggregate using FN-OWA and interpret results 

Aggregation process is carried out using interval analysis (Table 1) at predefined α-cut 

levels. Corresponding to each α-cut, the interval values of the EI are calculated. Results of 

the interval analysis are as follows: 

 

α-cut 1

~y  
2

~y  
3

~y  *EI 

0.0 [0.50, 0.80] [0.40, 0.55] [0.15, 0.50] [0.44, 0.72] 

0.1 [0.51, 0.79] [0.41, 0.55] [0.15, 0.47] [0.45, 0.72] 

0.2 [0.52, 0.78] [0.44, 0.51] [0.15, 0.44] [0.45, 0.69] 

… … … … … 

0.8 [0.58, 0.72] [0.44, 0.51] [0.15, 0.26] [0.50, 0.62] 

0.9 [0.59, 0.71] [0.45, 0.51] [0.15, 0.23] [0.51, 0.61] 

1.0 [0.60, 0.70] [0.45, 0.50] [0.15, 0.20] [0.52, 0.60] 

*Performing interval analysis (Table 1) using Equation (1) 

 

These EI interval values are stacked in a nested form and plotted in Figure 1. This nested plot 

of EI can be referred as possibility distribution (Dubois and Parade 1988). The estimated EI 

is superimposed over the five linguistic constants (Figure 2), and corresponding similarity 

measures (SM) are computed (Equation 6). The SM for the five linguistic constants, (VP, P, 

F, G, VG), are (0.50, 0.71, 0.93, 0.86, 0.64), respectively. Thus, from the results of the 

similarity measures (for δ = 1/3) the EI is rated as fair (F). 
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APPLICATION OF FN-OWA TO DEVELOP WATER QUALITY INDEX  

Water quality index (WQI) is a common tool used to classify lakes, streams and other fresh water 

sources, which translate a large amount of non-commensurate data into a single value (Ott 1978). 

For this purpose various regulated physico-chemical, microbiological and aesthetic water quality 

indicators are used. To demonstrate the use of proposed method raw water quality data are modified 

from Swamee and Tyagi (2000) and presented in Table 3. 

The raw water quality data in Swamee and Tyagi (2000) consists of nine water quality indicators 

(sub-indices) including BOD5, fecal coliform, dissolved oxygen proportion with respect to saturation 

(DO), nitrates, pH, phosphates, temperature, total solids, and turbidity. As the units of various water 

quality indicators are non-commensurate, transformation functions are used to translate the actual 

values into an interval of [0, 1], where “0” corresponds to the worst value and “1” corresponds to the 

best value. For example for DO, ‘higher’ proportion means a ‘higher’ value of sub-index (i.e. a 

benefit criterion). Conversely, for fecal coliform, ‘higher’ concentration refers to a ‘lower’ value of 

sub-index and vice versa (i.e. a cost criterion). Therefore, an appropriate transformation function is 

required for each water quality indicator to map actual values over a normalized interval [0, 1]. 

Swamee and Tyagi (2000) proposed various transformation functions, including uniform deceasing 

sub-indices (UDS) and unimodal sub-indices (US). These transformation functions are defined 

deterministically, i.e., an actual value of a specific water quality indicator corresponds to a single 

transformed value over a normalized interval [0, 1]. The transformation functions are modified in 

this paper such as that an actual value of a specific water quality indicator corresponds to a 

triangular fuzzy number (TFN). As it was argued in the introduction, this is more realistic because 

perception of the fuzzy ‘acceptability’ of quality even for a crisp value inputs of a water quality 

indicator.  

The column 2 in Table 3 describes nine water quality indicators used in the analysis. Columns 4 and 

5 provide the corresponding transformation functions and the associated parameters, respectively. 

