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Abstract. The advent of the Hohenberg-Kohn theorem in 1964, its extension to finite-
T , Kohn-Sham theory, and relativistic extensions provide the well-established formalism of
density-functional theory (DFT). This theory enables the calculation of all static properties
of quantum systems without the need for an n-body wavefunction ψ. DFT uses the one-
body density distribution instead of ψ. The more recent time-dependent formulations of DFT
attempt to describe the time evolution of quantum systems without using the time-dependent
wavefunction. Although DFT has become the standard tool of condensed-matter computational
quantum mechanics, its foundational implications have remained largely unexplored. While all
systems require quantum mechanics (QM) at T=0, the pair-distribution functions (PDFs) of
such quantum systems have been accurately mapped into classical models at effective finite-T ,
and using suitable non-local quantum potentials (e.g., to mimic Pauli exclusion effects). These
approaches shed light on the quantum → hybrid → classical models, and provide a new way of
looking at the existence of non- local correlations without appealing to Bell’s theorem. They
also provide insights regarding Bohmian mechanics. Furthermore, macroscopic systems even
at 1 Kelvin have de Broglie wavelengths in the micro-femtometer range, thereby eliminating
macroscopic cat states, and avoiding the need for ad hoc decoherence models.

1. Introduction.

In 1964, Hohenberg and Kohn [1] proved a theorem asserting that the ground- state properties
of a stationary, non-relativistic system can be calculated from a variational principle involving
only the one-body density n(�r) of the system, without recourse to the Schrödinger equation
and its wavefunction. The theorem was soon generalized to finite-T [2], and to relativistic
systems [3]. Thus it became clear that all thermodynamic properties of n-particle quantum
systems, entangled, interacting, or not, could be calculated without recourse to the n-body
wavefunction. The method, re-written in the form of the Kohn-Sham theory has now become
the preferred method in computational quantum mechanics (QM). Furthermore, since linear
transport properties depend only on equilibrium correlation functions (c.f., the Kubo relations),
a large class of quantum phenomena depends only on the density n(r), a measurable quantity
having a familiar ‘ontology’ in quantum as well as classical mechanics. Unlike the many-electron
wavefunction of conventional QM, the one-body density is an observable. For instance, the
X-ray scattering from a specimen of matter gives direct information regarding n(r). The
development of ‘time-dependent’ density functional theory [4], if substantiated, implies that

DICE2012 IOP Publishing

Journal of Physics: Conference Series 442 (2013) 012030 doi:10.1088/1742-6596/442/1/012030

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution

of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



density functional theory may enable a very different discussion of quantum phenomena than
has been the custom in foundational studies. In this article, for the sake of brevity and simplicity,
we limit ourselves mainly to non-relativistic equilibrium systems. In the following presentation
we look at DFT and compare it with relevant aspects of Bohmian mechanics, treatment of hybrid
systems within DFT, as well as classical representations inspired by DFT ideas. Furthermore,
finite-T physics leads us to conclude that there is no need for ad hoc decoherence theories to
eliminate macroscopic cat states from QM.

2. Density functionals and Bohmian mechanics

To be specific, we consider a system of electrons subject to an external potential vext(�r), and
interacting with one another via the Coulomb potential. In many cases this external potential
is produced by a fixed set of nuclei, as in molecular physics or quantum chemistry calculations
at T = 0. However, the ions cannot be treated as fixed in dealing with liquid metals and hot
plasmas. Hence, in discussing true hybrid systems, we allow the nuclei (or ions) to be a second
interacting subsystem, interacting with the electron subsystem, and the finite-T discussion
becomes not only appropriate, but also necessary. However, in simplified models, e.g., the
jellium model, the ions provide a fixed uniform positive distribution of charge that exactly
neutralizes the negative charge of the electron distribution. The q → 0 singularities in the
Coulomb potential 4π/q2 for electron-electron or ion-ion interactions are exactly canceled by
the corresponding term in the ion-electron interactions.

However, while keeping such specific models in mind, we can simply work with an unspecified
external potential vext and a corresponding one-body electron distribution n(r). Then according
to Hohenberg and Kohn [1], the exact ground state density n(r) and the ground-state energy
Ev[n] corresponding to that external potential vext are obtained by the minimization of the
following energy functional.

