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Abstract. Consider a scenario where one aims to learn models from dynamic 

and evolving data being characterized by very large fluctuations that are neither 

attributable to noise nor outliers. This may be the case, for instance, when 

predicting the potential future damages of earthquakes or oil spills, or when 

conducting financial data analysis. If follows that, in such a situation, the 

standard central limit theorem does not apply, since the associated Gaussian 

distribution exponentially suppresses large fluctuations.  In this paper, we 

present an analysis of data aggregation and correlation in such scenarios. To 

this end, we introduce the Lévy, or stable, distribution which is a generalization 

of the Gaussian distribution.  Our theoretical conclusions are illustrated with 

various simulations, as well as against a benchmarking financial database.  We 

show which specific strategies should be adopted for aggregation, depending on 

the stability exponent of the Lévy distribution.  Our results firstly show 

scenarios where it may be impossible to determine the mean and the standard 

deviation of an aggregate. Secondly, we discuss the case where an aggregate 

may have to be characterized with its largest fluctuations. Thirdly, we illustrate 

that the correlation in between two attributes may be underestimated if a 

Gaussian distribution is erroneously assumed. 

Keywords: Aggregation in Relational Learning, Correlation-based Analysis 

and Covariance, Lévy Distribution, Stable Distribution. 

1   Introduction 

Aggregation is an important step when pre-processing data, prior to building a data 
mining model. This step is crucial when considering complex data that represents 
interactions between several potentially heterogeneous entities. For instance, in social 
network analysis the frequency of a particular relationship is often represented by an 
aggregation based on the number of occurrences.  The same observation holds in 
multi-relational database mining and in spatial data exploration, where aggregation is 
needed to link multiple tables together [1, 2].  Similarly, data obtained from data 
streams are frequently summarized into manageable sized buckets or windows, prior to 
mining. 



Often, during a data mining exercise, it is implicitly assumed that large-scale data 
fluctuations must be either associated with noise or with outliers, or that a concept drift 
has occurred. The most striking consequence of such an assumption is that, once the 
noisy data and the outliers have been eliminated, the remaining data may be 
characterized in two ways. That is, firstly, their typical behaviour (i.e. their mean) and 
secondly, by the characteristic scale of their variations (i.e. their variance). Fluctuation 
above the characteristic scale is thus being assumed to be highly unlikely, or assumed 
to indicate that a model has become outdated.  However, there are many categories of 
data which are characterized by large-scale fluctuations. For instance, surprisingly, 
supermarket ketchup sales have been shown to be typified by such large-scale 
fluctuations [4]. Further, financial data and earthquake-related data are also examples 
of data exhibiting this behaviour [3].   This issue is highly relevant when aiming to 
build models that predict the potential damages caused by catastrophic events, such as 
financial market turbulences and tsunamis.  The large-scale fluctuations do not origin 
from noise or outliers, but constitute an intrinsic and distinctive feature of the data.  
Mathematically speaking, small fluctuations are modelled with the central limit 
theorem and the Gaussian distribution, while large fluctuations are modelled with the 
generalized central limit theorem and the Lévy distribution.  This paper studies the 
aggregation of data presenting large-scale fluctuations, to determine their properties, 
the best approaches for their aggregation and the impact of such behaviour on their 
correlation.  

Our main contributions are as follows. Firstly, we provide a theoretical analysis 
which shows the importance of taking the data distribution characteristics, when 
learning involves aggregation and correlation, into account. Secondly, we introduce the 
stable distribution as a mechanism to allow machine learning methods to compute 
meaningful aggregated information and to correctly evaluate the correlation when 
learning from data presenting large fluctuations.  Thirdly, we demonstrate the proposed 
method’s applicability in typical machine learning and data mining problems. Here, we 
discuss the analysis of financial data and relational learning involving aggregation. We 
also mention, in Section 4, that our approach is highly relevant for correlation-based 
privacy preservation data mining. 