To modify the transformation functions as fuzzy numbers, the associated parameters (Column 5) are 

defined as triangular fuzzy number using three vertices (a, b, c), which represent the minimum, most 

likely and maximum values, respectively. To obtain fuzzy transformation function, fuzzy arithmetic 

is employed as described earlier section. The fuzzy transformation functions for these nine water 

quality indicators are plotted in Figure 3. Therefore for crisp sub-index value, a transformed fuzzy 
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number is obtained. For example, for a BOD5 = 20 mg/L, after transformation, the corresponding S1 

values becomes (0.014, 0.13, 0.34), which represent minimum, most likely, and maximum values 

respectively (Figure 4). For each of the nine water quality indicators, the input values qi given in 

column 3 of Table 3 are transformed and also provided in column 6 of Table 3. These fuzzy numbers 

are now used for the proposed method FN-OWA to determine WQI (or an environmental index). 

The FN-OWA methodology is applied to three attitudinal scenarios; δ = 1/3 (or-type), δ = 1 

(neutral) and δ = 3 (and-type). The corresponding orness values are computed as β  = 0.76, 0.5, and 

0.22, respectively. The results of water quality index are plotted in Figure 5, and the corresponding 

SMs are summarized in Table 4. It can be noticed that with an increase in δ value (or decrease in 

orness β ), the EI values becomes smaller and vice versa (Figure 5). Therefore, the smaller orness 

values ( β <0.5) accounts for an optimistic decision maker’s attitude and larger orness values 

( β >0.5) represents a pessimistic decision maker’s attitude. Table 4 shows that, with neutral and 

and-type decision attitude, the WQI is classified as poor, whereas, with or-type decision making 

attitude, the WQI is classified as fair.  

These three scenarios may be a surrogate for the intended use of the water, e.g., recreational (fishing, 

swimming), irrigation, and drinking, respectively. Let’s assume a stream or a river that is used as a 

source of drinking water supply to a city, and its quality being monitored and evaluated for this 

purpose. The adverse consequences of even a marginal quality of source water for drinking water 

supply can be quite high, as a result, the decision maker will be conservative (or pessimistic) that 

necessitates selecting higher orness value ( β >0.5). Conversely, if the primary use of source water is 

recreational, the smaller orness value ( β <0.5) can be adopted. 

DISCUSSION 

Development of environmental indices is of paramount importance for engineers, managers and 

decision makers who deal with regulations and guidelines for environmental protection and 

sustainable growth. The FN-OWA operator has ability to efficiently aggregate not only quantitative 

(crisp, interval, fuzzy) but also linguistic data. To illustrate the utility of the proposed approach, we 

generated 14 scenarios in which each of the nine input parameters ( ) is defined 

linguistically (Table 5) using ZFNs in Table 2. The nine input parameters are aggregated using three 

orness values through RIM functions δ = 1/3 (or-type), δ = 1 (neutral) and δ = 3 (and-type). The 

921

~,...,~,~ xxx
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estimated values of EI are converted into appropriate linguistic constant using similarity measure 

(SM) (Equation 6). The calculated SM for each linguistic constant is provided in Appendix. 

For reliable decision-making, exaggeration and eclipsing are two major concerns encountered in the 

aggregation process. The 14 scenarios reported in Table 5 are used to illustrate the performance of 

the FN-OWA operator in terms of eclipsing and exaggeration. For the first three scenarios, same 

qualitative values (i.e., either VG, F, or VP) are selected for all nine input parameters. As was 

expected, the EI evaluated for nine input parameters for three different attitudes maintains the 

property of idempotency of FN-OWA operator. This implies that if all environmental quality 

indicators have same ‘state’, the overall environmental quality will retain that ‘state’. 

Scenario 4 presents a case when only one indicator is VG and remaining 8 indicators are VP. The 

effect of this one environmental quality indicator is only captured, when δ = 1/3, which has shifted 

the EI to F. Now, as more environmental quality indicator were assigned better states (e.g., VG) in a 

step-by-step manner (from Scenarios 5 to 7), the EI for δ = 3, shifts from state VP to F, which means 

that the results are eclipsed by ‘poorer’ states of some of the environmental quality indicators. On 

the other hand, for δ = 1/3, the Scenario 5 represents a case in which only three indicators were in 

the VG state, but the EI hopped to state G, which is hinting an exaggeration. The compromising or 

risk neutral results were obtained when δ = 1 is selected.  

