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Abstract

Background: In high density arrays, the identification of relevant genes for disease classification is complicated

by not only the curse of dimensionality but also the highly correlated nature of the array data. In this paper, we

are interested in the question of how many and which genes should be selected for a disease class prediction.

Our work consists of a Bayesian supervised statistical learning approach to refine gene signatures with a

regularization which penalizes for the correlation between the variables selected.

Results: Our simulation results show that we can most often recover the correct subset of genes that predict the

class as compared to other methods, even when accuracy and subset size remain the same. On real microarray

datasets, we show that our approach can refine gene signatures to obtain either the same or better predictive

performance than other existing methods with a smaller number of genes.

Conclusions: Our novel Bayesian approach includes a prior which penalizes highly correlated features in model

selection and is able to extract key genes in the highly correlated context of microarray data. The methodology

in the paper is described in the context of microarray data, but can be applied to any array data (such as micro

RNA, for example) as a first step towards predictive modeling of cancer pathways. A user-friendly software

implementation of the method is available.
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Background

High density arrays evaluate DNA, RNA and protein levels at the genome and proteome scale. These high

throughput experiments enable the identification of some biomarkers associated with disease. For example,

classification of gene expression profiles has the potential to help diagnosis, prognosis, to suggest targeted

treatment and to predict response to treatment. From the machine learning point of view, it is well known

that high throughput array data suffers from the curse of dimensionality where a relatively small number

of samples (in the tens) compared to the number of genes (in the tens of thousands), so that we face

over-fitting. Over-fitting occurs when a supervised learning algorithm adapts too well to the training data

and ends up performing well on training data but not on testing data. Feature selection is one of the ways

to counter over-fitting.

The goal of feature selection is to find genes (features) that best distinguish groups of instances (e.g.

disease vs. normal) to reduce the dimensionality of the dataset. Several univariate statistical methods (also

known as filter methods) including t-test, significance analysis of microarrays (SAM) [1], and analysis of

variance (ANOVA) have been applied to select features from microarray data. In classification

experiments, feature selection methods generally aim to identify relevant gene subsets to construct a

classifier with good performance [2]. Features are considered to be relevant when they can predict the

class: the strongly relevant features are indispensable to prediction and the weakly relevant features may

only sometimes contribute to prediction.

Filter methods evaluate feature subsets regardless of the specific learning algorithm used. These methods

ignore the fact that there may be redundant features (features that are highly correlated with each other

and as such one can be used to replace the other) and so do not seek to find a set of features which could

perform similarly with fewer variables while retaining the same predictive power [3]. For this reason

multivariate methods are more appropriate. Wrappers belong to the family of multivariate methods that

consider the learning algorithm as a black-box and use prediction accuracy to evaluate feature subsets [4].

Wrappers are more direct than filter methods but depend on the particular learning algorithm used.

Several search algorithms can be used such as forward selection (starting with an empty set and adding

features one by one) or backward elimination (starting with all features and removing them one by one).

From the classification standpoint, the simple näıve Bayes classifier [5] has been shown to perform at least

comparably to decision trees [6, 7]. A näıve Bayes classifier contains a directed edge between the class

variable and every other node and no edges between the other nodes. In other words, in näıve Bayes

classifiers, the following assumptions hold: all variables are relevant to classification and other variables
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than the class are independent of each other.

These assumptions are often violated in many application domains and several research directions have

been developed to relax either of those assumptions. One of these research direction is to allow the

addition of directed edges between attributes such as tree augmented näıve Bayes [8], Bayesian network

augmented näıve Bayes or general Bayesian network augmented näıve Bayes [9]. Another way to leverage

the näıve Bayes assumption is selective näıve Bayes [10], where the idea is to use only a subset of features

by ignoring features that reduce classification accuracy.

Within the selective näıve Bayes approaches, a maximum a posteriori (MAP) method was recently

presented by [11] to select the most probable subset of variables compliant with the näıve Bayes

assumption. This method introduces a compromise between the number of variables and the performance

of the classifier. Our work is closely related to the approach presented by [11] but different in that we

penalize for the correlation between variables in the model. We argue that this is important for high

density array datasets due to their highly correlated nature, as it is well-known that genes act together in

pathways [12]. We performed an extensive simulation study in order to evaluate the performance of our

algorithm and then applied our approach on real cancer datasets. Our results show that we obtain either

similar or better performance than other competing methods with a smaller number of genes.