This paper is organized as follows. In Section 2, we review the fundamental 
assumptions behind aggregation, namely the central limit theorem and the Gaussian 
distribution.  In Section 3, we introduce a more general distribution for the aggregate, 
the Lévy or stable distribution, for which the Gaussian distribution is a particular case.  
We explain how this distribution may be estimated from the empirical data and present 
some useful properties of the Lévy distribution.  Then, we study the rank ordering 
statistics of the Lévy distribution in order to determine if there are some dominant 
terms in the distribution.  We introduce the multivariate stable distribution in order to 
generalize, in Section 4, the concepts of covariance and correlation to stable 
distributions.  In Section 5, we present various simulations in order to illustrate the 
theoretical results obtained in the previous sections, as well as their consequences for 
aggregation.  We show that our methodology is applicable to real world financial data.  
The last section present our conclusions and directions for future work. 



2   Aggregation, Central Limit Theorem and Gaussian Distribution 

In this section, we review the basic assumptions on which aggregation is based.  
Despite the fact that these assumptions are quite general, they do not cover all possible 
data distributions, for instance, the Lévy distribution.  Importantly, as will be shown in 
Section 5, data associated with catastrophic events such as oil spill, stock market 
crashes and earthquakes often follows the Lévy distribution and need special care 
during data pre-processing and model building.  Consequently, we aim to understand 
their strengths as well as their limitations in order to be able to address them in the 
following sections.  Aggregation is based on the standard central limit theorem which 
may be stated as follow:  The sum of  N  normalized independent and identically 

distributed random variables of zero mean and finite variance 2s  is a random variable 
with a probability distribution function converging to the Gaussian distribution with 

variance 2s .  That means that aggregation, in the sense of a sum of real numbers, has a 
Gaussian distribution irrespectively of the original distribution of its individual data.  
This is a very powerful theorem because the Gaussian distribution may be 

characterized with solely two numbers: its mean m   and its variance 2s  which are the 

first two moments of the distribution.  In practice, this implies that an aggregation, 
such as a sum, may be fully characterized by its mean and its variance; this is why 
aggregation is so powerful.  All the other moments of the Gaussian distribution are 
equal to zero.  In the next section, we consider a generalization of the central limit 
theorem which requires the introduction of the Lévy or stable distribution. 

3   Aggregation with an Underlying Lévy Distribution or Stable 

Distribution 

In this section, we review the Lévy distribution, we show how it may be estimated 
from the underlying empirical data and we analyze its properties.  Finally, we 
introduce the multivariate Lévy distribution in order to extend the notions of 
covariance and correlation to data distributed according to a stable distribution.  One 

may associate to a probability distribution ( )L x  its Fourier transform or characteristic 

function ( )L k .  Stable or Lévy distributions are distributions for which the individual 

data as well as their sum are identically distributed [5].  This fact implies that the 
convolution of the individual data is equal to the distribution of the sum or, 
equivalently, that the characteristic function of the sum is equal to the product of their 
individual characteristic functions.  The Lévy distribution does not have a closed form 
and is more easily defined from its characteristic function: 
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The Lévy distribution is characterized by four parameters as opposed to the 

Gaussian distribution which is characterized by only two.  The parameters are the 

stability exponent a , the scale parameter g , the asymmetry parameter b  and the 

localisation parameter m .  While the tail of the Gaussian distribution is exponentially 

suppressed, the tail of the Lévy distribution decays as a power law (heavy tail) which 

depends on its stability exponent a : 
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Eq. (3) shows that extreme values are much more likely for the Lévy distribution 

that they are for the Gaussian distribution.  The reason being that the Gaussian 

distribution fluctuates around its mean, the scale of the fluctuations being 

characterized by its variance (the fluctuations are exponentially suppressed) while the 

Lévy distribution may produce fluctuations far beyond the scale parameter. This 

behaviour is due to the tail power decay law.  It should be noted that the Lévy 

distribution reduces to the Gaussian distribution when 2a =  and when the 

asymmetry parameter is equal to zero; then one has 2 1

2
s g= .  Finally, the moments 

of the Lévy distribution, ( )n
nm x P x dx

¥

-¥

= ò , may be finite if n a£ while they 

are infinite if n a> .  That means that a Lévy distribution with 1 2a£ <  has a 

finite mean, but an infinite variance while a distribution with 1a <  has both an 

infinite mean and an infinite variance.  As we will see in the following sections, these 

properties have tremendous consequences from the aggregation point of view.   