In Scenarios 8 to 14, various states for environmental quality indicators are chosen. In Scenario 8, 

the δ = 1/3 provides an optimistic (i.e., EI is G) whereas δ = 3 provides a pessimistic picture (EI is P 

or VP). Similar observations can be made for the remaining Scenarios. However, it is interesting to 

note that the overall evaluation of EI does not change when δ  = 1 due to symmetry of states for 

environmental quality indicators around middle input parameter 5
~x .  

By selecting δ = 1/3 (or-type), the decision-maker relies on those environmental quality indicators, 

which are performing ‘best’. Similarly, for δ = 3 (and-type), the decision-maker relies on the 

environmental quality indicators, which are performing ‘worst’. For δ = 1 (neutral), the decision-

maker surmise a compromising attitude. Therefore, the FN-OWA operator provides flexibility in 

handling exaggeration and eclipsing in the computation of EI. The selection of appropriate value of 

risk attitude (δ) can also be linked to various levels of susceptibilities of environmental systems or to 

their intended beneficial use or to their importance.  
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The interpretation of environmental indices using OWA operators is context dependent. Throughout 

this paper, the input parameters were first transformed as “quality indicators” or “benefit criterion” 

before OWA aggregation. Therefore, larger orness values ( β >0.5) lead to “optimistic”, whereas 

smaller orness values ( β <0.5) lead to “pessimistic” decision-making attitudes. However, if all input 

parameters are transformed into “cost criterion” before OWA aggregation, the above logic reverses, 

which is the case of “environmental pollution” indices. 

SUMMARY AND CONCLUSIONS 

Environmental indices (EIs) are used as a communication tool to describe overall status of 

environmental system. The computation of EI entails aggregation of different environmental quality 

indicators. In the final aggregation process, two potential pitfalls, exaggeration and eclipsing, are of 

paramount importance. The tolerance for these two pitfalls is often conflicting. However, using a 

flexible aggregation technique, the tolerance level for these two pitfalls can be incorporated into 

decision-making process.   

The OWA operator is a generalized averaging operator that provides flexible aggregation ranging 

between the minimum and the maximum operators. The OWA operators allow incorporating decision 

maker’s attitude in the aggregation process. The availability of type of data and the interpretation of 

environmental indices are prone to vagueness. But, traditional OWA operators entail the use of crisp 

numbers (or fuzzy singletons), which is extended to fuzzy numbers also called FN-OWA. The utility 

of the proposed method to develop environmental indices are demonstrated using a vector of 9 input 

parameters.  

Following observations and conclusions can be made: 

• The FN-OWA operator provides a flexible aggregation ranging between the minimum and the 

maximum operators for fuzzy (or qualitative) data. 

• The FN-OWA operator has ability to aggregate not only the quantitative data, but can also 

handle linguistic as well as crisp data. 

• The FN-OWA operator can help in explaining the fuzziness in meaning of ‘acceptability’ of 

quality for environmental indicators. 
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• The FN-OWA operator can also handle the missing information efficiently, i.e., a case of 

complete ignorance about the value of a given input parameter. 

• The FN-OWA operator provides flexibility in handling exaggeration and eclipsing in the 

aggregation process. For ‘benefit criteria’, by selecting δ  < 1 (or-type), the decision-maker relies 

on those environmental quality indicators, which are performing ‘best’ and by selecting δ  > 1 

(and-type), the decision-maker relies on the environmental quality indicators, which are 

performing ‘worst’. For ‘cost criteria’ this argument is reversed. 

• The aggregated value (estimated EI) obtained through FN-OWA operator retains the same 

linguistic state as if all input criteria have equal values, i.e., idempotency property of the FN-

OWA operator. 
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Table 1. Common arithmetic operations used in interval analysis 

Operators 
‡Formulae †Results 

Summation A + B [a1 + b1, a2 + b2] = [5, 15] 

Subtraction A – B [a1 – b2, a2 – b1] = [1, 5] 

Multiplication A x B [a1 x b1, a2 x b2] = [6, 50] 

Division A / B [a1/b2, a2/b1] = [0.6, 5] 

Scalar product Q · B [Q · b1, Q · b2] =[4, 10] 

a1 < a2; b1 < b2; ai and bi (i = 1 to 2) > 0; Q > 0 

†A=[a1, a2] = [3, 10]; B=[b1, b2] = [2, 5]; Q = 2 

‡Note: The values of A and B are positive, if negative numbers are used, the 

corresponding min and max values have to be selected. 
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Table 2. ZFNs defined to represent five linguistic constants (k) 

