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A simplified method of analysis is presented for the determination of dynamic properties of 
single-story structures founded on flexible foundations. The general equations for natural fre- 
quency, mode shapes, and modal damping are applied to structures founded on an elastic 
half-space and on piles. The results of parameter studies, including the effects of hysteretic soil 
material damping, are presented for these two cases. 

L'auteurexpose une methode simplifiee pour la determination des proprietes dynamiques des 
structures h un seul etage reposant sur des fondations souples. I1 applique ensuite B deux types de 
structures les expressions generales fournissant la frequence propre. les modes et 
I'amortissement caractirisant chaque mode: les structures fondees sur un demi-espace Clastique, 
et les structures fondees surdes pieux. L'article presente pour cesdeux cas les rCsultatsd'Ctudes 
parametriques incluant I'influence de I'amortissement d'un sol a hystertse. 

[Traduit par la Revue] 

Introduction 

In the design of structures to resist the effects 
of dynamic loads such as earthquakes or wind, 
the assumption is generally made that the struc- 
ture is supported by a rigid foundation. Since 
these dynamic loads and the dynamic response 
of structures also impose loads on the founda- 
tions, and since all real materials deform under 
applied loads, it may readily be appreciated 
that the rigid-base assumption represents an 
approximation to the real conditions. Whereas 
for most convcntional structures i t  is sufficiently 
accurate and adequate to assume a rigid foun- 
dation for purposes of design to resist dynamic 
loads, it occasionally becomes necessary to 
consider the effects of a flexible, or compliant, 
foundation. This is particularly the case when 
massive structures such as nuclear power plants 
or dams or tall structures such as free-standing 
towers or high-rise buildings are founded on 
relatively soft materials. This gives rise to a 
phenomenon generally called dynamic struc- 
ture-ground interaction. 

Despite the availability of versatile and ac- 
curate methods of analysis to solve such prob- 
lems-particularly the finite element method- 
simplified methods of analysis are useful for 
the following reasons: 

'Presented at The Second Canadian Conference on 
Earthquake Engineering, McMaster University, Hamil- 
ton, Ontario, June 5-6, 1975. 

(a )  They can be used as first-order approxi- 
mations to the more refined complex problem. 

(b)  They often permit the user to appreciate 
the essential features of the problem more 
readily than the solution to the complex prob- 
lem would permit. 

(c) They permit the isolation of the impor- 
tant parameters that govern the behavior of the 
system more readily than would be possible by 
numerical solutions such as the finite element 
method. 

The simplified method of analysis presented 
here deals with the determination of the natural 
frequcncies, modc shapes, and modal damping 
ratios of str~icturc-ground interaction systems 
under dynamic loads. Once these quantities are 
known, the structural response and forces in- 
duced by seismic loads or other dynamic dis- 
turbances can be determined con;eniently by 
response spcctrum techniques. 

General Method of Analysis 

Beforc considering specific types of founda- 
tions, such as circular footings on an elastic 
half-space, or pile foundations, gencral rela- 
tionships will be formulated which are valid for 
all types of elastic foundations. The major as- 
sumptions and simplifications incorporated in 
the analysis are the following. 

I .  The mathematical model of a given struc- 
ture is simplified to a single-story structure on 
a foundation whose load-deformation char- 

Can. J .  Civ. Eng., 2, 345 (1975) 



346 CAN. J. CIV. ENG. VOL. 2, 1975 

acteristics can be dcscribed by Hooke's law. 
This model is represented in Fig. 1 ; it contains 
the essential features present in structure- 
ground interaction, namely intcrstory damping, 
frcquency-dependent foundation properties, 
foundation damping, and foundation mass. 
This model has been used in a number of 
previous investigations by Jennings and Bielak 
( 1973), Parmclee ( 1967), Rainer ( 1971 ) , 
and Veletsos and Nair ( 1974).  Cross-coupling 
bctwecn translational and rotational base 
motion is ncglectcd. Multistory structures can 
be reduced to this simple model by methods 
outlined by Jennings and Biclak (1973).  

2. The modal damping ratio is determined 
from energy principles in which the properties 
of the uncoupled mode shapes are employed. 
This can be expccted to give reasonable re- 
sults when the modal damping ratio is rela- 
tively small, say less than 10% of critical. 

