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ABSTRACT

This paper describes a method of generating smooth
streamlines in three dimensions.  Two scalar fields,
corresponding to stream-surfaces, are solved-for, using a
finite-volume method.  Streamlines are obtained as the
curves corresponding to the locus of intersection of iso-
values of the two scalars. The results may be used to
display the results of three-dimensional flow simulations
in an effective manner.

INTRODUCTION

In recent decades computational fluid dynamics (CFD) has

advanced to the point where it is now routine to perform

complex three-dimensional (3D) calculations on engineering

problems involving flowing fluids. Presentation of such

simulations provides a measure of difficulty.  A number of

graphics programs have been created to display the data sets,

which arise from CFD calculations.  However, in spite of the

sophistication of such programs, there are actually very few

graphics tools for displaying results; glyphs, lines, surfaces etc.

This paper describes a method for computing and presenting

graphical information based on previously calculated flow-field

data.

One popular method for displaying fluid motion is by means

of streamlines, that is lines that are tangential to the flow-field,

at any instant. Use of so-called Lagrangian particle-tracking

methods based on massless particles, to create traces of

streamlines is widespread: However, these methods seldom

produce accurate results, due to numerical error.  For example,

a trace of a simple vortex may describe an endless spiral, not a

simple loop.  For the display of complex 3D flows such as the

motion of streams and currents, particle-tracking methods are

far from ideal. Moreover, for transient flow-field calculations, a

spatial description is clearly required.

The general concepts involved in generating a spatial or

Eulerian description of stream functions in 3D were stated long

ago (Giese, 1951, Yih, 1957, Rouse, 1959). Schemes were

devised by Wu (1952) and Sherif and Hafez (1988) involving

the use of stream functions in place of primitive variable-

methods for flow-field calculations.  Among the first to explore

numerical methods involving the use of scalar stream-functions

for purely graphical purposes, were Kenwright and Mallinson,

(1992), Beale (1993a,b) and Kenwright (1993).

Mathematical formulation

Let it be assumed that two scalar functions, ψ and θ, are

defined in 3D Euclidean space such that,

ρ ψ

ρ θ
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These functions have the physical significance that constant ψ
and θ values are stream-surfaces, i.e. they are tangent to the

velocity field, as indicated in Fig. 1. Thus a streamline may be

obtained as the locus of intersection of two stream surfaces

corresponding to iso-values of ψ and θ. Although it is possible

to discretise and solve Eqs. (1) by prescribing a range of ψ and

θ distributions across, say, the inlet of a flow, using an upwind

scheme, the downstream solutions will not be capable of

capturing re-circulation zones, and the accuracy of the scheme

will be no better than a first-order Lagrangian scheme.

Practical stream functions may be defined, which identically

satisfy Eqs. (1), and the additional requirement that the local

mass flux be proportional to the product of the gradients of ψ
and θ,

ρ ψ θ
&

& &

u = ∇ × ∇ (2)



FIGURE 1. SCHEMATIC SHOWING THE RELATION
BETWEEN THE MASS FLUX VECTOR AND SCALAR

STREAM FUNCTIONS ψ AND θ.

Equation (2)  is a vector equation which may be converted to

scalar form by forming the scalar product with the co-ordinate

directions, 
&

ei , or 
&

e i , or any other suitable directions. In this

paper, the directions 
&

∇ ψ and 
&

∇θ  are selected for this purpose,
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Thus, a pair of coupled scalar diffusion-source equations

having the generic form,
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may be obtained with,
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and,
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The first terms on the right-side of Eqs. (5) are due to non-

orthogonality of the stream functions 
& &

∇ ⋅ ∇ ≠ψ θ 0 , while the

second terms are due to vorticity-related effects. Equations (4)

differ from Eqs. (1) in that ψ and θ are coupled by way of p, q,

Γψ and Γθ.

FIGURE 2. METHOD BY WHICH STREAMLINES ARE
CONSTRUCTED FROM FIELD DATA.

