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Landmine Detection Using an Autonomous Terrain Scanning Robot 
H. Najjaran, N. Kircanski, A. A. Goldenberg 

Abstract 

This paper describes the software of a terrain scanning robot capable of autonomously manipulating 

a typical handheld detector for remote sensing of buried landmines in a manner similar to a human 

operator. The autonomous manipulation of the detector on unknown terrain requires an online terrain 

map to generate an obstacle free path for the end effector of the robot. The software includes a 

twofold process of map building and path planning that is implemented into a real-time software 

platform to take place in parallel to the other functions of the robot. 

Map building features a distributed sensor fusion system to tackle the uncertainties associated with 

the sensor data. It provides local terrain maps by fusing the redundant measurements and 

complementary data obtained from competitive rangefinders and joint position sensors, respectively. 

The fusion takes place in a multi-step data processing module that includes a batch processing filter, a 

static filter, and a fuzzy adaptive Kalman filter. The latter requires the dynamic model of the process 

so that a stochastic model is introduced for the terrain undulations. An important parameter of the 

model, which significantly influences the output of the filter, is the standard deviation of the 

probability distribution of the process disturbances. A systematic fuzzy modeling technique is used to 

determine the standard deviation based on the terrain type and to adapt the filter, accordingly. The 

outlier rejection is carried out using the Mahalanobis distance between the estimated states of the 

system and the new measurements. 

Path planning is carried out based on the terrain map to move the detector at a constant distance and 

parallel to the ground. Unlike the traditional methods, the path is generated in the non-Cartesian 

coordinate frame of the sensors to avoid a great deal of transformations involved in reproducing the 

terrain map in a Cartesian coordinate frame. 

Keywords: Mine detection, autonomous mobile manipulator, terrain scanning, range image, map 

building, path planning, dynamic modeling, fuzzy terrain typing, and fuzzy adaptive Kalman filter 

1 Introduction 

In recent years, the significance of low cost and sustainable technologies for mine detection and 

mine neutralization has been increasingly recognized by many organizations and universities in 

different countries. The current solution for removing landmines from civilian areas is the use of 

trained technicians who manually search for buried objects using a prodder and a metal detector. This 

process is rather slow (20-50 square meters per hour), dangerous, and expensive; thus, investing in a 

mechanized solution will be both humane and economic. Since the risk of mine clearance missions is 
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primarily related to the lack of knowledge about the location of the mines, researchers have mostly 

focused on finding a mechanized solution for mine detection [1-4]. When the mines are located, 

neutralization may become a less hazardous procedure. Mine neutralization is outside the scope of 

this research. 

There are two methods for detecting hidden landmines: prodding and remote sensing. In prodding, a 

probe is gently inserted into soil to examine the existence of a buried object. Although there have 

been several attempts to mechanize prodding, a practical solution is still unavailable. Dawson et al., 

propose the use of a sharpened probe but do not describe the approach in detail [5]. Shahri et al., 

describe a mechatronics solution for measuring the stiffness of soil using a bayonet attached to a 

dexterous manipulator [6]. The most recent work on this method proposes the use of a robot to insert 

a comblike series of ultrasonically vibrating probes into the soil [7]. The probes are in the form of 

hollow tubes that not only measure the stiffness of the soil but also scratch the surface of the buried 

objects and transfer the dust to a miniature onboard mass spectrometer to determine whether the 

surface is a plastic, metal, wood, or other material that can be used in landmines. Remote sensing is 

the other methodology in which the presence of an unexpected object on or underneath the surface is 

examined using sensors such as electromagnetic induction sensors (EMI) [8-10], X ray backscatter 

radiography [11], ground penetrating radar (GPR) [8,10,12], infrared cameras (IR) [13], and thermal 

neutron analyzers. Although prodding may yield more reliable results, remote sensing is considered 

more appropriate for robotics applications because it is significantly faster, safer, and more attainable. 

Meanwhile, the reliability of remote sensing may be improved by fusing synergistic measurements of 

different types of detectors [8,10,14,15].  

Recent advances in the development of accurate and reliable sensors for mine detection are so 

promising that researchers have become interested in the development of unmanned ground vehicles 

and robotic systems that can carry the sensors with the minimum interaction of human operators. 

There are different system configurations available for both handheld and vehicle-mounted sensors. 