Ev[n] = T [n] + Ucou[n] +

∫

d�rvext(�r)n(�r) (1)

The kinetic energy contribution, viz., T [n], and the Coulomb electrostatic energy Ucoul[n] are
said to be ‘universal functionals’ of n(r), in the sense that they do not depend on the external
potential vext(�r) specific to the system. The original Hohenberg-Kohn theorem was established
for non-degenerate ground states at T = 0. This has since been restated within the language of
functional analysis [5], while degenerate ground states, spin-polarized systems, finite-T systems,
relativistic systems, multi-component hybrid systems, superconductors, liquids and plasmas etc.,
have been studied within the first three decades of DFT [7].

It is clear that a direct minimization of Ev[n] via δEv/δn(�(r) would require a knowledge
of the kinetic energy functional T [n], and the electrostatic potential Ucou[n]. The latter is a
known functional of n(r), but T [n] is unknown. Although this is a universal functional of n(�r),
it turns out to be highly non-local. Hence gradient expansions merely lead to Thomas-Fermi
like theories. These, sometimes known as ‘orbital-free DFT’ [6], presently lack the full accuracy
of methods that use a wavefunction. Since DFT is presented via a one-body density, the Kohn-
Sham formulation of DFT uses a one-body ‘Kohn-Sham wavefunction’ to construct a non-local
kinetic energy, where a single Kohn-Sham electron moves in the electrostatic potential of the
other electrons and an additional exchange-correlation potential Vxc[n] which is a functional of
the one-body density. Thus, the many-electron problem is replaced by an effective one electron
problem in Kohn-Sham theory. Here the Kohn-Sham electron moves in a non-local Kohn-
Sham potential that is made up of the electrostatic potential Ucou[n], and the non-local Vxc[n].
However, unlike T [n], approximate models of Vxc[n] have proved to be quite successful, when
used in the Kohn-Sham equation where T [n] is constructed for each case, instead of relying on
a knowledge of the universal functional T [n].
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It is of interest at this stage to examine Bohmian mechanics, where the Schrödinger
many-particle wavefunction ψ(�x1, · · · �xn) is used to construct a non-linear equation of motion
containing the external potential as well as a quantum potential Q(�x1, · · · �xn). Let us limit
ourselves to a single particle problem in 1-D for the sake of brevity. Bohm [8] writes the
wavefunction in the form:

φ(x, t) = R(x, t) exp{iS(x, t)/h̄} (2)

R(x, t) =
√
n(x, t); n(x, t) = |φ(x, t)|2 (3)

so that R (positive), and S are real functions. Substituting this form of the wavefunction into
the Schrödinger equation, one obtains Bohm’s form of the equations as:

∂n

∂t
+∇.

[

n
∇S

m

]

= 0 (4)

∂S

∂t
+ vext +

(∇S)2

2m
+Q(x, t) = 0 (5)

Q(x, t) =
−h̄2

2m

∇2R

R
(6)

Eq. 4 is simply the equation of continuity. The term (∇S)2/2m in Eq. 5 is interpreted as the
kinetic energy of a point-like particles with momentum p = ∇S. In effect, Eq. 5 has the form:

∂S/∂t+H(p, x) +Q(x, t) = 0 (7)

This is exactly like a classical Hamilton-Jacobi equation with the extra potential Q(x, t), called
the quantum potential, or the Bohm potential. Since we are interested in the simplest form
of DFT (systems in equilibrium) in this presentation, let us consider an electron confined
within an infinite potential well of width a. The eigenfunctions are of the form ψn(x) =√
(2/a) sin(knx); n = 1, 2, · · ·. It is easily shown that the particle current j(x, t) is zero,

and the Bohmian particle is at rest in some unknown location x in the well, with the probability
|ψn(x)|2 of being there. Einstein felt that the particle being at rest in the well was not the correct
physical picture. A more detailed discussion of the Bohmian particle in a well, and a possible
resolution to Einstein’s objections [9] are given in Chapter 6 of Ref. [10].

Does the Bohmian particle in the well have no kinetic energy? It is easy to show that the
kinetic energy is completely resident in Bohm’s quantum potential while the particle current is
zero. In fact, the kinetic energy functional T [n(x)] per electron confined in the quantum well,
given by Hohenberg-Kohn theory (or conventional QM) is essentially the quantum potential of
Bohm. Although some advocates of Bohmian mechanics have moved away from the quantum
potential (mainly due to philosophical reasons), we find it to be of a sort similar to the effective
potentials based on density-functionals used in condensed-matter many-body physics.

For instance, one of the objections adduced against the quantum potential is that it has the
‘unusual effect’ of making the particle density n influence the dynamics of individual particles.
However, that is precisely the message of DFT. It is typical of many-particle physics that
the individual dynamics is influence by the over-all particle distribution. For instance, a low-
order (mean-field) many-body theory like the Hartree theory of many electrons requires that an
electron moves in the many-body field of the other electrons produced by the density distribution
n(x). Hartree-Fock theory involves a highly non-local Hartree-Fock potential dependent on the
density n(r).