DISCRETISATION SCHEME

The system of equations, Eq. (4), are suitable for

discretisation using a finite-volume method (Patankar, 1980)

resulting in sets of linear algebraic equations. Let it be assumed

that the values of the velocity field are available at staggered

locations.  Field-values of ψ and θ may equivalently be

computed at either cell centres or cell-corners (grid nodes). The

latter were employed here, to facilitate graphical representation.

Suppose θ is temporarily known. The linear algebraic

equations for ψ may be written as,
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where W, E, S, N, L, H refer to the West (i-1), East (i+1), South

(j-1), North (j+1), Low (k-1), High (k+1) neighbours of node P.

The linking coefficients are evaluated in terms of the metric

components as W
w

a g g= Γ 114 9 , E
e

a g g= Γ 114 9 etc., and the

sub-scripts w, and e, refer to inter-nodal locations (i-½), (i+½).

The volumetric source-term is,
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where g is the grid Jacobian.  When non-orthogonal body-

fitted grids are employed, an additional geometric source-term

must be introduced into the equations to account for the

influence of the diagonal neighbours, NE, SW, etc.

The resultant field of ψ-values are then used in the

computations for S and Γ in the θ equations.  Spalding’s whole-

field solver (Spalding, 1981) which is a strongly implicit

scheme was used to solve the system of linear algebraic

equations.



Graphics utility

A procedure was written to plot streamlines corresponding to

specific pair of values of ψ = ψ0 and θ = θ0, with reference to

Fig. 2, as follows.

(i) Each cell was parsed to see if the eight corner values

spanned both ψ = ψ0 and θ = θ0. (ii) The cell faces were in turn

parsed to see if they spanned both ψ = ψ0 and θ = θ0. (iii) If so,

the pairs on the face were parsed to see if they spanned either ψ
= ψ0 or θ = θ0. The position of points A and B, corresponding to

the intersection of the surface ψ = ψ0, with the cell perimeter

were interpolated from the appropriate corner points, e.g.,

λ ψ ψ ψ ψ= − −0 H NH H1 6 1 6 . Points C and D were similarly

obtained.  (iv) The lines A-B and C-D were analysed to see if

they intersect.  (It is possible for a set of corners to span a pair

of values, without the two surfaces intersecting each other). 

The point of intersection X of the two curves was then

computed. (v) Steps (ii)-(iv) were repeated until a second point

Y found, and the curve X-Y drawn.

The process was repeated over the whole field for successive

pairs of values (ψ,θ) over the entire range of values, resulting in

a double-contour field.

EXAMPLES

Figure 3a shows a rectangular obstacle, placed in the path of a

flow.  Values of ψ  and θ  were prescribed at opposite sides of

the domain.  Figure 3b shows 3D streamlines around the

obstacle corresponding to particular values of ψ and θ, as

discussed above. Figure 3c illustrates vectors in the symmetry

plane while in Figure 3d iso-values of θ  in the symmetry plane

are displayed. Due to symmetry, θ contours resemble 2D

streamlines, passing around the rectangular block, with a pair of

well-formed vortices occurring downstream in the wake.

Figure 4 shows a vortical flow above a plane, generated by

prescribing the circulation at the top of the domain.  Figure 4b

illustrates streamlines for the problem at hand.  It can be seen

that the streamlines form well-defined closed loops, with the

line-density increasing at higher levels due to the mass flow

being greater.

DISCUSSION

The results show that two scalars, satisfying coupled

diffusion-source equations, solved using a finite-volume

method may be used to display streamlines which either enter or

leave the finite-domain, or form closed curves in 3D.

The current method is based on the work of Beale (1993a,b)

where the general purpose CFD code PHOENICS was used to

solve diffusion-source equations, with Γ = 1 . For the work,

described here, original source code was developed in the C-

language. The code contained two significant modifications: (a)

Improvements in the numerical scheme were effected, (b) non-

orthogonal source terms were introduced.