Methods

The problem we face is the following: given K variables (e.g. gene expressions) and a class variable Y (e.g.

clinical outcome), we aim to select m variables that predict the response Y . In the microarray literature,

this set of m variables is called the gene signature. In this paper, we propose a two-step approach to

refining gene signatures. Specifically, our work consists of a Bayesian method for feature selection with

regularization which penalizes correlation between the variables selected. The method is developed in the

context of microarray data, but can be applied to any array data (such as micro RNA, for example), where

the variables (e.g. gene expressions) are continuous. First, from the thousands of genes present in an array,

we select the few (hundreds or less) of those associated with the class variable using some known feature

selection methods, or by using some existing gene signatures. From these pre-selected genes, we then use a

forward selection algorithm with a beam search in order to find the smallest and least correlated subset of

variables. This search is done using a cost function derived from the posterior likelihood of a näıve Bayes

classifier, including the probability of selecting a model as a prior which penalizes models containing highly

correlated variables.
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Model

Let (X1, . . . , XK) be the set of K gene expressions (assumed to be continuous) available for each of the N

biological samples (e.g. biopsies collected from patients), such that Xk = (Xk1, . . . , XkN ). Let

Y = (Y1, . . . , YN ) be the class variable one wants to predict, taking values in {1, 2}, assuming that

Y1, . . . , YN are independent. We also note ℳm the set of all possible sets of m gene expression variables

chosen without replacement among the K gene expression variables available. Finally, we note

ℳ = ∪K
m=1ℳm the set of all possible combinations of m variables chosen among K variables.

In the naive Bayes classifier setting, we note P (Xk∣Y = y) the conditional density distribution of Xk given

Y = y and we assume that X1, . . . , XK are all independent conditionally to the class variable Y .

For a given set of variables M ∈ ℳ, the posterior probability of Y is

P (Y = y∣M) =

N∏

i=1

[

P (Yi = yi)
∏

Xk∈M

P (Xki∣Yi = yi)

]

N∏

i=1

2∑

y=1

[

P (Yi = yi)
∏

Xk∈M

P (Xki∣Yi = yi)

]

We shall assume a prior distribution on the set of variables M included in the model. Specifically, if model

M is of size m (i.e. contains m variables), we set

P (M) = P (M ∣M ∈ ℳm)P (M ∈ ℳm),

where P (M ∈ ℳm) represents the probability to choose a set of variables of size m chosen among all the

possible models of any size.

In this work, we wish to weigh each probability P (M) according to the amount of correlation among the

variables present in M . In other words, if the variables from M are highly correlated, the probability to

select this particular set of variables is low, and vice versa. Specifically, we set the probability of selecting a

model M as an inverse function of Cormax(M), the maximum of all the pairwise correlations among the

variables of M :

P (M ∣M ∈ ℳm) =
1− ∣Cormax(M)∣

∑

M∈ℳm

(1− ∣Cormax(M)∣)
. (1)

In this paper, we do not claim to model the correlation structure of a signature although we acknowledge it

would be interesting to do that. Note that we only measure the magnitude of the correlations, and the

Cormax statistics was designed to answer this objective.
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To compute the denominator of equation (1), it is clear that enumerating all the possible models

containing the edge with maximum correlation would be computationally prohibitive. Instead, we can

notice that the number of models of size m with maximum correlation among all pairs of variables in the

model can be easily computed using the binomial coefficients from Pascal’s triangle. First, let �ij be the

correlation measure between (Xi, Xj), with i = 1, . . . ,K, j = 1, . . . ,K and i ∕= j. We also note the

corresponding ordered correlations �(1) ≥ �(2) ≥ . . . ≥ �(K(K−1)/2). Now, consider a Pascal triangle with

(K − 1) rows (recalling that the first row/column of Pascal triangle is noted row/column 0th) and let us

note Pqr the entry of the triangle corresponding to row q and column r, which corresponds to the

combination
(
q
r

)
. We now define the vector Z of size K(K − 1)/2 such that we repeat the triangle

coefficients of column j in reverse order by shifting one position each time:

Z = (P(K−1)(m−2), . . . , P0(m−2)
︸ ︷︷ ︸

, P(K−2)(m−2), . . . , P0(m−2)
︸ ︷︷ ︸

,

P(K−3)(m−2), . . . , P0(m−2)
︸ ︷︷ ︸

, . . . , P1(m−2), P0(m−2)
︸ ︷︷ ︸

, P0(m−2)
︸ ︷︷ ︸

)

Then, we have

∑

M∈ℳm

1− ∣Cormax(M)∣ =

K(K−1)/2
∑

l=1

(1− ∣�(l)∣)Zl,

where Zl is the lth element of Z. A simple example of the calculation above is presented in the Appendix.

Now that we have set the probability of selecting a particular model of size m, we can define the prior

probability of selecting a model containing m variables:

P (M ∈ ℳm)

= P (Choose m variables among K)

=

(
K +m− 1

m

)

(
2K

K

) , (2)

where variables are chosen with replacement according to the same argument as described in [11].

However, one can notice that the above probability is a monotonic function increasing with the model size

m. This implies that one would tend to prefer models with a large number of variables. In order to
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penalize for large models, we choose the following instead of (2)

P (M ∈ ℳm)

= P (Choose m variables among K-m)

=

(
2K −m− 1

K −m

)

(
2K

K

) , (3)

noting that (2) and (3) are symmetric. In the Bayesian framework, the posterior probability of a model M

is evaluated as the product of the prior and the likelihood. The log-posterior probability of a model M is

then

log [P (Y = y∣M)] + log [P (M ∣M ∈ ℳm)] + log [P (M ∈ ℳm)]

The middle part of this posterior probability penalizes for the correlation among variables in the model,

whereas the last part penalizes for the size of the model. This means that the posterior probability of a

model M decreases with the amount of correlation among variables in M and decreases with the number of

variables in M . In cases where data are highly correlated, as it is the case in microarray data, one may

want to give more weight to the correlation penalty, and by including a weight lambda, the penalty terms

become:

log [P (Y = y∣M)] + �log [P (M ∣M ∈ ℳm)] + log [P (M ∈ ℳm)] .

Results

In order to evaluate our approach, we first performed an extensive simulation study (section 3.1) and then

applied our approach on real datasets (section 3.2). The goal of the simulation is to evaluate the

performance of our method in the general context of feature selection with correlated variables, where we

simulate data such that only a subset of the variables predicts the class. For fair comparison, we compared

our approach with two other methods based on a näıve Bayes classifier: a näıve Bayes wrapper [4] and

the [11] method (our proposed strategy is a direct extension of their work). Note that the wrapper searches

for feature subsets by optimizing the classification accuracy and it is known as a very powerful multivariate

approach. For each method, we identified whether we could successfully retrieve the original subset of

variables that was simulated to predict the class. In such a way, we are able to evaluate our approach and

we shall show later that we can most often recover the correct subset of genes that predict the class, even
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when accuracy and subset size remain the same. The Weka machine learning tool [13] was used in all the

experiments described below.

Simulations

Our simulation study was designed such that only a subset of the variables simulated predicts the class

outcome. Our aim is to address the following questions: i) Can we select the relevant features; ii) Can we

remove redundant features; iii) Can we handle noisy data; iv) How does the number of features and

instances affect the results; v) What is the impact of the penalty weight � on the feature selection results.

For the simulations, we supposed that a subset of variables predicts the class according to a logistic model

and that other variables can be correlated with them. We simulated correlations among variables using a

network representation, as shown in Figure 1. Nodes without parents were simulated according to a

standardized normal distribution with mean 0. Children of those nodes were simulated using a linear

regression model containing their parents with coefficients uniformly randomly chosen between 1 and 5.

Finally, the class outcome Y in the network was simulated according to a logistic model containing only

the parents of Y . We varied the connectivity in the networks from sparse, full or half connection (with

number of edges in between sparse and full) for 2 sets of 5 and 10 variables respectively (see Figure 1).