Interestingly, Dürr, Goldstein and Zhangi [11] summarize their attitude to the quantum
potential with the statement, ‘We believe that the most serious flaw in the quantum-potential
formulation of Bohmian mechanics is that it gives a completely wrong impression of the lengths
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to which we must go in order to convert orthodox quantum theory into something more rational.
The quantum potential suggests . . . we must incorporate into the theory a quantum potential
of a grossly non-local character’. We emphasized the word ‘grossly’ in the above to high-light
where the attitudinal squeamishness resides. In contrast, most physicists who use the highly
non-local Hartree-Fock potential as a basic first step in their calculations have given up any such
squeamishness. Regarding ‘the lengths’ needed to reach the classical Hamilton-Jacobi form, as
seen from above, we need only a few lines.

The insights from DFT enable us to consider the Bohm potential as a functional of the
density, without invoking a wavefunction. Furthermore, Eq. 6 may be used as a differential
equation for the direct determination of Q given in terms of R =

√
n, subject to satisfying the

equation of continuity, and minimizing the energy. Once R is determined by iteratively solving
Eq. 6, S can be obtained from the continuity equation. In effect, a time-dependent system is
described by the four vector consisting of the current j(x, t) and the density n(x, t). These are
precisely the quantities treated in DFT, and in Bohmian mechanics.

The above considerations suggest that Bohmian mechanics can be formulated entirely in a
language free of the wavefunction, using only density functionals, exactly as in DFT.

3. Pair-distributions and classical maps

The Hohenberg-Kohn theorem reduces the n-electron problem to that of a functional of an
effective one-body problem and an exchange-correlation potential Vxc[n]. Given that the basic
electron-electron interactions (that lead to quantum correlations including those of the Bell
type) are pair-interactions and Pauli exclusion effects, the reduction to a one-body problem
achieved in DFT appears a bit mysterious, and one would expect that fundamental two-particle
correlations are embedded in the Vxc. In fact, the latter is most transparently evaluated as
a coupling constant integration over the pair-distribution function (PDF), i.e., g(�r1, �r2) of the
system. This is the probability of finding an electron at r2, given an electron at r1.

The PDF is well-defined both classically and quantum mechanically. In QM, the PDF is
calculated from the many-particle wavefunction by integrating over all except two space variables
�r1, �r2 of two electrons. In a classical system, we can consider a uniform electron fluid (as in
jellium), with a mean density n and Wigner-Seitz radius rs = {3/(4πn)}1/3 . We position the
origin on the first electron, so that �r1 = 0. Then, invoking radial symmetry and uniformity,
we can use g(r) rather than g(�r) for the PDF, where r is the radial distance of the (second)
electron from the origin. When classical mechanics holds (i.e., for T > 0 and for very small
de Broglie wavelengths), this g(r) for an interacting Coulomb fluid can be calculated using the
modified-hyper-netted-chain (MHNC) equation [21], or via molecular dynamics (MD).

In QM, even the non-interacting electron system is of interest if all the particles have the same
spin. Then the Pauli exclusion principle controls the entanglement of the n-electron system. This
non-interacting set of n-entangled electrons is described by a Slater determinantal wavefunction.
The fully spin-polarized system (parallel spins σ), and the fully unpolarized system (anti-parallel
spins σ1 �= σ2) are of interest. They can be analytically treated at T = 0 as in Ref. [12], and
extended to finite-T as in Ref. [13]. Furthermore, the Pauli exchange effect (which leads to
entanglement since the wavefunction is a Slater determinant) can be re-written as a non-local
quantum potential which is a universal function of r/rs. This ‘Pauli-exclusion’ potential P (r/rs)
can be constructed such that it reproduces the quantum g(r) when used in the classical MHNC
equation. This provides an interesting and useful classical map of the quantum problem that has
been very fruitful in applications to interacting quantum problems ranging from 2-D electron
layers [14], hydrogen plasmas, electrons in graphene, and quantum dots [15]. That is, correlated,
interacting quantum problems can be replaced by equivalent classical problems where pair-
potentials involve additional potentials containing quantum effects which are usually non-local.
Bohmian mechanics achieves this directly from the R =

√
(n) part of the wavefunction. DFT
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Figure 1. The pair-distribution function g0σσ(r) gives the probability of finding a σ-spin electron
at r if there is already a σ-spin electron at the origin (Coulomb repulsion neglected). We plot
r/rs on the x axis, and the result is valid for any density, rs being the sphere-radius containing
an average of one electron. Thus the ‘entanglement’ due to Pauli exclusion holds even if rs
is a lunar distance. The Pauli exclusion is exactly mimicked by a scale-independent repulsive
potential βP (r) when used in a classical MHNC equation.

achieves this via functionals of the one-body density n(r). Naturally, non-local contributions
are usually quite important in both DFT and Bohmian mechanics.