Typically, the vehicles are equipped with large GPR and IR systems and a series of metal detectors to 

search for antitank landmines buried in roads and broad fields [16]. These are usually used in military 

missions to provide a safe route through minefields. On the other hand, robots are more suitable for 

off-road missions and antipersonnel unexploded ordnance (UXO) detection. Specifically, robots are 

useful for civilian mine clearance missions whose reliability must be above 99.6% as defined in the 

UN agenda. 

Manipulated by a robotic arm that is adequate in term of the degrees of freedom, one or a group of 

the sensors can precisely scan the terrain and provide sufficient information to determine the 

existence of an anomaly in the soil. Since most landmines are made of metal or at least have a piece 
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of metal (e.g., a detonator), metal detectors are commonly used to detect landmines. A metal detector 

is essentially a coil that generates a pulsing electromagnetic field and measures the eddy currents 

induced by a metal object moving in the field [17]. The performance and reliability of a metal 

detector, determined by signal to noise ratio, largely depends on the distance, orientation, size, and 

scanning speed of the sensor. Although other types of sensors may adopt different sensing methods, 

they all have common requirements, as far as the robotic manipulation is concerned. For example, a 

GPR consists of a radio transmitter and receiver that are connected to a pair of antennas coupled to 

the ground (host dirt).  The transmitted signal penetrates to the ground and is reflected from any 

object that has different electromagnetic properties than the host dirt. The antennas are in the form of 

25×25 cm plates that must face the ground for scanning [18]. Therefore, remote sensing requires a 

terrain scanning robot capable of moving relatively large sensors at a constant speed while 

maintaining the sensor at a constant distance from the ground and parallel to the surface (the detector 

plate normal must be parallel to the local terrain normal). Such manipulation in an unstructured 

environment can be a difficult task for a mobile robot.  

This research has focused on the development of a generic algorithm for terrain modeling and path 

planning of a terrain scanning robot to carry out such manipulation autonomously and in real time. 

The result of the research has been implemented into a mine detector robot named MR-2 [1,19,20]. 

MR-2 is a dual-arm mobile manipulator capable of autonomously scanning unstructured terrain using 

a typical mine detector in a manner similar to a human operator. The mine detector closely follows 

terrain undulations using an articulated robotic arm mounted on a mobile robot platform. The 

autonomous motion may be synthesized based on a 3D model of the terrain that is developed in real 

time using rangefinders carried by another articulated arm, also mounted on the platform of the robot. 

MR-2 has been manufactured by Engineering Services Inc. (ESI) in a project supported by Defence 

R&D Canada-Suffield (DRDC Suffield). 

This paper is organized as follows: the geometry of the robot is described in Section 2. The path 

planning and map building procedures of the robot are explained in Section 3 and Section 4, 

respectively. Finally, Section 5 concludes with a list of the achievements of this research and 

development project. 

2 Terrain Scanning Robot 

The robot is an off-road mobile manipulator that is used to scan unstructured terrain with 

vegetation, stones, and various obstacles and locate buried landmines using an off-the-shelf handheld 

mine detector such as a metal detector or GPR. It consists of a dual-arm manipulator and a 

teleopertaed mobile platform. The manipulator includes a mine detector (MD) arm that autonomously 
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manipulates a mine detector to follow the undulations of the terrain at a close distance (30-100 mm 

depending on the type of the mine detector). The autonomous scanning is provided by real-time path 

planning based on a terrain map. The map is generated online based on the range measurements 

acquired from a scanning laser rangefinder and two ultrasonic rangefinders. The rangefinders are 

mounted on the second arm (sensor arm) that moves on top of the MD arm. The manipulator is 

carried by a teleopertaed vehicle (Figure 1). 

The MD arm is an articulated arm with five degrees of freedom. Four degrees of freedom are 

sufficient for moving the mine detector along an arc (i.e., a side-to-side scan) and maintaining it at a 

constant distance from the ground and parallel to the terrain profile. The fifth degree of freedom 

corresponds to a linear motion along the mobile platform in order to advance the arm when the 

platform is stationary. Figure 2 shows the top view and side view of the MD arm. The scanning speed 

of the MD arm remains constant during scanning, but it can be adjusted to maximize the performance 

of the mine detector. The maximum tracking error of manipulator is ±3 mm for a relatively smooth 

surface, but it may be increased for rugged terrain with sharp undulations. 