In each of these 6 cases, we generated datasets varying sizes for training (see Table 1) and 1000 instances

for testing. We repeated this simulation over 100 iterations in each of the 12 situations. On each training

dataset, we performed a 10 fold cross-validation. We also compared the performance of our approach with

varying penalty weight lambda 1 and 100, denoted corr1 and corr100 respectively) with Boullé’s method

and the wrapper approach. Over the 100 iterations, we computed the number of times the correct subset of

variables was found.

Can we select the relevant features ?

First, consider the simple case of finding 2 variables out of 5 from the dataset A100-sparse. All methods

seem to perform similarly in terms of training accuracy (85.48% on average +/- 0.18% over the methods

considered), testing accuracy (84.87% on average +/- 0.08%) and number of selected variables (2.54 on

average +/- 0.14). However our approach finds the correct variables more often than the other methods

(Table 2).

7



Can we remove redundant features ?

When varying the connectivity with the network of 5 variables, our approach always outperforms the others

in terms of finding the correct variables. Increasing the penalty weight lambda improves the performance

(Table 2). Similarly, when varying the connectivity with the network of 10 variables (Table 3), we see that

it is more difficult with the small training set size to recover the correct variables (with 9 variables

recovered with half connectivity or 12 variables recovered with full connectivity for dataset C100) but

increasing the number of instances in training improves the performance of our approach (with 75 variables

recovered with half connectivity and 84 variables recovered with full connectivity for dataset C500).

Can we handle noisy data ?

We added noise to the training sets by randomly flipping the values of 5, 10 and 20% of the class variable.

Our approach outperforms the others but we note that the wrapper approach is fairly tolerant to noise

(Table 4).

How does the number of features and instances affect the results ?

By comparing tables 2 and 3, we can see that the number of features correlated with the subset of interest

greatly affects the methods ability to recover the correct subset of variables. This is true for every method.

However, with increasing number of instances, our approach can find the correct subset even though the

other compared methods did not.

What is the impact of the penalty weight � on the feature selection results ?

We performed the same experiments as previously with varying penalty weight � (1, 10, 100, 500 and 1000)

and found that increasing � generally improves the results. However, increasing � over 500 doesn’t seem to

make any difference in terms of the number of correct subsets recovered (results not shown).

Real datasets

We also applied the proposed method to real cancer datasets. In this case, gene expressions are usually

measured from biopsies collected on patients affected by a given type of cancer. For each real dataset, the

data we used was normalized according to the methods in the papers describing the datasets.

The class variable Y may represent the cancer prognostic, for example. Note that in this case, we do not

know the true set of prediction variables but can only measure classification performance. It is important
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to note that accuracy (ACC) is not the best measurement for model evaluation [14]. This is why we also

computed the Area Under the receiver operating Curve (AUC) [15], as there is often a trade-off between

misclassifications in terms of true positives (TP) or false positives (FP). We remind that the

Receiver-Operator Characteristic (ROC) curve compares sensitivity and specificity directly by plotting the

TP rate vs. FP rate (Fawcett, 2003). Computing the area under this curve (AUC) reduces the ROC

performance to a single scalar value and it represents the probability that the classifier will rank a randomly

chosen positive instance higher than a randomly chosen negative instance. We also measured sensitivity

(SENS), specificity (SPEC), Positive Predictive Value (PPV), which is the proportion of True Positives

(TP) over all the predicted positives, and Negative Predictive Value (NPV), which is the proportion of

True Negatives (TN) over all the predicted negatives. Since models must be evaluated carefully to prevent

selection bias [16], we used a 10 fold cross-validation (CV) strategy for feature selection. It is important to

apply CV not only on the creation of the prediction rule but also on the feature selection otherwise a bias

is introduced in the estimated error rates resulting in over-optimistic classification accuracy [17]. As a

consequence, results from many studies are controversial due to methodological flaws [18]. Therefore,

models must be evaluated carefully to prevent selection bias [16]. Nested CV is recommended, with an

inner CV loop to perform the tuning of the parameters and an outer CV to compute an estimate of the

error [19]. It is important to note that using nested CV, a different feature subset of variables is selected at

each iteration. To look at the stability of the feature subsets selected at each fold, we could use the

stability index proposed by [20]. However, this index is defined only to compare subsets of the same size,

which is not applicable in our case. In a similar spirit, we suggest instead to look at the stability of the

feature subsets by considering the number of folds where each variable was selected.