The PDF of non-interacting fully spin-polarized entangled electrons, denoted by g0σ,σ(r) is
shown in Fig. 1. It has the form:

g0σσ′(r) = 1; σ �= σ′ (8)

g0σσ(r) = 1− {3j1(rkF )/(rkF )}2 (9)

(The large-r behavior is normalized to unity, whereas if ζ = 0, it is natural to normalize the
spin-resolved functions to 1/2). Here j1(x) is the spherical Bessel function, while its argument
x contains kF = 1/(αrs), α = 0.52106, where kF is the Fermi momentum. The probability of
finding an electron at r, given that there is an electron at the origin of coordinates is affected by
their mutual Coulomb interaction. This is not included in the above calculation, and hence the
superfix ‘zero’ in g0. A treatment including the Coulomb potential is given in Ref. [13], where
it is shown that remarkably good agreement with Monte-Carlo quantum simulations is obtained
for these classical maps.

Since the PDF scales as r/rs, the correlations remain undiminished, whatever be the mean-
separation R = 2rs that is imposed on any two electrons in the entangled system. That is, local
realism as required by the Einstein-Podolsky-Rosen gedanken experiment does not hold. Thus
the correlations unearthed by the Bell inequalities are very transparently and simply revealed
by an examination of the PDF of correlated electron systems. This topic is discussed in greater
detail in Chapters 7 and 8 of Ref. [10].

4. Finite temperatures, hybrid systems and decoherence

Formal discussions of hybrid systems (i.e., systems containing quantum particles as well as
classical particles) [16, 17] rarely bother to discuss the role of temperature, partly because some
of these discussions deal with model problems dealing with just one or two particles. In reality,
all particles in any system obey quantum mechanics. However, if some particles have de Broglie
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wavelengths λ smaller than some assigned length scales associated with the system, then such
particles among themselves can be treated within classical mechanics. The interactions between
the particle deemed to be classical, and those deemed to be quantum occur via a Hamiltonian
Hint whose characteristic length scales and energy scales have to be investigated separately. In
the following we look at systems at finite temperature T .

If a system is coupled to a heat bath and held at some finite temperature T , the average
kinetic energy of the particles is a function of T . In the classical limit the average kinetic energy
of an atom is 3T/2, using energy units for T where the Boltzmann constant becomes unity. At
T = 0, for our model system of fermions (jellium), the kinetic energy becomes 3EF /5, where
EF is the Fermi energy. The latter can be thought of as a temperature T = 2Ef/5. Hence we
see that we can ascribe a de Broglie wavelength λ and a thermal momentum mv to any particle
in a system at an effective temperature T , with v and λ given by:

v =
√

3T/m, λ = h/p = h/
√
3mT (10)

It is clear that λ is infinite for systems at T = 0, or for sufficiently dilute quantum systems
(EF → 0 as n → 0). Thus all systems become quantum systems as T → 0 since their de
Broglie wavelengths become infinite. However, if at some finite (even if low) temperature, e.g.,
1 Kelvin, if the mass of a particle is sufficiently large, then if λ ≪ 1 atomic unit, we may
assume that superposition and entanglement become unimportant. Such heavy particles are
classical particles. Hence, since all systems are quantum systems at T = 0, and heavy particles
become classical at some finite-T , any quantum theory of hybrid systems [16] has to ultimately
incorporate a quantum treatment of thermal fields.

The conventional quantum approach to finite-T problems is difficult, and involves a typical
doubling of the Hilbert space as in Umezawa’s thermofield dynamics [18], or in the Martin-
Schwinger-Kedysh contour technique [19]. These methods are useful for tackling a class of non-
equilibrium physics. However, even static finite-T quantum calculations (e.g., via the Matsubara
method [12]) are restricted to perturbation theory.

On the other hand, finite-T density functional theory [2] presents a computationally
and conceptually much simpler approach to finite-T problems, as well as two-temperature
quasi-equilibria. Here the finite T one-body density functionals n(�x, T ) determine all the
thermodynamics and linear transport properties of the system without the need for a
wavefunction.