We explain how the parameters of the Lévy distribution may be estimated from the 

empirical data and how the validity of the Lévy distribution hypothesis may be 

asserted.  Although various approaches have been proposed in the literature, one of 

the most efficient is the one presented by Paulson, Holcomb and Leitch (PHL) [6] in 

which the following objective function is minimized against the parameters of the 

Lévy distribution 
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where the PHL-norm is defined as 
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Because the integration domain is not bounded, Eq. (5) is more readily solved with 
a Gauss-Hermite quadrature.   

We address the relative importance of the maximum with respect to the sum or 
aggregation, in order to demonstrate that the sum is potentially dominated by a small 



number of very large terms.  The expectation of this ratio, for any distribution, is given 
by 
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where 
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If the Lévy distribution is substituted in this expression, one obtains, for a stability 
parameter smaller than one, that the sum is largely dominated by a single term, the 
maximum.  In practice, that means that the aggregation must be performed in terms of 
the maximum and not in terms of the sum or the variance. For example, when aiming 
to build a data mining model to predict the damages associated with a tsunami or oil 
spill, which has been shown to follow a Lévy distribution, it is more appropriate to use 
the maximum values rather than the mean and the standard deviation.   

More insight about the Lévy distribution may be obtained from its rank ordering 
statistics  
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which gives the probability that the largest value of order n  be ny ; for instance, 

1
y  is the maximum.  From Eq. (8), it may be demonstrated that the maximum of 

likelihood for the statistics of order n  associated with the stable distribution is: 
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When the stability exponent is inferior to one, the rank ordering statistics exhibit a 
strong hierarchical behaviour up to the point that the ordering statistic of order one (the 
maximum) completely dominates over all the other rank ordering statistics.  This 
behaviour shall become more evident with the experimental results, presented in 
Section 5.  A practical consequence associated with this behaviour is that the 
aggregation should be based on the maximum value which completely dominates the 
ordering statistics; this is the case, for instance, when a Stock Market Index crashes.  
The information obtained from the rank ordering statistics may be exploited in order to 
group the elements of the hierarchy according to their scale, or order of magnitude.  
Then, it may be shown that each scale is characterized by its own Gaussian 
distribution.  Consequently, the Gaussian paradigm is applicable to the Lévy 
distribution in a multiscale framework and the Lévy distribution might be thought of as 
a multiscale generalization of the Gaussian distribution.  

We extend the Lévy distribution to the multivariate case, i.e. when we have more 
than one dimension or feature.  Such a multivariate distribution is required in order to 



study the correlation in between two stable stochastic variables.  The multivariate Lévy 
characteristic function [5] of dimension d is defined as follow 
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where as usual   ( )E   is the expectancy, where 
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and where the Euclidian inner product, the frequency vector and the stochastic data 
vector are defined as 
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As opposed to the univariate case, only two parameters are required: a stability 

exponent a  and a localisation vector μ .  The information about the scale and the 

asymmetry is encapsulated in ( )dsD  which is a measure, or a partition, defined on 

the hypersphere dS  (or the sphere in two dimensions).  In order to estimate such a 

distribution from the empirical data, we follow an approach introduced by Nolan et al. 