van’t Veer dataset

We first ran our algorithm on the 70 genes signature from the van’t Veer breast cancer dataset [21]. Van’t

Veer and colleagues investigated the problem of molecular classification of breast cancer and found a 70

genes profile also known as the Amsterdam signature to predict breast cancer prognosis. From the key

observation that 70 to 80% of patients receiving chemotherapy would have survived without it, [21] identify

a 70 genes signature to classify good prognosis (patients who remained free of disease for at least five

years) and poor prognosis (patients who developed distant metastases within five years). The van’t Veer

training set contains 78 patient samples of which 34 have poor prognosis and 44 have good prognosis. In a

follow-up study by [22], tumors of primary invasive breast carcinoma less than 5 cm in diameter from 295
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women were examined for validation. The cohort of 295 patients studied includes 61 of the 78 patients

from the previous study [21]. The Amsterdam signature assigns a given instance to good prognosis if this

instance has correlation coefficient greater than 0.4 with the 70 genes profile, and assigns the instance to

poor prognosis otherwise. For training, we used 77 samples instead of the original 78 as one sample had

44.5% missing value.

Note that we used preprocessed data for both van’t Veer and van de Vijver datasets where the fluorescence

intensities were quantified, corrected for background noise and normalized [21,22].

First, we evaluated the performance of each approach with a nested 10 fold CV looking at the classification

performance (note that results did not change for lambda greater than 10). We also looked at the genes

selected in each fold to evaluate the consistency of the nested CV. Figure 2 shows the frequency of the

genes found over the folds. It shows that our approach is more stable than the others.

We also evaluated the performance of the different methods on the independent test set from the van de

Vijver dataset [22]. We considered only the 234 new tumor samples from the van de Vijver dataset (not

included in the previous study) as the independent test set. Our approach finds 11 genes with at least 50%

confidence in nested 10 fold CV (that means genes that were found in at least 5 of the 10 folds). Even

though the wrapper and Boullé methods produce less number of genes, their sensitivity is significantly

lower than with our approach (Table 5). Furthermore, our accuracy on the independent test set is not

significantly different than the 70 genes in the Amsterdam signature (p = 0.6069 with McNemar test) but

used 11 genes instead of 70.

Pomeroy medulloblastoma outcome dataset

[23] investigated the response to treatment of medulloblastomas with gene expression profiles from

biopsies of 60 similarly treated patients and found a 100 genes signature.

Note that we used the preprocessed Pomeroy medulloblastoma dataset after thresholding, filtering and

rescaling as described in [23]. We applied our algorithm to the Pomeroy medulloblastoma training dataset

of 60 samples (39 survivors, 21 failures) to predict clinical outcome and evaluated the classification

performance using a 10 fold nested CV using the original 100 genes signature. In general our prediction is

slightly better than the prediction obtained using Pomeroy’s 100 genes but used only 11 genes (with at

least 50% confidence in nested 10 fold CV) instead of 100 (Table 6). Varying the penalty weight lambda

did not alter the results. As we did before, we also looked at the stability of the subset of genes selected in

each fold and found that our approach is more stable compared to others (Figure 3).
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Ramaswamy metastases dataset

[24] explored the gene expression profiles of human primary tumours and metastases. They found a 128

genes signature that best distinguish primary and metastatic carcinomas.

Note that we used the preprocessed Ramaswamy metastases dataset after rescaling as described in [24].

We applied our algorithm to the Ramaswamy training dataset (Ramaswamy et al., 2003) of 86 samples (64

tumors and 12 metastases of diverse origins) to predict metastases and evaluated the classification

performance using 10 fold nested CV (Table 7). Our prediction is similar to the prediction obtained using

Ramaswamy’s 128 genes but used only 8 genes (with at least 50% confidence in nested 10 fold CV) instead

of 128. The results did not change when increasing the penalty weight lambda past 100.

We also looked at the genes selected in each fold and found that our method is more stable compared to

others (Figure 7).