3. The seismic response is determined from 
a modal solution employing response spectra 
of ground motions. A similar approach can 
be used to evaluate the effects of wind loading. 
This requires as basic quantities the natural 
frequencies, mode shapes, and modal damping 
ratios of the dynamic system. 

Thc present approach is thought to be sim- 
plcr and more general than prcviously available 
solutions, which dcalt specifically with the 
foundations on an elastic half-space (for ex- 
ample, Bielak 1975; Jcnnings and Bielak 
1973; Rainer 1971; Veletsos and Nair 1974).  
Bielak (1975) also considers shallow buried 
foundations. Results for pile foundations have 
been presented using discretized mathematical 
models (Penzien 1970; Ohta et al. 1973). 

An iteration procedure is used herc to solve 
for the modal frequencies and mode shapes of 
a structure-ground interaction system. Iteration 
can be considered as an approximate method, 
but since the problem converges rapidly the 
answers can be obtained to any desired degree 
of accuracy. The use of the iteration approach 
leads to the derivation of simple relationships 
for the fundamental frequency, mode shapes, 
and the modal damping ratio of the system, as 
will be demonstrated subsequently. 

Natural Frequencies 
The mathematical model of the structure 

under investigation consists of a base mass rno 
resting on an elastic half-space and a top mass 

F I X E D  h@ f Us 
YREFERENCE t-l-7 

FIG. 1. Model of structure-ground interaction 
system. 

m,, as shown in Fig. 1. The horizontal base 
stiffness and rocking stiffness can be general- 
ized to include the stiffness contributions from 
side layer soil and pile foundations. The equa- 
tions of motion and derivation of the transfer 
functions involving real and imaginary terms 
are presented by Jennings and Bielak ( 1973), 
Parmelee (1967),  Rainer (1971),  and in a 
forthcoming paper.2 

If only the real parts of the transfer func- 
tion are retained and base excitation is zero 
(i.e. undamped free vibration is assumed) the 
following equation is obtained for the relative 
base displacement UN, interstory displacement 
u, and rocking displacement h4 

where 

[3] wo2 = k/ml = square of the fixed-base 

frequency of the structure 

and a = mo/rnl, p = 1/11, KII and K+ are hor- 

?J. H. Rainer. Paper in process. 
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izontal and rotational stiffnesses of the founda- 
tion on the ground, and p is the frequency of 
the interaction system. I is the mass moment 
of inertia of ml and Ino about their own axes 
of rotation, and I, = m,lz"s the geometric 
mass moment of inertia of the structure. Other 
terms are defined in Fig. 1. The frequency 
equation obtained from Eq. [ I ]  is then: 

Since [)"is also contained in all2 and a+" suc- 
cessive approximations are required for the 
evaluation of p2. 

If the products of p2 with and p are ne- 
glected, Eq. [6] reduces to the well-known 
Southwell-Dunkerley approximation (Jacobsen 
and Ayre 1958) : 

Equation [7] also gives the first approximation 
for p-f the fundamental mode. Successively 
improved values of p< up to any desired de- 
gree of accuracy, arc obtained with further 
cycles of iteration, using Eqs. [5] or [6]. These 
equations are equally valid for the second and 
third mode of the mathcmatical model in Fig. 
1. However, the numerical computations are 
quite sensitive. If these frequencies are re- 
quired it is probably better to use other meth- 
ods of evaluating the eigenvalues. 

Detel-mination of Mode Shapes 
Once the eigenvalues have been determined, 

the corresponding mode shapes can be found 
by substituting in Eq. [ I]  and solving for the 
displacement components. If the expression 
for p' in Eq. [6] is substituted into Eq. [I], 
the following relationships for the modal 
amplitude ratios 6, f ,  and 7 are obtained: 

ha? o2 1 

where u, = us + UII  + ha .  
The modal amplitude ratios will be accurate 

if the resonant frequency p"s accuratc since 
thc relationships Eqs. [8] to [ lo]  do not in- 
volvc any additional approximations. 