[7].  At first, the means and the stability exponents associated with each dimension 

are estimated independently.  Then, the estimated mean vector and the stability 

exponent of the multivariate distribution are given by: 
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The empirical multivariate characteristic function is obtained from a discrete 
formulation of Eq. (10).  The  discrete equation associated with the expectation is: 
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is the set of all the empirical multivariate data while the 

discrete equation associated with the right part of Eq. (10) is: 
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If a symmetric grid is assumed for both the hypersphere and the frequency domain, 

the weights on the hypersphere { }
1, ,i i n=

D


may be estimated from the following 

constrained objective function 
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and where 
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For instance, in two dimensions, the symmetric grid is equal to: 
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Then, we use this grid in order to define the generalization of the covariance for the 
stable distribution.   

4   Generalization of the Covariance: the Covariation 

We extend the concept of covariance to stable distributions.  This is important, in 
practice, because we often need to determine if two variables are correlated or not. 
This is the case, for instance, when aiming to protect data privacy, where the goal is to 
determine if an attribute may be inferred from another [8].  If the data are distributed 
according to a Lévy distribution, the concept of covariance must be generalized with 
the concept of covariation [9].  The covariation in between two stochastic stable 
variables is defined as 
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where the measure on the bidimensional sphere is associated with the bivariate 
distribution of the vector formed from the concatenation of the two stochastic variables 

involved in the convolution ( ) T

1 2,ds X Xé ùD  = ë ûX .   

Such a measure may be estimated with the method presented in the previous 

section and with the grid introduced in Eq. (19).  From the covariation, it is possible 

to define a norm which is also related to the scale parameter Xg  of the variable:  
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The covariation reduces to the covariance when the distribution is Gaussian, i.e. 
when the stability exponent is equal to two and the asymmetry is zero.  The correlation 

belongs to the interval 0,1é ùë û where zero indicates an absence of correlation while the 

unity indicates a strong correlation.  As shown in the next section, the covariance and 
the correlation tend to be much stronger if the stability exponent is less than two.  



Practically, if one incorrectly assumes a Gaussian distribution from the start, one may 
strongly underestimate the real correlation between two variables.  Such an 
underestimation might have severe consequences [10].  For instance, consider the 
scenario where private attributes should be identified and protected.  Suppose that an 
absence of correlation between two attributes is assumed, due to an erroneous 
assumption that the data distribution is Gaussian.  However, in reality, these two 
attributes may be highly correlated.  This incorrect assumption would result in an 
absence of protection for sensitive attributes, when they do indeed need to be protected 
against induced attacks. 

5   Experimental Results 

     In this section, we present various simulations and experiments against real-world 

financial databases which illustrate our previous theoretical results.  All experiments 

were performed using Mathematica 8.0 on a Dell Precision M6400.  In the following, 

one should keep in mind that 2a = corresponds to a Gaussian distribution.   

Table 1.  Estimation of the exponent  of the Lévy distributions associated with various Stock 

Exchange.  Excerpted from [11]. 

Index Period a  

FTA W Jap 86.01-93.09 1.808 

TOPIX 75.01-91.02 1.519 

MSCI Japan Net 80.01-93.09 1.463 

Nikkei 225 80.01-93.09 1.626 

 

     We analyze some results on financial data as reported by Lévy Véhel and 

Walter (LVW) [11] as well as from the PKDD 1999 discovery challenge financial 

database [12] in section 5.1.  The importance of stable distribution is not only 

theoretical; as a matter of fact, it has far reaching consequences for financial data.  

With the pioneer work of Mandelbrot, it became increasingly apparent that financial 

data may be characterized with stable distributions.  For instance, let us consider 

Table 1 which shows the results obtained for various Stock Market Indexes in Europe 

and in Japan by LVW [11].  The stability exponent was estimated with the method 

presented in Section 3 and the null hypothesis was asserted with the Kolmogorov-

Smirnov test.  As shown by the data, all these indexes clearly have a stable 

distribution (confidence level of 99%) and the value of the stability exponent is 

typically in between 1.6 and 1.8, which is clearly not in the Gaussian regime. 