In the earlier work, numerical stability proved to be a matter

for concern.  The original form of the ψ-equation was for

P u= − × ∇ ∇ ⋅ ∇ρ θ θ θ
&

& & &

. When gradients were small, both

numerator and denominator simultaneously became small,

leading to undesirable instabilities. By setting Γ = ∇ ⋅ ∇
& &

θ θ , the

influence of neighbour-values is rendered negligible when

gradients are small: Caution is still required when solving

strongly-coupled systems of equations; and reasonable initial

fields and boundary values must be selected for ψ and θ, 
however the overall stability of the algorithm has been

substantially improved.

The second modification involves the addition of non-

orthogonal terms to Eq. (5). Beale (1993a,b) considered only

vorticity source terms. It is not always be possible to define

stream functions, which are mutually orthogonal, 
& &

∇ ⋅ ∇ =ψ θ 0

and also satisfy the mass-flux condition, Eq. (2) (except for

special circumstances, such as potential flow). The originally-

defined orthogonal functions do satisfy Eqs. (1), i.e., are stream

functions, and may therefore be used to construct streamlines

and surfaces, for flows with re-circulation. However, the

inclusion of the non-orthogonal terms in Eq. (5) is seen as a

natural extension to the original methodology, ensuring that

streamline density is proportional to the flow rate.

Kenwright and Mallinson (1992) also developed a strategy,

based on the use of two stream functions. For global

computations, their method is restricted to problems where ψ 
and θ satisfy an extremum principle, (Knight and Mallinson,

1996), i.e. there are no interior vortices.  This approach is thus

better suited to local streamline tracking, somewhat akin to

Lagrangian particle tracking, but based on conservation

principles.

In this author’s method, a finite-volume solver using a full 6-

way elliptic solver was employed, and ψ  and θ may exhibit

local extrema, within the interior of the domain, without

difficulty. Future work should address improvements in

computational speed.  Ideally a non-iterative marching

algorithm, based on known upwind values of ψ and θ should be

employed.  However, if a solid surface (or surfaces), is selected

to correspond to an iso-value of ψ, it may not be possible to

specify a reference θ-surface,  a priori.  Thus some iteration

may be unavoidable. But under many circumstances it would be

advantageous to eliminate the influence of at least some of the

linking-neighbours, aE , aN, aH  and associated source terms, Pe,

Pn, Ph, etc, in Eqs. (7) and (8), so as to expedite the solution

efficiently.  As noted in Beale (1993a,b), there are many

problems involving multiply-connected geometry’s, where it is

desirable to keep active the influence of all 6 neighbours in the

linear algebraic equations.

One advantage of using the 
&

∇ ψ and 
&

∇θ  directions is that the

linking coefficients, thus generated, are guaranteed to be

positive (Patankar, 1980). Equations based on the product of

Eq. (2)  with the co-ordinate directions, may also prove worthy

of pursuit.  The precise form of improved schemes, and how

they may be generalised to apply to a variety of problems and

geometry’s, is the subject of ongoing work.  It is apparent that

substantially more research is required in the area of stream-

function generation, and in the subject of flow visualisation, in

general.





CONCLUSIONS

A method for generating and plotting stream-surfaces and

streamlines in three-dimensions has been described. The

method involves the global solution for two scalar fields, ψ and

θ, governed by a pair of coupled partial differential equations.

The specific approach employed involved the use of a finite-

volume method, based on the numerical solution of Eqs. (4) and

(5). This may be considered equivalent to the solution of Eqs.

(3) using a finite-difference approximation. Any other

numerical procedure, for example a finite-element analysis, may

be readily employed to compute stream functions in a similar

fashion.

Iso-values of ψ  and θ  may be used to plot stream-surfaces:

Stream-lines are obtained as the locus of intersection of stream-

surfaces.  The entire flow may be illustrated as a double contour

field over a range of values, ψ ψ ψmin max≤ ≤ and

θ θ θmin max≤ ≤ , the line density being proportional to the mass

flow rate.  Because the scheme is conservative, vortices appear

as simple closed loops, not as endless spirals. Existing

Lagrangian methods require the judicious choice of reference

points, in order to adequately describe the flow field. In the

method described in the paper, fields of values of ψ  and θ  are

known globally, and thus the user may rapidly obtain

information about the entire flow field in an automatic manner.
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