Modal Damping Ratio 
A modal damping ratio h15 can be obtained 

from energy considerations as presented by 
Novak (1974a, b)  : 

[11] A, = 

where C, = 2Ao dk& = 2A,,0~~,tn~ is the inter- 
story damping constant in units of force per 
velocity, and CII and CCt, are the damping con- 
stants in the horizontal and rotational direction, 
respectively, of the foundation. By evaluating 
the various damping terms C and substituting 
the modal amplitudes u,, ull, and ha ,  the 
modal damping ratio hI.: for any mode can be 
evaluated. Somc numerical com~arisons be- 

I 

tween an equivalent modal damping ratio A,.,, 

and hIS have been presented by Rainer ( 1975). 
By expressing the displacement amplitudes 

in the form of modal amplitude ratios of Eqs. 
[S], [9], and [lo], Eq. [ l l ]  becomes: 

where All  = CI1/2pml and A,,, = C<1,/2ptn,h~. 
The damping constants CII  and C,I, can include 
the contributions from various sources of 
energy dissipation such as radiation damping, 
material damping, partial burial, and pile 
foundations. 

Structures with Foundations on Elastic 
Half-space 

6 = l l r . = L -  
1 Although the above relationships for natural 

[gl U ,  w o 2  - wo2 wo frequency and damping ratios are valid for any 
2 

1 + 7 + 7  
QP Q H  geometric configuration of the base, as well as 

for shallow buried foundations or pile founda- 
u  p2 5 = 1 =--- - 1 tions, specific solutions will now be obtained 

C9l u ,  Q H 2 -  Q H 2  Q H 2  1 + y + y  for structures with circular foundations resting 

wo Qa on an elastic half-space. This resembles a 
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common configuration of nuclear power re- 
actors when the influence of shallow burial 
can be neglected. 

Natural Frequency 
As can be seen from Eq. [5], the natural 

frequency of the interaction system depends on 
the frequencies wO2, all2, and as2, as defined 
by Eqs. [2] to [4], except that the subscripts h 
and 6 apply to the half-space solution and re- 
place the more general subscripts H and +, 
respectively. This subscript h should not be 
confused with h, the height of the structure. 

With appropriate substitution for the proper- 
ties of circular foundations and simplification, 
Eq. [7] becomes: 

where 

Gre 
wh2 = - 

Gr3d 
, and w? = - 

m1 I1 

G = shear modulus of the ground, and k,, and 
kg are the frcquency-dependent horizontal and 
rotational stiffness coefficients for the circular 
footing on the half-space, and v is Poisson's 
ratio. An approximation for the resonance 
frequency of a structure on an elastic half- 
space that is analogous to the completely gen- 
eral casc given by Eq. [7] is obtained if the 
terms and pp2/wOs are neglected. 

The primary parameters that affect the fre- 
quency reduction for a structure on an elastic 
half-space are: 

(a )  k/Gr, the ratio of the stiffness of the 
structure to that of the foundation resting on 
the ground, and 

(b) hz/r2, the square of the aspect ratio 
of the structure. 

Secondary influences on the natural fre- 
quency reduction are Poisson's ratio of the 
elastic half-space, and the translational and 
rocking frequencies wlI2 and wd2 as defined after 
Eq. [13]. The former is the frequency of the 
top mass on the elastic half-space in the 
horizontal direction, the latter is the rocking 
frequency considering only the geometric mass 

moment of inertia of the top mass about the 
base. 

It should be noted that the shear wave 
velocity of the ground, V, = (G/p)lI2, is a sig- 
nificant parameter in the sense that it is a 
function of the shear modulus G, and thus a 
convenient, parameter designating soil stiffness 
(p is the mass density of the ground). V, also 
plays a minor role in the determination of the 
frequency-dependent foundation stiffness co- E 

efficients kll and ko since these are generally 
fu~ctions of a = pr/V,. However, V, should 
not be used by itself to establish criteria for 
assessing the importance of ground-structure 
interaction effects, since the other important 
parameters, namely foundation stiffness (as 
given by Gr) ,  structural stiffness (as given by 
k) ,  and the aspect ratio (h/r) are not incor- 
porated in V,. 

Modal Damping Ratio for Elastic Half-space 
The modal damping ratio is given by Eq. 