Table 2.  Covariation of two shares (Thompson and Michelin) and the CAC 40 Index for 
various values of the stability exponent.    and the acquisition period is from 87.07.09 to 

95.05.31.  Excerpted from [11]. 

1 2
,X X

a
     a

2.0 1.7 1.5 1.3 

THOMPSON, CAC 40 0.042 0.157 0.390 0.975 

MICHELIN, CAC 40 0.042 0.159 0.326 0.993 

CAC 40, CAC 40 0.036 0.128 0.300 0.750 

 



     Table 2 shows the covariations in between the Michelin and the Thompson 

titles as well as with the CAC 40 Stock Exchange Index.  The covariations may be 

estimated with the method presented in Sections 4.  The calculation was repeated for 

various values of the stability exponent; the real one being around 1.7.  Table 2 shows 

that, if a Gaussian distribution is incorrectly assumed, the correlation (covariation) 

tends to be underestimated.  For instance, the covariation in between the Michelin 

share and the CAC 40 Index is 0.042 with the false assumption of a Gaussian 

distribution for the data while in reality it is 0.159 for a stability exponent of 1.7. 

Here, the covariation tends to be stronger, when the stability exponent is smaller. 

 

 

Fig. 1.  Distribution of the Balance attribute (PKDD 1999 discovery challenge financial 

database)  in blue and of the best fitting normal distribution in red; the later is obtained with the 

maximum of likelihood method. 

5.1   PKDD 1999 Discovery Challenge Financial Database 

Next, we consider the PKDD 1999 discovery challenge financial database, which 

has been widely used as a benchmark in the multi-relational classification domain. 

This database was offered by a Czech bank and contains data describing the level of 

risk of a customer to default on a loan [12]. The database consists of eight tables. The 

Account table contains the account number, as well as the information regarding the 

district a person falls in and the frequency of payment.  Other tables include the 

Demographic profile, the client’s Disposition in terms of type, Credit Card 

information and Client descriptions, including gender and the location in which they 

reside. The Order table details the number of money transfers and the Loan table 

describes the payments of loans. Very often, this database is used to classify whether 

a Loan is at risk or not.  

We turn our attention to the Transaction table, which describes all transactions 

against an account. This table contains, amongst others, the Balance attribute that 

contains 54694 entries. We apply a number of feature selection algorithms to this 

database, including the Gain ratio, Chi Squared and Correlation based Feature 

Selection (CFS) measures [8]. Our results indicate that the Balance attribute is always 



selected as being one of the features that are strongly related to the outcome of a 

Loan, with and without aggregation.  

     Figure 1 shows the distribution of the Balance attribute as well as the best 

fitting normal distribution.  The parameters of the normal distribution are obtained 

with the maximum likelihood method.  It follows that the normal distribution offers a 

poor fit to the Balance attribute distribution. We attempted to fit numerous 

distributions to the Balance such as the Student distribution, the Weibull distribution, 

amongst others. However, the best fit was obtained with the stable distribution, as 

illustrated in Fig. 2.  The parameters corresponding to this distribution, which were 

obtained with the maximum likelihood method, are shown in Table 3.  The tails of the 

Balance attribute distribution and the associated stable distribution are shown in Fig. 

3.  The tail of the fitted stable distribution seems thicker than the tail of the Balance 

attribute distribution: nevertheless, they both have the same order of magnitude.  As 

may be observed from Fig. 3, the statistics of the tail is quite poor. This means that, in 

order to draw definitive conclusions about the tails, a database with more entries 

would be required. 

 

Fig. 2.  Distribution of the Balance attribute in blue and of the best fitting stable distribution in 

red; the later is obtained with the maximum of  likelihood method.  

     Table 4 shows the mean, the standard deviation, the skewness and the kurtosis 

calculated from the normal and the stable distributions associated with the Balance 

attribute distribution.  Since the stability exponent a  is smaller than two, it is not 

possible to evaluate the standard deviation and the skewness from the stable 

distribution, because the statistical moments needed for the calculation are infinite.   