Discussion

The main question we explore in this paper is how many genes and which genes should be selected for class

prediction? We presented a Bayesian approach for feature selection with regularization to penalize for the

correlation among the variables in the model. We performed an extensive simulation study where we

simulated variables to predict the class in order to address the issues of redundancy, noise and scalability in

terms of number of features and number of instances. In such a way we were able to evaluate the

performance of our approach. We found that we can most often recover the correct genes even when the

accuracy and subset size is the same than compared to Boullé’s method and a wrapper approach. One of

the limitations however is that small sample size can severely affect the frequency of correct subsets found

highlighting the small sample size problem especially when the genes are highly correlated, as it is the case

in microarray data. This finding agrees with other reports including the comparison of the removal of

irrelevant and redundant features to binning [25]. It is worth noting that with enough data, unlike other

methods, our approach could recover correct subsets even in fully connected networks. For the choice of

the penalty weight, we tried various penalty weights and observed that the larger the penalty weight, the

better the performance. However, the performance of the method did not seem to change after � = 100.

We then applied our method on real cancer datasets (breast cancer, medulloblastoma and metastases

datasets) and showed that we can refine gene signatures with a smaller number of genes and similar or

better classification performance. We also showed that the results obtained were not very sensitive to the

tuning parameter �.
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From the biological standpoint, it is important to note that genes are known to interact with each other in

pathways that bring about a particular phenotype. Genes that act together in a pathway undergo gene

regulation and often have correlated expressions. If one wants to model gene interactions and infer

relationships between the genes, network-based approaches are currently developing into a fruitful area of

investigation. Nevertheless, the objective of our paper is not to reconstruct gene pathways derived from

their correlation structure. Instead, we penalize the gene correlations in order to identify the smallest set of

least correlated genes that can predict a given phenotype such as disease outcome. In this work, we ask

whether we can identify crucial genes that can predict a phenotype. The interest of finding a minimal set

of genes to predict the class by refining gene signatures is mainly to improve prediction with cost reduction

of screening tests for diagnosis, prognosis or treatment response of future new patients in the

pharmaceutical industry.

In the particular application to microarrays, how to estimate the true correlations between variables is

unclear. It is known [26] that normalization procedures destroy the correlation structure of the genes on

the array, and that we cannot estimate the true value of correlations between gene expressions. However,

as Qiu and colleagues (2005) mentioned in their paper: ”When analyzing real world biological data sets,

normalization procedures are unable to completely remove correlation between the test statistics. The

long-range correlation structure also persists in normalized data”. In this work, we do not claim to find a

unique set of genes to predict the class but that our algorithm can find one such set with least

mathematically correlated genes.

In future work, we aim to extend this idea to Bayesian networks which relax the assumption of variable

independence of näıve Bayes. In a Bayesian network, the Markov blanket of a class variable Y is the

minimal set of variables such that Y is independent of all other variables given its Markov blanket. The

Markov blanket of Y therefore probabilistically shields off Y from the rest of the network and would

provide a network approach towards the predictive modeling of cancer pathways.

Finally, note that a user-friendly software implementation of the method proposed in this paper is available.

Appendix

We provide here an example of how to compute the denominator of equation (1) in Section 2.1 when K = 5

and m = 3, i.e:

∑

M∈ℳm

(1− ∣Cormax(M)∣) (4)
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This is equivalent to compute the sum over all possible models of size 3 (chosen among 5 variables) of the

maximum of the pairwise correlations in each model. We denote the 5 variables {1, 2, 3, 4, 5} and assume

without loss of generality that the ordered correlations are

�12 ≥ �13 ≥ �14 ≥ �15 ≥ �23 ≥ �24 ≥ �25 ≥ �34 ≥ �35 ≥ �45. If one could list all possible models of size 3

chosen among 5 variables, equation (4) could be written as:

(1− ∣�12∣)× {# models of size 3 containing (1,2)}

+(1− ∣�13∣)× {# models of size 3 containing (1,3)}

+ . . .+ (1− ∣�45∣)× {# models of size 3 containing (4,5)}

To compute the formula above, we first construct a Pascal triangle with K − 1 = 4 rows:

1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

By looking at the (m− 2) = 1st column of the triangle (recalling that the first column is noted 0), we define

Z = (3, 2, 1, 0
︸ ︷︷ ︸

, 2, 1, 0
︸ ︷︷ ︸

, 1, 0
︸︷︷︸

, 0
︸︷︷︸

).