[12] where, for the elastic half-space, 

and 

Soil material damping D can be incorporated 
as c = c(a/2) + D for both the h and 6 
subscripts, as shown by Veletsos and Verbic 
(1973), Rainer (1975), and Bielak (1975). 
The damping coefficients ell and cs are those 
applicable to a footing on an elastic half-space, 
as computed for example by Veletsos and 
Verbic ( 1974). 

For the fundamental mode, Eq. [12] can be 
simplified by using the approximations3 

'This approximation can be shown to be reasonable 
for structures founded on an elastic half-space but 
may not apply to other foundation types, such as 
pile foundations. 
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and Parameter Study 

(1  +ff t2+pY2) = 1.0 
The characteristics of the mathematical 

model shown in Fig. 1 and described by the 
With the aid of Eqs. [8] to [lo], equations presented by Parmelee (1967) and 

Rainer ( 197 1 ) were investigated to show the 

1161 A,' = A0(63'2) + ch'(5) + cgf(y) influence of the main parameters governing the 
dynamic behavior. Because of the mathemati- 

where cal model chosen, the results are strictly ap- 
plicable to structures with circular foundations 

chf = c,.(a/2) and c,' = c,.(a/2) 
on an elastic half-s~ace. Thev can. however. be 

The important parameters that affect the 
modal damping ratio yE are readily identified 
from Eq. [ l  61. These are : 

(a )  the structural damping ratio ho and the 
foundation damping coefficients el, and cs; 

(b) the modal amplitude ratios 6, t, and y; 
and 

(c) the nondimensional frequency a for the 
footing on the half-space. 

The following implications for the modal 
damping ratio can be seen from Eq. [16]. 

Since s3l2 = ( p / ~ ~ ) ~  from Eq. [8], the con- 
tribution of the structural damping term is seen 
to vary as the cube of the frequency reduction 
ratio. This dependence has also been estab- 
lished by Veletsos and Nair (1974) and Bielak 
(1975). As long as the structural modal am- 
plitude ratio 6 is large compared with the base 
amplitude t and rocking amplitude 7, the con- 
tribution from foundation damping will be 
negligible. As 6 decreases relative to [ and y, the 
contribution of structural damping towards the 
system damping ratio diminishes rapidly and the 
system damping ratio is then dominated by 
foundation damping. I t  also follows that the 
contribution of the structural damping will be- 
come negligible if the frequency ratio (p/wo) 
becomes significantly less than 1. 

Modal Damping for Higher Modes 
Since p2 /~ , , 2  is significant relative to 1 for 

the two higher modes of this single-story 
model, the approximations in Eq. [16] are not 
acceptable and Eq. [12] has to be used. For 
the type of structure investigated here, nu- 
merical results as presented by Jennings and 
Bielak (1973) and Rainer2 show that the 
second and third modes are highly damped as 
a result of foundation radiation damping. 
Therefore, for an estimate of seismic response 
of this simplified model only the contributions 
of the fundamental mode need be considered. 

J ' 

adapted to rectanblar footings by deriving an 
equivalent radius (Richart et al. 1970). 

In order to reduce the number of variables 
to manageable proportions, only the dominant 
parameters were varied. Fixed parameters are: 
Poisson's ratio of ground, v = 0.333; mass 
ratio a = 1.03; inertia ratio p = 0.226. The 
values for a and p chosen are representative 
of some nuclear reactor structures. 

For the description of the frequency-depen- 
dent foundation properties, the algebraic ex- 
pressions derived by Veletsos and Verbic 
(1974) were used. Although the frequency- 
dependent stiffness was employed for the 
rocking motion, this had negligible effects on 
the results compared with using constant 
values. The frequency ratio and the modal 
amplitude ratios were iterated four times 
throughout the set of parameters employed. 