The sensor arm carries multiple rangefinders including a scanning laser rangefinder, two ultrasonic 

rangefinders mounted vertically, and two rangefinders mounted horizontally. The measurements of 

the latter are used to prevent the collision of the arms with side walls when the robot is scanning 

hallways and narrow passages. The laser rangefinder and the two vertical ultrasonic rangefinders 

measure the distance of the sensors from the ground. The measurements are fused to the coordinates 

of the sensors, obtained from the joint position sensors, to generate a raster range image that is the 

representation of the terrain in the sensor coordinate frame. The range image is then used to derive a 

terrain map that is a required for path planning and motion execution of the MD arm. The coordinates 

of the range image are shown in Figure 3, where ρ  is the range value, θ  is the angular position of 

the sensor arm, and ϕ  is the angular position of the mirror of the laser scanner. 

3 Path planning 

The autonomy of mobile robots and manipulators requires the computation of an obstacle free path 

that can lead the robot or its end effector to desired points in the task space. The path must satisfy the 

constraints imposed by the environment, physical requirements, hardware and software limitations, 

and more specific requirements such as a payload, speed, and acceleration. Path planning is a 

procedure to determine the desired joint coordinates of the robot when the end effector moves along a 

desired trajectory. The desired joint coordinates are used to define the set points for the motion 

controller of the robot. 
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Path planning in an unstructured environment is carried out based on the model of the environment. 

The model usually encompasses 3D representations of the obstacles and undulations of the task space. 

Specifically, the terrain scanning robot needs a 3D terrain map that represents the coordinates of the 

obstacles and terrain undulations. The terrain map may be generated either offline or online based on 

the information obtained from sensor data or interpretation procedures. An offline map can only 

include a priori information previously captured from the environment so that it lacks the spontaneous 

information required in modeling of the phenomena that change continuously. The problem will 

become more significant in natural environments where there is an extremely dynamic situation, due 

to the fact that not only does the robot move but also the environment is subject to change. Thus, the 

terrain scanning robot requires online map building that is capable of sensing the environment and 

updating the terrain map in real time. 

Path planning begins with the determination of a path for the end effector, and then the paths of the 

other joints are determined based on the path of the end effector using the inverse kinematics method. 

The kinematics chain of the robot relates the coordinates of the end effector to the coordinates of the 

other joints, but a geometrical model of the end effector is required to relate the coordinates of the end 

effector to the terrain map. In other words, the model acts as an interface between the task space and 

robot joint space to transform the information required for the computation of the joint coordinates 

(Figure 4). This model should comply with the number of degrees of freedom of the robot. For 

example, the terrain scanning robot has five degrees of freedom, so the model of the end effector 

includes five coordinates (i.e., three positions and two orientations). The number of degrees of 

freedom of the terrain scanning robot is sufficient to maintain a plate (e.g., a metal detector) at a 

desired position and orientation.  

Another important point is that the map and the model of the end effector must be expressed in a 

common coordinate frame. The choice of the coordinate frame is determined by considering the total 

processing load required for the transformations involved. Traditionally, the path is generated in 

Cartesian coordinate frame so that it requires an elevation map (i.e., a map represented a Cartesian 

coordinate frame). The derivation of the elevation map from a range image, represented in the sensor 

coordinate frame, involves nonlinear transformations and complicated algorithms that impact the 

efficiency of the terrain mapping and path planning procedures. In general terms, for an observer 

moving with the end effector, which is smaller than the scene of interest, it would be more efficient to 

transform the model of the end effector to the observer’s coordinate frame. In our approach, the 

model of the end effector is obtained in the image coordinate frame so that the terrain map and the 

range image are identical; and hence the coordinate transformation step is omitted. However, the 
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coordinates of the end effector must be defined in the image coordinate frame so that the conventional 

kinematics models cannot be used.  

The end effector of the terrain scanning robot is a plate, so the position and orientation of the end 

effector can be specified by one point and two orthogonal vectors in the image coordinate frame. 