Then, Equation (4) is equal to:

K(K−1)/2
∑

l=1

(1− ∣�(l)∣)Zl

= 3(1− ∣�12∣) + 2(1− ∣�13∣) + 1(1− ∣�14∣) + . . .+ 0(1− ∣�45∣).
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Figures
Figure 1 - Networks used for simulations.

Figure 2 - Number of times genes were selected in 10 fold nested CV for van’t Veer breast cancer
dataset.

Figure 3 - Number of times genes were selected in 10 fold CV for Pomeroy medulloblastoma outcome
dataset.

Figure 4 - Number of times genes were selected in 10 fold CV for Ramaswamy metastases dataset.

Tables
Table 1 - Summary of simulated datasets

Network Total # variables predicting # instances
# variables the class in training dataset

Dataset A100 5 2 100
Dataset A500 5 2 500
Dataset C100 10 5 100
Dataset C500 10 5 500

Table 2 - Number of times (out of 100) the correct variables are found with each method for network
A

Dataset Boullé Wrapper Corr1 Corr100

A100-sparse 55 46 59 97
A100-half 43 40 47 98
A100-full 45 35 47 92

A500-sparse 64 37 64 97
A500-half 50 33 50 93
A500-full 48 30 55 96

Table 3 - Number of times (out of 100) the correct variables are found with each method for network
C

Dataset Boullé Wrapper Corr1 Corr100

C100-sparse 22 3 35 45
C100-half 5 2 5 12
C100-full 1 2 3 9

C500-sparse 35 13 52 98
C500-half 32 8 51 75
C500-full 34 5 52 84
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Table 4 - Number of times (out of 100) the correct variables are found with each method for network
C-sparse

Dataset Boullé Wrapper Corr1 Corr100

C100-noise0 22 3 35 45
C100-noise5 16 3 22 27
C100-noise10 7 3 19 32
C100-noise20 6 3 12 17
C500-noise0 35 13 52 98
C500-noise5 32 11 48 97
C500-noise10 22 12 35 87
C500-noise20 15 10 27 77

Table 5 - Classification performance of näıve Bayes algorithm on genes from van’t Veer breast cancer
dataset as training and independent test set of 234 samples for testing. The average number of genes
represents the average over the nested 10 fold CV.

Boulle Wrapper Corr1 Corr10 Amsterdam
signature

Average # of genes 6 8 10 11 70
ACC (%) 66.24 60.68 61.54 63.25 61.54
SENS (%) 69.57 65.22 73.91 81.16 86.96
SPEC (%) 64.85 58.79 56.36 55.76 50.91
PPV (%) 45.28 39.82 41.46 43.41 42.55
NPV (%) 83.59 80.17 83.78 87.62 90.32
AUC 0.6721 0.6200 0.6514 0.6846 0.6893

Table 6 - Classification performance of näıve Bayes algorithm with nested 10 fold CV obtained by
different methods on Pomeroy medulloblastoma outcome dataset. The average number of genes
represents the average over the nested 10 fold CV.

Pomeroy Wrapper Boulle corr1
signature

Average # of genes 100 11.5 4.8 11
ACC (%) 73.33 71.67 61.67 75.00
SENS (%) 76.92 74.36 76.92 82.05
SPEC (%) 66.67 66.67 33.33 61.90
PPV (%) 81.08 80.56 68.18 80.00
NPV (%) 60.87 58.33 43.75 65.00
AUC 0.8168 0.8180 0.7410 0.7800
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Table 7 - Classification performance of näıve Bayes algorithm with nested 10 fold CV obtained by
different methods on Ramaswamy metastases dataset

Ramaswamy Wrapper Boulle corr1 corr100
signature

# of genes 128 5.9 3 8.4 8
ACC (%) 90.79 89.47 77.63 89.47 90.79
SENS (%) 92.19 95.31 87.50 95.31 95.31
SPEC (%) 83.33 58.33 25.00 58.33 66.67
PPV (%) 96.72 92.42 86.15 92.42 93.85
NPV (%) 66.67 70.00 27.27 70.00 72.73
AUC 0.9297 0.8650 0.7410 0.8740 0.9210
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