The variation of the frequency reduction 
ratio p/oo is shown in Fig. 2, and the damping 
ratio hrs is plotted as a function of the primary 
parameters k/Gr, and h/r in Figs. 3 and 4. 
Since the modal damping ratio in Eq. [16] is a 
function of a and since a" (k/Gr) (p2/~,02) 
1 b l  the mass density ratio b1 = rnJpr3 
also becomes a plotting parameter for modal 
damping ratio. Figure 3 shows that for small 
values of aspect ratio h/r the modal damping 
ratio increases rapidly for increasing stiffness 
ratios k/Gr. For slender structures, i.e., large 
values of h/r, the modal damping ratio becomes 
relatively small. 

For large values of the stiffness ratio k/Gr, 
magnitudes of modal damping ratios are 
plotted as hE versus h/r in Figs. 4a and b,  for 
soil material damping ratios D = 0 and 0.05, 
respectively. The results can be utilized as 
follows: for ho less than about l o % ,  the pa- 
rameters for which the modal damping ratio 
will be smaller than the structural interstory 
damping ratio are those that lie below the 
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FIG. 2. Frequency reduction ratio for interaction structure on elastic half-space. 

(ii) For k / G r  > 2.0, the modal damping 
ratio is relatively insensitive to the stiffness 
ratio k / G r ,  but depends primarily on the 
aspect ratio h / r  and the mass density ratio bl. 

(iii) For large structural damping ratios A,, 
the modal damping can be smaller than A, for 

- a wide range of commonly encountered values 
of aspect ratio h / r  and mass density ratio bl. 

(iv) For k / G r  > 2.0, the increase in the 
- system damping ratio A,: for slender structures 

becomes nearly equal to the increase in the soil 
material damping ratio D. This is evident by 

- comparing corresponding ordinates for values 
of h / r  greater than about 1.5 in Figs. 3 and 4 

- 
_ . - -  for D = 0.00 and 0.05, respectively. 

- This latter observation agrees with the re- 
sults from the approximate relation, Eq. [16]. 
Since for soft foundations t + -/ is nearly equal 
to 1.0, and 6 is small, the system damping ratio 
depends directly on the foundation damping 

o I I I I ratios and soil material damping ratios as 
1 . O  2 . O  3 .O 4 . O  5 . 0  

S T I F F N E S S  R A T I O  k/Gr follows: 

FIG. 3. Modal damping ratios for structures on 
elastic half-space. A. = 2% (-y = 0.333, o = 1.03,p = 
0.226, D = 0.0). 

ordinate of the applicable structural damping 
ratio. 

The following general observations are 
made: 

(i)  For  small values of interstory damping, 
structures with large aspect ratios h/r and 
structures of large values of mass ratio b, will 
produce small modal damping ratios. 

These results can have important conse- 
quences in the design of structures with flexible 
foundations. The assun~ption of high values of 
system damping may not be justified if a 
flexible foundation condition is present, par- 
ticularly in tall structures. However, material 
damping in the foundation soil will contribute 
to increases of the modal damping ratio. The 
results presented point to the importance of 
establishing realistic levels of soil material 
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0  1 .O 2 . 0  3  .O 4 .O 5 . 0  ,, 1 .O 2 . 0  3 . 0  4 .O 5  .O 

I ASPECT RATIO h / r  ASPECT R A T I O  Ih/r 

FIG. 4. (a) Modal damping ratio for structure on elastic half-space, for k / G r  2 2.0 
(7 = 0.333, a = 1.02, p = 0.226, D = 0.0). (b)  Modal damping ratio for structure on elastic half- 
space,for k / G r  2 2 . 0  (? = 0.333, a = 1.03,p=0.226, D = 0.05). 

damping for the strain lcvels that are expected 
to occur. 

Structures with Pile Foundations 

For structures founded on piles the general 
relations for frequency reductions (Eq. [ S ] )  
and for modal damping ratio (Eq. [12]) are 
also applicable. However, the evaluation of the 
various stiffness and damping terms has to  

1 proceed differently than for the elastic half- 
space. For  completeness, the contributions of 

I 

lateral soil layer are also included here, but 
no numerical results are presented. 

I A number of assumptions have to be made 
in order to permit the simplified solution of 

1 
pile foundations: 

I 

( a )  The pile group efficiency factor for the 
foundation is based on static consideration and 
is assumed known. 

(b)  The cfficiency factor applied to stiffness 

I is assumed to be applicable also to geometric 
and material damping. 

