

NRC Publications Archive Archives des publications du CNRC

$\pi/2$ -Angle Yao graphs are spanners

Bose, Prosenjit; Damian, Mirela; Douïeb, Karim; O'Rourke, Joseph; Seamone, Ben; Smid, Michiel; Wuhrer, Stefanie

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur:

https://doi.org/10.1007/978-3-642-17514-5

Algorithms and Computation: 21st International Symposium, ISAAC 2010, Jeju, Korea, December 15-17, 2010, Proceedings, Part II, Lecture Notes in Computer Science; no. 6507, pp. 446-457, 2010-12-15

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=b5712542-720e-4226-8919-42c3d65ea51e https://publications-cnrc.canada.ca/fra/voir/objet/?id=b5712542-720e-4226-8919-42c3d65ea51e

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

$\pi/2$ -Angle Yao Graphs are Spanners

Prosenjit Bose^{*1}, Mirela Damian^{**2}, Karim Douïeb^{*3}, Joseph O'Rourke⁴, Ben Seamone⁵, Michiel Smid^{*6}, and Stefanie Wuhrer⁷

¹ School of Computer Science, Carleton University, Ottawa, Canada. jit@scs.carleton.ca.

² Department of Computer Science, Villanova University, Villanova, USA. mirela.damian@villanova.edu.

³ School of Computer Science, Carleton University, Ottawa, Canada. kdouieb@ulb.ac.be.

⁴ Department of Computer Science, Smith College, Northampton, USA. orourke@cs.smith.edu.

⁵ School of Mathematics and Statistics, Carleton University, Ottawa, Canada. bseamone@connect.carleton.ca.

⁶ School of Computer Science, Carleton University, Ottawa, Canada. michiel@scs.carleton.ca.

⁷ Institute for Information Technology, National Research Council, Ottawa, Canada. stefanie.wuhrer@nrc-cnrc.gc.ca.

Abstract. We show that the Yao graph Y_4 in the L_2 metric is a spanner with stretch factor $8\sqrt{2}(29+23\sqrt{2})$.

1 Introduction

Let V be a finite set of points in the plane and let G = (V, E) be the complete Euclidean graph on V. We will refer to the points in V as *nodes*, to distinguish them from other points in the plane. The Yao graph [7] with an integer parameter k > 0, denoted Y_k , is defined as follows. Any k equally-separated rays starting at the origin define k cones. Pick a set of arbitrary, but fixed cones. We can now translate the cones to each node $u \in V$. In each cone, pick a shortest edge uv, if there is one, and add to Y_k the directed edge \vec{uv} . Ties are broken arbitrarily. Note that the Yao graph differs from the Θ -graph in how the shortest edge is chosen. While the Yao graph chooses the shortest edge in terms of the Euclidean distance, the Θ -graph chooses the shortest edge as the one that has the shortest distance to u after being projected to the bisector of the cone. Most of the time we ignore the direction of an edge uv; we refer to the directed version \vec{uv} of uv only when its origin (u) is important and unclear from the context. We will distinguish between Y_k , the Yao graph in the Euclidean L_2 metric, and Y_k^{∞} , the Yao graph in the L_{∞} metric. Unlike Y_k however, in constructing Y_k^{∞} ties are broken by always selecting the most counterclockwise edge; the reason for this choice will become clear in Section 2.

^{*} Supported by NSERC.

^{**} Supported in part by NSF grant CCF-0728909 and by Villanova's CEET.

For a given subgraph $H \subseteq G$ and a fixed $t \geq 1$, H is called a *t-spanner* for G if, for any two nodes $u, v \in V$, the shortest path in H from u to v is no longer than t times the length of uv. The value t is called the *dilation* or the *stretch factor* of H. If t is constant, then H is called a *length spanner*, or simply a *spanner*.

The class of graphs Y_k has been much studied. Bose et al. [2] showed that, for $k \ge 9$, Y_k is a spanner with stretch factor $\frac{1}{\cos \frac{2\pi}{k} - \sin \frac{2\pi}{k}}$. In [1] we improve the stretch factor and show that, in fact, Y_k is a spanner for any $k \ge 7$. Recently, Molla [5] showed that Y_2 and Y_3 are not spanners, and that Y_4 is a spanner with stretch factor $4(2 + \sqrt{2})$, for the special case when the nodes in V are in convex position (see also [3]). The authors conjectured that Y_4 is a spanner for arbitrary point sets. In this paper, we settle their conjecture and prove that Y_4 is a spanner with stretch factor $8\sqrt{2}(29 + 23\sqrt{2})$.