Since the image coordinate frame rotates with the sensor arm, it is proposed to use a pair of rotating 

orthogonal tangents (Figure 5). The range vector ρ  and its projection onto the horizontal plane r
r

 

rotate about the z  axis, and so do the tangent vectors rzê  and zeθ̂ . The tangent vector rzê  is defined 

in the rz  plane and given by,  
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The other tangent vector zeθ̂  is perpendicular to rzê  and it is obtained from θddz  that is 

calculated in the map filtering process explained in Section 4. The two tangent vectors rzê  and zeθ̂  

can be directly obtained from the range image. The orientation of the local normal of the terrain is the 

cross product of the two tangent vectors, zrz een θ̂ˆˆ ×= . The position and orientation of the detector 

plate are calculated such that the normal vector of the plate is aligned with the normal vector of the 

terrain, and then the joint coordinates of the robot are determined using the inverse kinematics 

method. 

4 Map Building 

Map building involves a dynamic modeling process to generate the terrain maps in real-time. A 

dynamic model is developed based on observations obtained instantaneously from either different 

sensing systems or different interpretation procedures. Thus, dynamic modeling may be defined as the 

process of maintaining a description of the external environment over time. Since, in practice, 

preparing a global model of the environment requires an extremely fast and complete sensing ability, 

it is usually preferable to build local models from a set of partial sources of information and integrate 

them into a dynamic model assuming that the environment can change slightly between two 

observations (i.e., relative continuity). A general framework for integrating the local observations into 

a dynamic model may include three phases: “predict”, “match”, and “update” [21]. First, the current 

state of the model is used to predict the state of the external world at the time when the next 

observation is acquired. Second, the predicted and observed states of the system are compared using 
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appropriate mathematical measures. Finally, the accepted observations are integrated to update the 

model. 

The map building of the terrain scanning robot is a dynamic modeling process. It consists of image 

registration, map filtering, and outlier rejection. Image registration provides the local observations in 

the form of laser scan lines; map filtering updates the model of the terrain, and outlier rejection 

determines the discrepancy between the observation and the predicted states obtained from the 

updated model.  

Figure 6 portrays the image registration and filtering of the map building process of the terrain 

scanning robot. The process features a real-time distributed sensor-fusion algorithm. Image 

registration produces the scan lines by acquiring and fusing the point coordinates obtained from 

complementary sensors, which are the rangefinders and joint position sensors. Map filtering 

integrates the scan lines into the terrain map overtime using a series of filters. Map filtering also fuses 

other local measurements including the ultrasonic range measurements and the turret angle at the time 

when the scan line is registered. Map filtering incorporates redundant data of multiple sensors to deal 

with the uncertainties associated with the sensor data and inexact modeling. 

In order to test the significance of a new measurement, the distance between the measurement at 

position iθ  and the predicted value is compared using a “test of hypothesis” such as Pitman’s 

closeness test. The simplest definition for the distance is taken from the Euclidean distance that is the 

straight distance between two quantities. Although the computation of the Euclidean distance is 

simple, it may not be sufficient for our application because the discrepancy between the 

measurements and the predicted values are naturally larger for a steep surface than a flat surface. 

Thus, the possibility of rejecting a true measurement (i.e., type II error) is rather high while using the 

Euclidian distance. Therefore, it is required to use a criterion that not only determines the discrepancy 

between the range measurements and the predicted values but also takes into account the 

characteristics of the terrain. The software of the terrain scanning robot uses the Mahalanobis distance 

[22-24] that is the distance between two quantities normalized with their error covariance. 

Image registration and map filtering are the main parts of the software, so they are elaborated in 

Section 4.1 and 4.2. Section 4.3 introduces another feature of the software, “a fuzzy adaptive Kalman 

filter” that enhances the performance and robustness of terrain tracking, significantly. 

4.1 Image Registration 

The range image is a 3D-raster image consisting of a number of laser spots located on several 

concentric scan lines (Figure 7). Each scan line is associated with an angular position of the sensor 

arm. Given the angular position of the sensor arm, each spot is specified by a laser mirror angle and a 
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range value. Neither the scan lines nor the spots are necessarily equidistant. The range is measured 

using an AMCW laser sensor that has been equipped with a rotating mirror for scanning. A DC motor 

rotates the mirror at 1000-2500 RPM, depending on the sampling rate of the rangefinder, and an 

optical encoder measures the mirror angle. 

The coordinates of the spots and scan lines are stored in two databases called “Map-Data” and 

“Move-Table”, respectively. The former includes the range values and corresponding mirror angles of 

the spots. The latter memorizes the scan line data including the status of the data, time, joint 

coordinates at the time when the scan takes place, and the primary key of the “Move-Table” database, 

which is an index referring to the part of the “Map-Data” database that maintains the laser spots of the 

current scan line (Figure 8). 