Linguistic constants (k) ak bk ck dk

Very poor (VP) 0.0 0.0 0.05 0.25 

Poor (P) 0.05 0.25 0.35 0.45 

Fair (F) 0.35 0.45 0.55 0.65 

Good (G) 0.55 0.65 0.70 0.95 

Very good (VG) 0.70 0.95 1.00 1.00 
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Table 3 Transformation of raw water quality data into fuzzy sub-indices  

(modified after Swamee and Tyagi 2000) 

i  

(1) 

WQ indicators 

(2) 

Obs. values 

(qi) (3) 

Transformation function* 

(4) 

Parameters for the Transformation 

function♣ (5) 

Sub-index (si) 

(6) 

1 
BOD5        

(mg/L) 

20 ( )11, cqmUDS  
1m  = (2.1, 3, 3.9); 

1

cq  = (10, 20, 30) (0.014, 0.13, 0.34) 

2 
Fecal coliforms 

(MPN/100 mL) 

66 ( )22 , cqmUDS  
2m  = (0.21, 0.3, 0.39); 

2

cq  =  (2, 4, 6) (0.25, 0.43, 0.59) 

3 
DO  

(proportion) 

0.6 ( )3333 ,,,* rpnqUS  

3n  = (1.5, 3, 4.5); 
3p  = (0.9, 1, 1.1) 

 = 1; 
3*q 3r = 0 (used as crisp values) 

(0.41, 0.62, 0.83) 

4 
Nitrates       

(mg/L) 

25 ( )44 , cqmUDS  
4m  = (2.1, 3, 3.9); 

4

cq  =  (20, 44, 60) (0.04, 0.23, 0.48) 

5 PH 
7.8 ( )5555 ,,,* rpnqUS  

5n  = (1.6, 4, 6.4); 
5p  = (5.4, 6, 6.6) 

 = 7; 
5*q 5r = 0 (used as crisp values) 

(0.79, 0.87, 0.94) 

6 
Phosphates 

(mg/L) 

2 ( )66 , cqmUDS  

6m  = (0.7, 1, 1.3); 
6

cq  = (0.34, 0.67, 

1.01) 

(0.08, 0.25, 0.47) 

7 
Temperature     

(oC)
 

32 ( )7777 ,,,* rpnqUS  

7n  = (0.25, 0.5, 0.75); 
7p  = (6.3, 7, 7.7) 

 = 20; 
7*q 7r = 0 (used as crisp values) 

(0.25, 0.40, 0.63) 

8 
Total solids 

(mg/L) 

1,000 ( )8888 ,,,* rpnqUS  

8n  = (0.5, 1, 1.5); 
8p  = (0.9, 1,1.1) 

 = 75; 
8*q 8r = 0.8 (used as crisp values) 

(0.10, 0.17, 0.37) 

9 
Turbidity      

(JTU) 

70 ( )99 , cqmUDS  

9m  = (1.05, 1.5, 1.95); 
9

cq = (25, 50, 

75) 

(0.07, 0.27, 0.50) 

*Two types of transformation functions are used; UDS: uniform decreasing sub-indices; US: unimodal sub-indices 

( )
m

i

c

ii

c

i

q

q
qmUDS

−

⎟⎟
⎠

⎞
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⎝

⎛
+= 1, ; ( )

( )( )

( )
ipin

i

i
iii

in

i

i
iiiii

iiii

q

q
rnp

q

q
rpnrp

rpnqUS +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++

=

*
1

*
1

,,,*  

♣The bar over the transformation parameters represents triangular fuzzy numbers. 
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Table 4. Assigning linguistic constants to WQI using similarity measures (SM) 

δ 

Decision making 

Attitude VP (k =1) P (k = 2) F (k = 3) G (k = 4) VG (k = 5) 

1/3 Or-type 0.95 0.97 1.00 0.98 0.96 

1 Neutral 0.98 0.99 0.98 0.96 0.94 

3 And-type 0.98 0.99 0.97 0.95 0.93 

 *Shaded area represents the highest similarity measure  

20



 