 
Fig 3.  Tail of the Balance attribute distribution in blue and of the stable distribution in red. 



TABLE 3.  Parameters of the fitted stable distribution associated with the Balance attribute. 
a  b  m g
1.6232 1.0 47321.3 14013.9 

 

Nevertheless, the parameters of the stable distribution provide a measure of the 

standard deviation and of the skewness through the scale parameter g  and b the 

asymmetry parameter.  This implies that, when the underlying distribution is stable, 

the scale and the asymmetry should not be estimated directly from the data, but from 

the parameters of the fitted distribution. 

Table 4.  Mean, standard  deviation, skewness and kurtosis as obtained from the fitted normal 
and stable distributions associated with the Balance attribute. 

Distribution Mean Std Dev. Skewness Kurtosis 

Normal 44534.2 24109.7 0 0 

Stable 47321.3 ∞ ∞ ∞ 
 

     In order to further stress the importance of not directly estimating these 

parameters from the data, we have generated three data sets. These datasets consisted 

of 54694 entries as in the original bank database with the stable distribution 

parameterized by Table 4.  Table 5 shows the results.  Since the stability exponent is 

greater than one (1.62), the estimation of the mean from the data is consistent from 

one set to the next.  However, because the stability exponent is less than two (1.62), it 

is not possible to estimate any moment greater or equal than two which means that the 

standard deviation, the skewness and the kurtosis are not consistent from one 

synthetic data set to the next.  In other words, any measure based on the statistical 

moments greater or equal than two is a random number which will vary from one 

realization of the data set to the other as shown in Table 5. These findings suggest that 

when correlation evaluation is sensitive, say in privacy preservation learning, one 

should carefully select the right equation for correlation computation [8]. 

Table 5.  Mean, standard deviation, skewness and kurtosis as obtained from data generated 
from the fitted stable distribution associated with the Balance attribute.  Each  generated data 

set consists of 54694 entries. 

Stable Mean Std Dev. Skewness Kurtosis 

1 47419.2 99020.1 145.408 27467.7 

2 47996.1 158948 168.972 33756.5 

3 47041.7 46051.2 18.1492 677.382 

6   Conclusions 

        The development of new data mining models for catastrophic event prediction, 

such as the damages caused by oil spills, stock market crashes, tsunamis and other 

natural disasters, are an important and urgent research topic.  In this communication, 

we have analyzed data aggregation and the data covariance (covariation), of such 

data, where the underlying distributions are not Gaussian, but stable. We have shown 

that such data may be aggregated with the mean, but not with the variance. This is due 



to the fact that the variance becomes infinite and its estimate tends to fluctuate 

randomly when evaluated on a finite size aggregate. We have also shown that the 

estimation of the mean converges rather slowly when the stability exponent is small. 

In this case, both the mean and the variance are infinite and their estimate on a finite 

size aggregate tends to fluctuate randomly.  In these circumstances, the aggregate is 

better characterized with its maximum which tends to dominate by many orders of 

magnitude over the other elements of the aggregate, both from a sum and rank 

ordering statistics point of view.  We have shown that financial data may be 

characterized with stable distributions with a stability exponent typically around 1.7.  

The calculation of the covariations in between Stocks and Stock Market Indexes has 

shown that the covariance (covariation) tends to be underestimated if a Gaussian 

distribution is wrongly assumed.  We also shown that, for a well-known 

benchmarking financial database, some attribute values follow a stable distribution 

rather than the normal distribution.  This work thus has implications when pre-

processing and mining many highly imbalanced data that are typified with large-scale 

fluctuations, such as earthquake and oil spill data, which would be worth investigating 

further. We also mentioned, in Section 4, that our approach is highly relevant for 

correlation-based privacy preservation data mining. We aim to explore this research 

issue in our future work. 
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