Figure 9 represents the flowchart of the image registration procedure. The image registration 

procedure involves the fusion of the range measurements acquired from a range sensing system and 

the corresponding coordinates of the sensing system. The range image is obtained with respect to the 

coordinate frame of the rangefinder that is usually a non-Cartesian coordinate frame (e.g., spherical, 

cylindrical, etc.). A range image may consist of several scan lines; however, the local range images 

are as concise as one scan line in the dynamic modeling process to allow the terrain scanning robot to 

operate in real time. Although it may not be used in the operation of the robot, buffering the local 

range images yields a global image that, when transformed into the Cartesian coordinate frame using 

the locus method [19,25], represents a useful 3D terrain map for visualization. 

4.2 Map Filtering 

Map filtering is a multiple step process to update the dynamic model of the terrain in real time. The 

main purpose of filtering is to obtain a better estimate of the states of the system based on a series of 

uncertain measurements acquired from different sensors and over time. Map filtering includes two 

types of data processing: batch processing and recursive processing. The distinction lies in the 

availability of the data in the measurement vector. In batch processing, the entire measurement vector 

is available and used in the estimation. In recursive processing, on the other hand, the estimate is 

updated based on the part of the measurement vector that is currently available, and then the process 

is repeated until all measurements are used. Map filtering is carried out in three steps: 

1) A preliminary estimate of the range ρ  and the longitudinal slope ϕρ dd  (the change of the 

range with respect to the change of the scanning coordinate along the sensor arm) are obtained 

on a scan line. Since the data of a scan line is downloaded from the embedded memory of the 

sensor, all measurements are used by a batch processing estimator (i.e., the least squares 

method).  
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2) The measurements of two ultrasonic rangefinders are fused to the preliminary estimate of the 

range using a static filter provided that the probability distribution function of the laser and 

ultrasonic sensors are known. The optimal estimate of the range and the joint probability 

distribution of all measurements are obtained based on all data acquired from laser and 

ultrasonic rangefinders at the time when the scan line is obtained. The static filter can be used 

in a batch or recursive manner. 

3) To this point, the states of the system are estimated statically, so the filters cannot maintain the 

history of the system and deal with the dynamic nature of the terrain scanning process. In 

other words, the estimation requires a stochastic process since the scene of interest as well as 

the states of the system change overtime. Thus, a Kalman filter is used to update the states of 

the system recursively, under the assumption that both the process and measurements are 

subjected to white noise. A Kalman filter requires a dynamic model of the system so a novel 

method for modeling the undulations of a surface is introduced. The model is a linear model 

that encompasses the range and lateral slope θρ dd  (i.e., the change of the range with respect 

to the change of the turret angle across the arm of the robot). The model can be decomposed to 

nominal and perturbation parts under the assumption of linearity. However, the perturbation of 

the model can be neglected if the filtering step size (i.e., the distance between two scan lines) 

is maintained infinitesimal. 

Dynamic Model of the Terrain Undulations - To obtain a local model of terrain undulations, it is 

assumed that the range of a point on the terrain can change only slightly from one observation to the 

next provided that the observations are sufficiently close. It is also assumed that the position of the 

observer is a piecewise linear function of time (i.e., the observer travels at a constant velocity between 

two measurements). Thus, the difference equation (3.8) is attributable to the observer position θ  

instead of time.  

Figure 10 shows the proposed model for the undulations of the terrain observed by a rangefinder. 

The range ix1  at point iP  observed at position iθ  is the range )1(1 −ix  of the adjacent point 1−iP  

observed at position 1−iθ  plus the change of the range due to the lateral slope )1(2 −ix  and the 

disturbance of the slope ( )12 −iw  at point 1−iP .  

Now, one may ask why noise is applied on the lateral slope and not on the range itself. The answer 

is that the model would be more robust using a parameter (a random variable) whose variance 

remains constant during the process. Since the measurement of terrain undulations requires a discrete 

model in which step size is not necessarily constant, it makes more sense to choose the slope that is 
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independent of the step size. In other words, had we applied noise on the range, we should change its 

variance proportional to the step size. In our approach, however, a constant variance of the slope 

disturbance suffices. Thus, the robustness of the model is improved while the process disturbance is 

applied on the lateral slope. 