Table 5. Scenario analyses 

Input parameters* δ 

Scenarios 1

~x  
2

~x  3

~x  
4

~x  
5

~x  
6

~x  
7

~x  
8

~x  
9

~x  1/3 1 3 

1 VG VG VG VG VG VG VG VG VG VG VG VG 

2 F F F F F F F F F F F F 

3 VP VP VP VP VP VP VP VP VP VP VP VP 

4 VG VP VP VP VP VP VP VP VP F VP VP 

5 VG VG VG VP VP VP VP VP VP G P VP 

6 VG VG VG VG VG VP VP VP VP G F P 

7 VG VG VG VG VG VG VG VP VP VG G F 

8 VG F F F F F F F VP G F P 

9 VG VG F F F F F VP VP G F P 

10 VG VG VG F F F VP VP VP G F P 

11 VG VG VG VG F VP VP VP VP G F VP 

12 VG VG G G F P P VP VP G F P 

13 VG G G G F P P P VP G F P 

14 G G G G F P P P P G F P 

*the input parameters are defined using linguistic constants (k), which are ZFNs (Table 2) 
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Figure 1. Fuzzy estimate of the environmental index in an illustrative example using FN-OWA 
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Figure 2. Interpreting results of FN-OWA using similarity measures 
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Figure 3. Fuzzy transformation functions used for various water quality indicators               

(modified after Swamee and Tyagi 2000) 
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APPENDIX A – Similarity measures estimated for 14 scenarios 

δ = 1/3 

Scenarios VP(k =1) P (k = 2) F (k = 3) G (k = 4) VG (k = 5) 

1 0.14 0.36 0.58 0.78 1.00

2 0.56 0.78 1.00 0.80 0.58

3 1.00 0.79 0.57 0.36 0.14

4 0.59 0.80 0.97 0.77 0.55

5 0.40 0.62 0.84 0.95 0.74

6 0.29 0.51 0.73 0.90 0.85

7 0.21 0.42 0.64 0.85 0.93

8 0.38 0.59 0.81 0.94 0.76

9 0.34 0.56 0.78 0.93 0.80

10 0.33 0.54 0.76 0.92 0.81

11 0.32 0.53 0.75 0.92 0.82

12 0.33 0.55 0.77 0.93 0.81

13 0.35 0.565 0.785 0.94 0.79

14 0.45 0.66 0.88 0.91 0.69

δ = 1 

1 0.14 0.35 0.57 0.78 1.00

2 0.56 0.78 1.00 0.80 0.58

3 1.00 0.79 0.57 0.36 0.14

4 0.90 0.87 0.66 0.46 0.24

5 0.71 0.93 0.85 0.65 0.43

6 0.52 0.74 0.96 0.84 0.62

7 0.33 0.55 0.77 0.92 0.81

8 0.57 0.78 1.00 0.79 0.57

9 0.57 0.78 0.99 0.79 0.57

10 0.57 0.78 0.99 0.79 0.57

11 0.57 0.78 0.98 0.79 0.57

12 0.57 0.79 0.98 0.79 0.57

13 0.57 0.79 0.98 0.79 0.57

14 0.57 0.79 0.98 0.79 0.57

δ = 3 

1 0.14 0.35 0.57 0.78 1.00

2 0.56 0.78 1.00 0.80 0.58

3 1.00 0.79 0.57 0.36 0.14

4 1.00 0.79 0.57 0.36 0.14

5 0.97 0.82 0.60 0.39 0.17

6 0.85 0.90 0.71 0.51 0.29

7 0.60 0.81 0.97 0.76 0.54

8 0.69 0.91 0.87 0.67 0.45

9 0.79 0.95 0.77 0.57 0.35

10 0.86 0.90 0.71 0.50 0.28

11 0.89 0.88 0.68 0.47 0.25

12 0.84 0.93 0.72 0.52 0.30

13 0.79 0.97 0.772 0.567 0.35

14 0.73 0.94 0.84 0.63 0.41

      *Shaded area represents the highest similarity measure between estimated EI and a linguistic constant (k) 