( c )  The rocking stiffness of thc pile founda- 
tion arises from the axial stiffness of the piles 
and the in-plane rotational stiffness of the pile 
tops. The fraction of total rocking stiffness due 
to axial pile stiffncss and pile top rotation de- 
pends on the pile properties and thc geometric 
layout of the pilc foundation. 

( d )  For  the results to be applicable to seis- 
nlic disturbances, the assumption has to be 
made that thc horizontal motion of the pile 
foundation without the structure represents the 
frec-field motion of the ground. 

The horizontal and rotational stiffncsses KII  
and Kc,, are evaluated by summing the contri- 
butions of mutually independent sources of 
stiffness: 

KIr = K1, + K ,  + K,,  and K* = KO 

+ Kz, + Ka, + KJ, 

Similarly the damping contributions to CII and 
C,[, are summed as 
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CII = C,, + C, + C,, and C+ = CB 

where the subscripts have the following mean- 
ing, in the horizontal and rotational directions, 
respectively: 

H, @: total quantity 
h, 8: half-space contribution 
x, $I: pile-foundation contribution 
u, $: side layer contribution 

(Z$I and $19 refer to rocking contributions from 
axial motion and in-plane rotation of the piles, 
respectively). 

The frequency is then obtained from Eq. [5] 
by making use of the total stiffness K13 and K+. 
It should be noted that the stiffnesses of the 
pile foundation, K, and K,, are the net stiff- 
nesses of the entire pile foundation, obtained 
by multiplying the individual pile stiffness by 
the total number of piles and by the group 
efficiency factor. 

The modal damping ratio hE can be evalu- 
ated from Eq. [12] once nII and A+ are known. 
The various contributions to CH and C+ are 
the damping coefficients obtained from Eqs. 
1141, 1151 for t h ~  clastic half-space, from 
Novak (1974b) for the side layer, and Novak 
(1974a) for the pile foundation. For the latter, 
for example, 

Substitution of the above relationship and 
summing the other contributions to CII and C+ 
results in: 

+ K,, (5 h + Dl,) 
2 f7 .1  

The terms f7,2, f11,2, and f18,2 are geometric 
damping parameters and fl1,,, and f18,, stiffness 
parameters as evaluated by Novak ( 1974b). 
Subscripts 7, 11, and 18 pertain to pile top 
bending, horizontal and vertical displacement 
of piles, respectively; S ,,,, SIl1, SILz, and Sfil are 
damping and stiffness terms for side layer reac- 
tion as evaluated and tabulated by Novak 
( 1974a). The nondimensional frequencies a 
pertain to the respective foundation element 
and the adjacent soil at the resonance frequency 
of the interaction structure. Similarly the hys- 
teretic material damping D is that applicable to 
the soil adjacent to the deforming foundation 
element. For pile foundations the material 
damping has been treated analogously with the 
half-space solution (Veletsos and Verbic 1973; 
Rainer 1975) and with the side layer solution 
(Bielak 1975). 

The following substitutions are made: 

+ r,, + r, = 1.0 
and 

KH/ml = uHZ, Km/mlh2 = uQ2 

Equations 1171 and 1181 then become 

It may be observed that the contributions of 
the various sources of damping are scaled in 
proportion to their respective stiffness ratios, r. 

Whereas in principle all the terms required for 
calculating the damping ratio are known, judg- 
ment is needed in assessing pile group action 
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FIG. 5. Modal damping ratios for structures on pile foundations. (a = 1.0, B = 0.226, XO = 
2%, D = 0.0, f i e , z / f i e , i  = 1.60, f i , ~ / f 7 , 1  = 0.70, r.4 = 0.44, r44 = 0.56). 

and material damping. Furthermore, iterative 
procedures are needed when material prop- 
erties are strain dependent. 

For ease of numerical evaluation, it may 
be advantageous to express A,, and A+ in terms 
of a. = a(p/wo), the nondimensional fre- 
quency relative to the frequency of the fixed- 
based structure. Also, parametric approxima- 
tions for the various damping terms are pos- 
sible. These and other topics are treated in 
greater detail by Rainer.2 

Parameter Study of Pile Foundations 
Since the horizontal and the rotational stiff- 

ness of the entire pile foundation can be varied 
somewhat independently, it is advantageous to 
retain w112/~02 = KfI/k and w+2/wo2 = K+/kh2 
as independent variables in the parameter 
study. 