The paper is organized as follows. In Section 2, we prove that the graph Y_4^{∞} is a spanner with stretch factor 8. In Section 3 we establish several properties for the graph Y_4 . Finally, in Section 4, we use the properties of Section 3 to prove that, for every edge ab in Y_4^{∞} , there exists a path between a and b in Y_4 not much longer than the Euclidean distance between a and b. By combining this with the result of Section 2, it follows that Y_4 is a spanner.

2 Y_4^{∞} in the L_{∞} Metric

In this section we focus on Y_4^{∞} , which has a nicer structure compared to Y_4 . First we prove that Y_4^{∞} is a plane graph. Then we use this property to show that Y_4^{∞} is an 8-spanner. To be more precise, we prove that for any two nodes a and b, the graph Y_4^{∞} contains a path between a and b whose length (in the L_{∞} -metric) is at most $8|ab|_{\infty}$.

We need a few definitions. We say that two edges ab and cd properly cross (or cross, for short) if they share a point other than an endpoint (a, b, c or d); we say that ab and cd intersect if they share a point (either an interior point or an endpoint). Let $Q_1(a)$, $Q_2(a)$, $Q_3(a)$ and $Q_4(a)$ be the four quadrants at a, as in

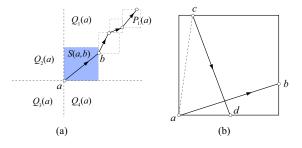


Fig. 1. (a) Definitions: $Q_i(a)$, $P_i(a)$ and S(a,b). (b) Lemma 1: ab and cd cannot cross.

Figure 1a. Let $P_i(a)$ be the path that starts at point a and follows the directed Yao edges in quadrant Q_i . Let $P_i(a, b)$ be the subpath of $P_i(a)$ that starts at aand ends at b. Let $|ab|_{\infty}$ be the L_{∞} distance between a and b. Let sp(a, b) denote a shortest path in Y_4^{∞} between a and b. Let S(a, b) denote the open square with corner a whose boundary contains b, and let $\partial S(a, b)$ denote the boundary of S(a, b). These definitions are illustrated in Figure 1a. For a node $a \in V$, let x(a)denote the x-coordinate of a and y(a) denote the y-coordinate of a.

Lemma 1. Y_4^{∞} is a plane graph.

Proof. The proof is by contradiction. Assume the opposite. Then there are two edges $\overrightarrow{ab}, \overrightarrow{cd} \in Y_4^\infty$ that cross each other. Since $\overrightarrow{ab} \in Y_4^\infty$, S(a, b) must be empty of nodes in V, and similarly for S(c, d). Let j be the intersection point between ab and cd. Then $j \in S(a, b) \cap S(c, d)$, meaning that S(a, b) and S(c, d) must overlap. However, neither square may contain a, b, c or d. It follows that S(a, b) and S(c, d) coincide, meaning that c and d lie on $\partial S(a, b)$ (see Figure 1b). Since cd intersects ab, c and d must lie on opposite sides of ab. Thus either ac or ad lies counterclockwise from ab; the other case is identical. Because S(a, c) coincides with S(a, b), we have that $|ac|_\infty = |ab|_\infty$. In this case however, Y_4^∞ would break the tie between ac and ab by selecting the most counterclockwise edge, which is \overrightarrow{ac} . This contradicts that $\overrightarrow{ab} \in Y_4^\infty$. □

Theorem 1. Y_4^{∞} is an 8-spanner in the L_{∞} metric space.

Proof. We show that, for any pair of points $a, b \in V$, $|sp(a,b)|_{\infty} < 8|ab|_{\infty}$. The proof is by induction on the pairwise distance between the points in V. Assume without loss of generality that $b \in Q_1(a)$, and $|ab|_{\infty} = |x(b) - x(a)|$. Consider the case in which ab is a closest pair of points in V (the base case for our induction). If $ab \in Y_4^{\infty}$, then $|sp(a,b)|_{\infty} = |ab|_{\infty}$. Otherwise, there must be $ac \in Y_4^{\infty}$, with $|ac|_{\infty} = |ab|_{\infty}$. But then $|bc|_{\infty} < |ab|_{\infty}$ (see Figure 2a), a contradiction.

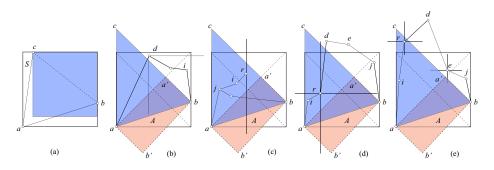


Fig. 2. (a) Base case. (b) $\triangle abc$ empty (c) $\triangle abc$ non-empty, $P_{ar} \cap P_2(b) = \{j\}$ (d) $\triangle abc$ non-empty, $P_{ar} \cap P_2(b) = \emptyset$, *e* below *r*.