Terrain undulations can be modeled using a discrete stochastic linear system without a deterministic 

input. The process model is given by, 
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Denoted by w , the terrain disturbance between two positions is approximated by white noise in 

order that it can be identified using the standard deviation of the probability distribution of the 

disturbances that is named “slope standard deviation”.  White noise is a justifiable assumption for 

either terrain disturbances or the range measurement noise, especially for natural terrain.  White noise 

implies that the noise is generated by a number of independent random sources, and it is not 

correlated in time. The assumption of white noise facilitates the stochastic analysis because the white 

noise may be defined by only one parameter that is the variance of a Gaussian probability distribution 

function.  

Slope Standard Deviation - The slope standard deviation specifies the terrain disturbances 

modeled by white noise. In Figure 11, a normal distribution curve is used to illustrate the significance 

of the slope standard deviation. The slope standard deviation SlopeS  is obtained by assuming a range 

for the slope variation between two adjacent observations at a certain confidence level and projecting 

it onto the z-score axis of a normal distribution curve. For instance, for a surface whose slope 

variation is bounded between −1 and 1 (i.e., the inclination bounded between -45° and 45°) at a 95% 

confidence level, the slope standard deviation is equal to 0.510. It means it is almost certain that the 

slope variation will not exceed ±1 between two measurements. Thus, the steeper the terrain 

undulations, the greater the slope variation range and the greater the slope standard deviation. In 

practice, natural terrain may be characterized by relatively low slope standard deviations whereas 

artificial environment with sharp edges and range discontinuities entail greater standard deviations.  
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Geometrical interpretation of the slope standard deviation - To simplify the interpretation, the 

range 1x  and the lateral slope 2x  are shown by the height of the slope at a point (Figure 12). It is 

assumed that the height is measured by a sensor whose noise variance is known. In the previous 

example, the slope standard deviation is 0.510 so that slope variations of more than ±1 are unlikely to 

happen. If the sensor advances from position 2−k  to position 1−k  the system output will stay the 

same because the sensor returns an identical value for the elevation. At position k , the sensor reads a 

height h  and dictates a jump to the system. However, due to the constraint imposed by the slope 

standard deviation, the system can hardly postulate slope variations of greater than 1 that is the 

inclination changes of more than 45°. Thus, the system output cannot reach the measured height and 

stops somewhere close to 45° depending on the measurement variance (e.g., point A). At position 

1+k , the sensor returns the same height as that of the step k  so that the inclination increases by 

another 45°; the overall inclination reaches 90°. At this point since an inclination of 90° (infinite 

slope) can accept any elevation, the system output is not controlled by the filter and yields the 

measurement. It is noted that if the system had used a slope standard deviation of 0.294 (i.e., a slope 

variation of [-0.577, 0.577] or inclination change of [−30°, 30°]), the same process would be 

completed after three steps. 

4.3 Adaptive Filtering Using Fuzzy Terrain Modeling 

The model of the terrain undulations is defined as a linear state vector whose state transition and 

noise matrices are invariant. It was discussed that the optimality of the model largely depends on two 

parameters of the system: 1) the standard deviation of the probability distribution of the lateral slope 

disturbance; and 2) the variance of the joint probability distribution associated with the measurements 

of the sensing system. Thus, to complete the parameter identification of the modeling procedure it is 

required to specify two parameters: slope standard deviation, SlopeS , and the measurement variance. 

The latter is determined based on the statistical analysis of the sensors, the batch processing filter, and 

the static filter. The analysis may be carried out offline and in normal operating conditions under the 

assumption that the sensing systems have stationary statistics. However, the former depends on the 

characteristics of the terrain that may vary significantly for different types of terrain. Thus, the 

performance of the system may be optimized if SlopeS  is updated online based on the terrain type. 

The online determination of SlopeS  involves terrain typing that requires an online modeling method 

capable of quantifying the nature of the surrounding terrain based on real-time observations. One 

approach may be the use of a qualitative modeling method known as black box approach. Black box 

modeling determines the dynamic model of a system exclusively based on the input-output records 
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(i.e., without a priori knowledge about the system). The inputs into the terrain typing procedure may 

be the statistics of the observations (e.g., the mean and standard deviation of the range 

measurements), and the output is the slope standard deviation. Black box modeling is mainly used in 

two circumstances: 1) when an exact mathematical model is not available; and 2) when a 

mathematical model is available but the desired outputs are different from the actual outputs of the 

system. Terrain typing for the determination of the slope standard deviation involves both cases. First, 

due to the uncertainties associated with the sensing system, there is no precise mathematical model 

available to relate the slope standard deviation to the measurements. Second, the actual characteristics 

of the terrain are not necessarily the same as the desired terrain map that is input to path planning 

(e.g., the sharp edges of the terrain must be eliminated in the map).  