Figure 5 presents modal damping ratios of 
the pile system as a function of oo2/w,2, ~ ~ ~ / w + ~  

and the nondimensional frequency ao. The 
following parameters are used: mass ratio a = 

1.0, p = 0.226, interstory damping ratio ho = 
2%,  and soil material damping D = 0. From 

Novak (197% b ) ,  fis,e/fis,i = 1.6; f11,2/f11,1 

= 2.38 and f7,2/f7,1 = 0.70 for concrete piles. 
Rotational stiffness ratios are r,$ = 0.44 and 
r,, = 0.56. 

The results in Fig. 5 show that major 
changes in the modal damping ratio occur 
mainly at low values of w,,2/w,,2, i.e., for rela- 
tively stiff foundations. Considerable damping 
arises from the rocking motion as is evident 
from the substantial values of he near wo2/wII2 

= 0. This contrasts with structures founded on 
an elastic half-space, where for relatively stiff 
foundations rocking contributes very little to 
the modal damping ratio. Modal damping also 
increases substantially with increasing values 
of a". This implies that with increasing pile 
diameter, and maintaining constant rocking 
and horizontal pile group stiffness, as well as 
constant soil stiffness and pile slenderness ratio, 
greater modal damping values are obtained. It 
can also be ascertained from specific examples 
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FIG. 6.  Hysteretic modal damping fraction for structures on pile foundations. 

that increases in structural stiffness, as is re- 
flected by larger values of w,,' and a,,, result in 
increasing modal damping values. Similar re- 
sults are obtained for ho = 596, except that 
near w,,2/o,I,2 = 0 the modal damping values 
are larger than those in Fig. 5 for A,, = 2% 
as shown by Rainer.2 

Equation [12], with Eqs. [I91 and [20], can 
be rearranged so that all terms containing D 
are collected; thus the total modal damping 
ratio AT.: becomes 

where R is called the 'hysteretic modal damp- 
ing fraction'. Plots for R are presented in Fig. 
6 for relevant parameters shown there. D is 
assumed the same for horizontal translation 
and axial motion of the pile. Figure 6 shows 
that for stiff foundations, little of the material 
damping contributes to the modal damping 
ratio. As the foundation stiffness decreases 
relative to the structure, an increasing pro- 
portion of material damping becomes effective 
in the total modal damping ratio. Only for very 
soft foundations is nearly the entire amount 
of material damping ratio effectively additive 

to the modal damping ratio that arises from 
structural and geometric foundation damping. 

Summary and Conclusions 

The treatment of dynamic structure-ground 
interaction as presented in this paper can be 
summarized as follows: 

1. The natural frequency of thc fundamental 
mode and the corresponding modal amplitude 
ratios can be found by a simple analytical 
expression. Iteration is required for high 
degrees of accuracy. 

2. The modal damping ratio A, can be 
evaluated from an expression derived from 
Novak's damping relationship (Novak 1 9 7 4 ~ ) .  
This involves primarily the modal amplitude 
ratios and damping coefficients for the struc- 
ture and the foundation soil. Relationships for 
foundations on an elastic half-space and more 
general formulations including pile foundations 
and lateral soil layer restraint on the footing 
are presented. 

3. This procedure facilitates the isolation 
and identification of the important parameters 
that govern dynamic structure-ground inter- 
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action and enables one to perform wide- 
ranging parameter studies. 

4. The dynamic properties of structures on 
pile foundations can be determined similarly 
as for structures on elastic half-space subject 
to certain simplifying assumptions. The influ- 
ence on modal damping ratio of elastic energy 
propagation into the ground and of hysteretic 
material loss in the soil has been presented for 
some specific structural parameters. 

The following conclusions have been 
reached : 

1. The natural frequency of the fundamental 
mode of a structure-foundation system is 
primarily dependent on the stiffness ratio of 
structure to ground and the aspect ratio of 
height to width of foundation. 