The explicit construction of a DFT and the calculation of such finite-T hybrid systems for
a system of protons (classical) and electrons (quantum) at finite-T has been given in Ref. [20].
The method is applicable to any electron-ion system, where the ions are treated classically. The
usual Born-Oppenheimer approximation is not needed. If the ion distribution is denoted by
ρ(�r), and the electron distribution is n(�r), the total free energy F ([ρ], [n]) is a functional of both
distributions. Hence we have two coupled Hohenberg-Kohn-Mermin type equations to determine
the finite-T distributions of the hybrid system. That is, the functional derivatives with respect
to variations δn, δρ lead to two coupled Euler-Lagrange equations.

δF [ρ, n]

δn
= 0,

δF [ρ, n]

δρ
= 0. (11)

The first of these equation can be reduced to a Kohn-Sham equation for electrons at finite-
T , or simply retained as a Hohenberg-Kohn variational form. The second equation leads to
a classical Hohenberg-Kohn equation for the ion distribution that is identified as a form of
the MHNC equation. In effect, it is a Boltzmann distribution for the density ρ in terms of the
‘potential of mean force’ (PMF) used in the statistical mechanics of liquids [21]. The PMF is the
appropriate Kohn-Sham potential for this classical system. The full practical implementation
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of this approach to a typical hybrid system (an interacting gas of electrons and protons at finite
T inclusive of the formation of hydrogenic bound states) is given in Ref. [20].

4.1. Decoherence and macroscopic cat states

The equation 10 is of great importance in showing us that there is no need for ad hoc theories
of decoherence to eliminate macroscopic cat states from QM. Let us consider a 1 kg cat at room
temperature (300 K, i.e., 9.500 × 10−4 Hartees). The atoms in the cat have internal energies
with approximately 3T/2 arising from translational motion. The center of mass will also make
random oscillatory motions about an equilibrium position consistent with its temperature and
any motion of the cat. The corresponding center-of-mass de Broglie wavelength λc turns out to
be

λc � 9.45 × 10−23 meters (12)

The ‘radius’ of a proton is about 0.88 femtometers (1 fm=10−15 meters). The de Borglie
wavelength of the cat is about one hundred-millionth of the size of a proton! Even when cooled
to one Kelvin, the de Broglie wavelength remains totally negligible. Even a free electron close
to a cat’s body would not get entangled with the cat’s quantum energy states. Matter has to be
squashed to densities where nuclear reactions begin before superpositions are possible at such
small values of λc. Clearly, Schrödinger’s cat states of macroscopic bodies (entanglements or
superpositions) do not exist in nature except at T=0, or possibly in white dwarfs.

One may argue that the mass M of the center of mass is not the proper quantity to use.
One may claim that QM should be applied to some molecules of the cat that are specific to it
being dead or alive in Schrödinger’s cat paradox. In that case we are no longer applying QM
to a macroscopic system and then there is no difficulty in having superpositions or entangled
states. Chemical reactions (e.g., cyanide reacting with the cat) are simply processes where
reactive atomic groups enter into entanglements. Such processes pose no difficulty and are not
‘paradoxical’.

One may also question the use of a momentum calculated from 3T/2. This is the classical
kinetic energy of an ideal gas. We know from Dulong and Petit’s law (or from the more modern
Einstein-Debye theory of solids) that classically, a system held together by chemical bonds, e.g.,
a cat, has three degrees of vibration per atom, and three degrees of translation, each having an
energy T/2. For solids in the low-temperature limit, we need the Fermi energy of the system.
Such detailed treatments merely introduce numerical factors of little consequence. The basic
conclusion that λc is very very small remains firm.

These considerations imply that explicit decoherence theories like those of Penrose (‘objective
reduction’ due to quantum gravity) [22], or the ‘spontaneous localization’ model of Ghirardi,
Rimini and Weber [23] are unnecessary additions to quantum mechanics, if we grant that the
relevant de Broglie lengths are much smaller than even nuclear radii.

5. Conclusion

The tradition of studying just one or two quantum particles, usually in a two-state model has
a long history in foundational studies. However, if the many-body problem is examined, QM
can be approached using one-body density functionals, without recourse to wavefunctions, both
at T = 0 and at finite-T . An examination of Bohmian mechanics within the perspective of
DFT is conceptually rewarding and clarifies the nature of the Bohmian quantum potential.
Finite-T quantum mechanics leads us to consider the thermal de Broglie wavelength which,
being negligible for macroscopic systems, ensures that there are no macroscopic Schrödinger cat
states.
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