Assume now that the inductive hypothesis holds for all pairs of points closer than $|ab|_{\infty}$. If $ab \in Y_4^{\infty}$, then $|sp(a,b)|_{\infty} = |ab|_{\infty}$ and the proof is finished. If $ab \notin Y_4^{\infty}$, then the square S(a,b) must be nonempty.

Let A be the rectangle ab'ba' as in Figure 2b, where ba' and bb' are parallel to the diagonals of S. If A is nonempty, then we can use induction to prove that $|sp(a,b)|_{\infty} \leq 8|ab|_{\infty}$ as follows. Pick $c \in A$ arbitrary. Then $|ac|_{\infty} + |cb|_{\infty} = |x(c) - x(a)| + |x(b) - x(c)| = |ab|_{\infty}$, and by the inductive hypothesis $sp(a, c) \oplus sp(c, b)$ is a path in Y_4^{∞} no longer than $8|ac|_{\infty} + 8|cb|_{\infty} = 8|ab|_{\infty}$; here \oplus represents the concatenation operator. Assume now that A is empty. Let c be at the intersection between the line supporting ba' and the vertical line through a (see Figure 2b). We discuss two cases, depending on whether $\triangle abc$ is empty of points or not.

Case 1: $\triangle abc$ is empty of points. Let $ad \in P_1(a)$. We show that $P_4(d)$ cannot contain an edge crossing ab. Assume the opposite, and let $st \in P_4(d)$ cross ab. Since $\triangle abc$ is empty, s must lie above bc and t below ab, therefore $|st|_{\infty} \ge |y(s)-y(t)| > |y(s)-y(b)| = |sb|_{\infty}$, contradicting the fact that $st \in Y_4^{\infty}$. It follows that $P_4(d)$ and $P_2(b)$ must meet in a point $i \in P_4(d) \cap P_2(b)$ (see Figure 2b). Now note that $|P_4(d,i) \oplus P_2(b,i)|_{\infty} \le |x(d)-x(b)|+|y(d)-y(b)| < 2|ab|_{\infty}$. Thus we have that $|sp(a,b)|_{\infty} \le |ad \oplus P_4(d,i) \oplus P_2(b,i)|_{\infty} < |ab|_{\infty} + 2|ab|_{\infty} = 3|ab|_{\infty}$.

Case 2: $\triangle abc$ is nonempty. In this case, we seek a short path from a to b that does not cross to the underside of ab, to avoid oscillating paths that cross ab arbitrarily many times. Let r be the rightmost point that lies inside $\triangle abc$. Arguments similar to the ones used in Case 1 show that $P_3(r)$ cannot cross ab and therefore it must meet $P_1(a)$ in a point i. Then $P_{ar} = P_1(a, i) \oplus P_3(r, i)$ is a path in Y_4^{∞} of length

$$|P_{ar}|_{\infty} < |x(a) - x(r)| + |y(a) - y(r)| < |ab|_{\infty} + 2|ab|_{\infty} = 3|ab|_{\infty}.$$
 (1)

The term $2|ab|_{\infty}$ in the inequality above represents the fact that $|y(a) - y(r)| \leq |y(a) - y(c)| \leq 2|ab|_{\infty}$. Consider first the simpler situation in which $P_2(b)$ meets P_{ar} in a point $j \in P_2(b) \cap P_{ar}$ (see Figure 2c). Let $P_{ar}(a, j)$ be the subpath of P_{ar} extending between a and j. Then $P_{ar}(a, j) \oplus P_2(b, j)$ is a path in Y_4^{∞} from a to b, therefore $|sp(a,b)|_{\infty} \leq |P_{ar}(a,j) \oplus P_2(b,j)|_{\infty} < 2|y(j) - y(a)| + |ab|_{\infty} \leq 5|ab|_{\infty}$.