2. The system damping ratio for the funda- 
mental mode is a linear combination of the 
products of the damping coefficients of the 
ground and the corresponding squares of the 
modal amplitude ratios of the structure, and 
the interstory damping ratio of the structure 
times the interstory modal amplitude ratio to 
the 3/2 power. 

3. The variation of the modal amplitude 
ratios shows a rapid decrease of relative dis- 
placement and a similar increase of rocking 
displacement with increasing aspect ratios and 
stiffness ratios. This points to the predominant 
infl~lcnce that rocking has on structure-ground 
interaction effects of moderately slender or 
very slender structures founded on an elastic 
half-space. 

4. The contribution of structural interstory 
damping to the inodal damping ratio dccreases 
rapidly with increasing frequency reduction 
ratios. Alteriiatively it may be stated that with 
decrcasing ratios of structure stiffness to foun- 
dation stiffness the contribution of the inter- 
story damping becoines insignificant and the 
system damping will be dominated by founda- 
tion damping. 

5. For stiffncss ratios k /Gr  greater than 
about 2, changes in soil material damping 
ratios are reflected in almost identical increases 
in system damping ratios for structures 
founded on an elastic half-space. 

6. For a widc range of parameters, system 
damping ratios for structures on flexible soils 
can bc smaller than the fixed based structural 
damping values, particularly for large aspect 

ratios and large mass density ratios. Considera- 
tion of soil material damping increases the 
system damping ratio and thereby reduces the 
range over which such reduced damping ratios 
can occur. 

7. For structures on pile foundations sub- 
stantial levels of inodal damping can be 
achieved with large diameter piles even when 
soil material damping is neglected. The con- 
tributions of soil material damping to the 
modal damping ratio is most efficient for soft 
foundations; for stiff foundations only a small 
fraction of material damping contributes effec- 
tively to the modal damping ratio. 
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Notation 

a nondimensional frequency = prl Vs 

b~ mass density ratio = m,lpr3  
c damping coefficients (dimensionless) 
C damping constant (force per unit 

velocity) 
D soil material damping ratio (with 

subscripts) 
f 7 ,  f l  ,1, stiffness parameter for vertical pile in 
f i s , l  in-plane bending, lateral, and axial 

direction, respectively. 
f 7 , 2 ,  f l  1 . 2 ,  damping parameter for pile in in-plane 
fi8.z bending, lateral, and axial direction, 

respectively. 
G shear modulus of ground 
h height of single-story structure 
I sum of massmoment of inertia about 

own axes of rotation 

11 geometric mass moment of inertia of 
structure = mlh2  

k structural stiffness; frequency-depen- 
dent foundation stiffness coefficient 
(with appropriate subscript) 

K foundation stiffness (with subscript) 

mo base mass 
m1 top mass 
P resonant frequency of interaction 

structure 
r radius of base mass or pile; stiffness 

ratio of foundation (with subscript) 

S,,, S*, side layer damping parameters for 
horizontal and rotational motion, 
respectively. 

SUI, S*, side layer stiffness parameters for 
horizontal and rotational motion, 
respectively. 

u modal amplitudes 

VC wave velocity in pile 
vs shear wave velocity of ground = 

(GIp)li2 < 
a mass ratio = mo/ml 

p inertia ratio = 1/11 
y, S ,  t modal amplitude ratios of rotational 

displacement, interstory displace- 
ment, and base displacement, respec- 
tively. 

Ao structural damping ratio (fraction of 
critical) 

AE modal damping ratio for interaction 
structure 

A damping ratio for foundation element 
(with appropriate subscript) 

@ angle of rocking rotation for interac- 
tion structure 

v Poisson's ratio 

P mass density of soil 
w o angular resonance frequency of fixed 

based structure 
w angular component resonance fre- 

quency without correction terms 
(with subscripts) 

!2 angular component resonance fre- 
quency with correction terms (with 
subscripts) 

Subscripts for horizontal translation and rota- 
tion, respectively : 
H, @ total quantity 
h, 0 half-space contribution 
x, + pile-foundation contribution 
u, # side layer contribution 
(z+ and ++ refer to rocking contributions 
from axial motion of piles and in-plane rota- 
tion of pile tops, respectively). 