A qualitative model may represent the behavior of a system by linguistic terms and IF-THEN 

statements, which are called rules. For example, if the inputs into the black box modeling process are 

the mean ρ  and the standard deviation ρσ  of the range measurements for an arbitrary terrain 

surface, and the output is SlopeS , a simple qualitative model may be defined by the following three 

rules: i) if ρ  is small and ρσ  is small, then SlopeS  is small; ii) if ρ  is small but ρσ  is large, then 

SlopeS  is medium; and iii) if ρ  is large and ρσ  is large, then SlopeS  is large, where the rules may be 

attributed to flat, rugged, and protuberant terrain, respectively. 

Typically, the rules of qualitative models are in the form of linguistic terms that may not be 

appropriate for physical systems modeled by mathematical expressions. Fuzzy logic based modeling 

is a special case of qualitative modeling that can deal with quantitative data using the fuzzy sets, 

although the fuzzy sets can be used thereafter to derive the linguistic terms from a fuzzy model [26]. 

Having modeled by fuzzy logic, the terrain characteristics are directly quantified by the model output. 

Fuzzy logic terrain typing includes a fuzzy knowledgebase and a fuzzy inference engine (Figure 

13). The inference engine determines the terrain standard deviation of the slope and continuously 

adapts the gains of the Kalman filter based on real-time observations using an a priori knowledgebase 

that represents the input-output relationships. The knowledgebase is developed offline based on the 

empirical data that relates the inputs or antecedents to the output or consequence. The output is the 

slope standard deviation, and the inputs may be selected from a finite number of candidate parameters 

that can be measured by the sensors or derived from the sensor data. The parameters are selected 

using an optimization procedure that determines the most significant candidates [27]. Since the 

measurements are prone to error, it is often more appropriate to use the statistics of the sensor data 

such as the mean or the standard deviation of the measurements.  
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Relevant candidates for terrain typing may include the mean and standard deviation of the height, 

slope (i.e., the change of the height), and rate of the change of the slope at a point. The terrain 

characteristics are naturally related to these parameters, but the significance of each parameter must 

be verified by the optimization procedure before they are included in the model. 

The offline knowledgebase preparation experiments involve the determination of: 1) the candidate 

parameters for different terrain surfaces; and 2) a slope standard deviation that adapts the filter such 

that the terrain scanning robot follows the terrain undulations most appropriately. For example, Table 

1 lists the input and output data for a typical ramp profile. The inputs include the mean and standard 

deviation of height H , change of height S , and the second order change of height Sδ , that are 

denoted by HHM σ, , SSM σ, , and SSM δδ σ, , respectively. The last column of the table includes 

the most appropriate slope standard deviation, SlopeS , for such terrain. The appropriate slope standard 

deviation is determined by inspection. Table 2 shows the effect of the slope standard deviation on the 

performance of the filter where “Small” and “Large” indicate that the response of the filter is either 

too slow or too fast, respectively. It is noted that the appropriate slope standard deviation corresponds 

to a range and not to an exact value so that the standard deviation will be better modeled by fuzzy sets 

than by crisp values. 

5 Conclusions 

With the development of the state-of-the-art mine detectors, remote sensing has been recognized a 

possible solution for dealing with the longtime problem of landmines in the world. However, the 

reliability of the remote sensing method largely depends on appropriate manipulation of the detector. 

Typically, the manipulation of a mine detector involves moving a relatively large plate at a constant 

speed and maintaining the plate at a constant distance from the ground. The terrain scanning robot is a 

mobile dexterous manipulator that can autonomously scan natural terrain in real time using a typical 

mine detector. Thus, the development of the terrain scanning robot has been a great step forward 

towards the feasibility of the remote sensing method. 

More specific conclusions of the research may be related to the map building and path planning 

procedures.    