Consider now the case when $P_2(b)$ does not intersect P_{ar} . We argue that, in this case, $Q_1(r)$ may not be empty. Assume the opposite. Then no edge $st \in P_2(b)$ may cross $Q_1(r)$. This is because, for any such edge, $|sr|_{\infty} < |st|_{\infty}$, contradicting $st \in Y_4^{\infty}$. This implies that $P_2(b)$ intersects P_{ar} , again a contradiction to our assumption. This establishes that $Q_1(r)$ is nonempty. Let $rd \in P_1(r)$. The fact that $P_2(b)$ does not intersect P_{ar} implies that d lies to the left of b. The fact that r is the rightmost point in $\triangle abc$ implies that d lies outside $\triangle abc$ (see Figure 2d). It also implies that $P_4(d)$ shares no points with $\triangle abc$. This along with arguments similar to the ones used in case 1 show that $P_4(d)$ and $P_2(b)$ meet in a point $j \in P_4(d) \cap P_2(b)$. Thus we have found a path

$$P_{ab} = P_1(a,i) \oplus P_3(r,i) \oplus rd \oplus P_4(d,j) \oplus P_2(b,j)$$

$$\tag{2}$$

extending from a to b in Y_4^{∞} . If $|rd|_{\infty} = |x(d) - x(r)|$, then $|rd|_{\infty} < |x(b) - x(a)| = |ab|_{\infty}$, and the path P_{ab} has length

$$|P_{ab}|_{\infty} \le 2|y(d) - y(a)| + |ab|_{\infty} < 7|ab|_{\infty}.$$
(3)

In the above, we used the fact that $|y(d) - y(a)| = |y(d) - y(r)| + |y(r) - y(a)| < |ab|_{\infty} + 2|ab|_{\infty}$. Suppose now that

$$|rd|_{\infty} = |y(d) - y(r)|.$$
 (4)

In this case, it is unclear whether the path P_{ab} defined by (2) is short, since rd can be arbitrarily long compared to ab. Let e be the clockwise neighbor of d along the path P_{ab} (e and b may coincide). Then e lies below d, and either $de \in P_4(d)$, or $ed \in P_2(e)$ (or both). If e lies above r, or at the same level as r (i.e., $e \in Q_1(r)$, as in Figure 2d), then

$$|y(e) - y(r)| < |y(d) - y(r)|$$
(5)

Since $rd \in P_1(r)$ and e is in the same quadrant of r as d, we have $|rd|_{\infty} \leq |re|_{\infty}$. This along with inequalities (4) and (5) implies $|re|_{\infty} > |y(e) - y(r)|$, which in turn implies $|re|_{\infty} = |x(e) - x(r)| \leq |ab|_{\infty}$, and so $|rd|_{\infty} \leq |ab|_{\infty}$. Then inequality (3) applies here as well, showing that $|P_{ab}|_{\infty} < 7|ab|_{\infty}$.

If e lies below r (as in Figure 2e), then

$$|ed|_{\infty} \ge |y(d) - y(e)| \ge |y(d) - y(r)| = |rd|_{\infty}.$$
(6)

Assume first that $ed \in P_2(e)$, or $|ed|_{\infty} = |x(e) - x(d)|$. In either case, $|ed|_{\infty} \leq |er|_{\infty} < 2|ab|_{\infty}$. This along with inequality (6) shows that $|rd|_{\infty} < 2|ab|_{\infty}$. Substituting this upper bound in (2), we get $|P_{ab}|_{\infty} \leq 2|y(d) - y(a)| + 2|ab|_{\infty} < 8|ab|_{\infty}$. Assume now that $ed \notin P_2(e)$, and $|ed|_{\infty} = |y(e) - y(d)|$. Then $ee' \in P_2(e)$ cannot go above d (otherwise $|ed|_{\infty} < |ee'|_{\infty}$, contradicting $ee' \in P_2(e)$). This along with the fact $de \in P_4(d)$ implies that $P_2(e)$ intersects P_{ar} in a point k. Redefine $P_{ab} = P_{ar}(a,k) \oplus P_2(e,k) \oplus P_4(e,j) \oplus P_2(b,j)$. Then P_{ab} is a path in Y_4^{∞} from a to b of length $|P_{ab}| \leq 2|y(r) - y(a)| + |ab|_{\infty} \leq 5|ab|_{\infty}$.

This theorem will be employed in Section 4.

3 Y_4 in the L_2 Metric

In this section we establish basic properties of Y_4 . Due to space restrictions, some of these properties are stated without proofs. The proofs can be found in [1]. The ultimate goal of this section is to show that, if two edges in Y_4 cross, there is a short path between their endpoints (Lemma 8). We begin with a few definitions.