Map building is the core of the software of the terrain scanning robot. In general terms, map 

building is a dynamic modeling process that includes three phases: predict, match, and update. This 

process indicates a generic framework that is suitable for every autonomous robot that uses sensor 

data to perform in an unknown environment. Therefore, the map building procedure of the terrain 
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scanning robot may be used as an example for the software development of other mobile robots or 

manipulators.  

Sensor fusion is an essential part of the map building procedure because: (i) it provides a complete 

model of the environment based on the partial information obtained from individual sensors that are 

not capable of measuring the desired features of the environment; and (ii) it improves the reliability of 

the sensing systems using the redundant data obtained from competitive sensors. 

The use of a Kalman filter (i.e., a dynamic filter) in the map building procedure allows for 

maintaining a local map of the terrain and updating it online, whereas without the filter a global map 

would be necessary. It is noted that the local map is updated in real time so that the path planning and 

the other functions of the robot may be executed in parallel. 

The Kalman filter requires a dynamic model of the process. The model is a linear stochastic model 

that represents the terrain undulations. The parameter identification as well as the robustness of the 

model has been discussed in detail. The model can be used in both Cartesian and spherical coordinate 

frames; thus, it may be used in many other robotics applications that use a dynamic filtering method 

for map building.  

An important parameter of the stochastic model is the standard deviation of the probability 

distribution of the process disturbances (viz., the slope standard deviation). Depending on the terrain 

type, the slope standard deviation influences the output of the Kalman filter significantly. 

Specifically, the online identification of the slope standard deviation changes the gains of the Kalman 

filter and yields an adaptive filter. The online identification of the slope standard deviation is carried 

out using fuzzy logic based on fuzzy knowledgebase developed by a systematic fuzzy dynamic 

modeling technique. This introduces a novel fuzzy adaptive Kalman filter that can be used in many 

signal and data processing applications.  

The systematic fuzzy modeling of the terrain is an excellent method for the determination of the 

terrain type. The systematic modeling uses only input-output records without a priori knowledge 

about the type of the terrain. Therefore, this method may be used for characterization of the terrain in 

many other applications such as planetary mobile robots. 

Outlier rejection is necessary to eliminate the erroneous measurements based on their significance 

level. Traditional methods use the Euclidean distance between the predicted values and the 

measurements to reject or accept them. These methods are sensitive to the disturbances of the process. 

More precisely, they cannot distinguish between the discrepancies due to the process disturbances or 

the measurement errors. In this research, the outlier rejection is carried out based on the Mahalanobis 

distance that is more robust criterion for discrepancy between two random variables. 
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Path planning for the autonomous mobile robots and manipulators is carried out based on the sensor 

data usually obtained with respect to a non-Cartesian coordinate frame. The traditional path planning 

methods generate the path in the robot Cartesian coordinate frame. Thus, they have limited real-time 

applications due to the processing load required for the data transformation from sensor coordinate 

frame into the robot coordinate frame. In this research, however, a new approach is used to obtain the 

path in the sensor coordinate frame based on a mathematical model of end effector in the sensor 

coordinate frame. This approach can be used in other autonomous mobile robots that use sensors to 

model the environment. 
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Figure and Tables 

 

 

 

 

 

 

 

 

 

 

Figure 1 Terrain scanning robot  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Mine detector arm  
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Figure 3 Sensor coordinate frame 

 

 

Figure 4 Model of the end effector as an interface between the task and joint space 
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Figure 5 A pair of rotating orthogonal tangent vectors 
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Figure 6 Map building: 1) image registration; and 2) map filtering 
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Figure 7 Range image 

Figure 8 Database of the range image 

Figure 9 Image registration flowchart 

Laser Spot

Scan Line 

θ

Move-Table 

Status 

Map Index 

Configuration

Map-Data 

Mirror 

Angles 

 

Ranges 

 

Modify mirror 

speed 

Calibrate and register the data acquired 

from desired angles 

Reset laser interface 

Get the reset position 

Yes

No

Read N samples from laser interface 

Find the mirror angles of each sample 

Samples acquired 

from a full rotation?



 

 22

 

Figure 10 State transition of the terrain dynamic model 

Figure 11 Slope standard deviation 

Figure 12 Geometrical interpretation of the slope standard deviation 
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Figure 13 Fuzzy terrain typing for an adaptive Kalman filter 

 

Table 1 The result of an experiment on a 30º ramp 

 

Table 2 Appropriate slope standard deviation for the 30º ramp 
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