Let Q(a, b) denote the infinite quadrant with origin at a that contains b. For a pair of nodes $a, b \in V$, define recursively a directed path $\mathcal{P}(a \to b)$ from a to b in Y_4 as follows. If a = b, then $\mathcal{P}(a \to b) = null$. If $a \neq b$, there must exist $\overrightarrow{ac} \in Y_4$ that lies in Q(a, b). In this case, define

$$\mathcal{P}(a \to b) = \overrightarrow{ac} \oplus \mathcal{P}(c \to b).$$

Recall that \oplus represents the concatenation operator. This definition is illustrated in Figure 3a. Fischer et al. [4] show that $\mathcal{P}(a \to b)$ is well defined and lies entirely inside the square centered at b whose boundary contains a.

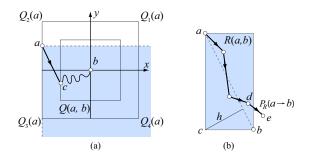


Fig. 3. Definitions. (a) Q(a, b) and $\mathcal{P}(a \to b)$. (b) $\mathcal{P}_R(a \to b)$.

For any node $a \in V$, let D(a, r) denote the open disk centered at a of radius r, and let $\partial D(a, r)$ denote the boundary of D(a, r). Let $D[a, r] = D(a, r) \cup \partial D(a, r)$. For any path P and any pair of nodes $a, b \in P$, let P[a, b] be the subpath of Pfrom a to b. Let R(a, b) be the closed rectangle with diagonal ab.

For a fixed pair of nodes $a, b \in V$, define a path $\mathcal{P}_R(a \to b)$ as follows. Let $e \in V$ be the first node along $\mathcal{P}(a \to b)$ that is not strictly interior to R(a, b). Then $\mathcal{P}_R(a \to b)$ is the subpath of $\mathcal{P}(a \to b)$ that extends between a and e. In other words, $\mathcal{P}_R(a \to b)$ is the path that follows the Y_4 edges pointing towards b, truncated as soon as it reaches b or leaves R(a, b). Formally, $\mathcal{P}_R(a \to b) = \mathcal{P}(a \to b)[a, e]$. This definition is illustrated in Figure 3b. Our proofs will make use of the following two propositions.

Proposition 1. The sum of the lengths of crossing diagonals of a non-degenerate (necessarily convex) quadrilateral abcd is strictly greater than the sum of the lengths of either pair of opposite sides:

$$|ac| + |bd| > |ab| + |cd|$$

 $|ac| + |bd| > |bc| + |da|$

Proposition 2. For any triangle $\triangle abc$, the following inequalities hold:

$$|ac|^{2} \begin{cases} < |ab|^{2} + |bc|^{2}, & \text{if } \angle abc < \pi/2 \\ = |ab|^{2} + |bc|^{2}, & \text{if } \angle abc = \pi/2 \\ > |ab|^{2} + |bc|^{2}, & \text{if } \angle abc > \pi/2 \end{cases}$$

Lemma 2. For each pair of nodes $a, b \in V$,

$$|\mathcal{P}_R(a \to b)| \le |ab|\sqrt{2} \tag{7}$$

Furthermore, each edge of $\mathcal{P}_R(a \to b)$ is no longer than |ab|.

Proof. Let c be one of the two corners of R(a, b), other than a and b. Let $\overrightarrow{de} \in \mathcal{P}_R(a \to b)$ be the last edge on $\mathcal{P}_R(a \to b)$, which necessarily intersects $\partial R(a, b)$ (note that it is possible that e = b). Refer to Figure 3b. Then $|de| \leq |db|$, otherwise \overrightarrow{de} could not be in Y_4 . Since db lies in the rectangle with diagonal ab, we have that $|db| \leq |ab|$, and similarly for each edge on $\mathcal{P}_R(a \to b)$. This establishes the latter claim of the lemma. For the first claim of the lemma, let $p = \mathcal{P}_R(a \to b)[a,d] \oplus db$. Since $|de| \leq |db|$, we have that $|\mathcal{P}_R(a \to b)| \leq |p|$. Since p lies entirely inside R(a, b) and consists of edges pointing towards b, we have that p is an xy-monotone path. It follows that $|p| \leq |ac| + |cb|$, which is bounded above by $|ab|\sqrt{2}$.

Lemma 3. Let $a, b, c, d \in V$ be four disjoint nodes such that $\overrightarrow{ab}, \overrightarrow{cd} \in Y_4$, $b \in Q_i(a)$ and $d \in Q_i(c)$, for some $i \in \{1, 2, 3, 4\}$. Then ab and cd cannot cross.

The next four lemmas (4-8) each concern a pair of crossing Y_4 edges, culminating (in Lemma 8) in the conclusion that there is a short path in Y_4 between a pair of endpoints of those edges.

Lemma 4. Let a, b, c and d be four disjoint nodes in V such that $\overrightarrow{ab}, \overrightarrow{cd} \in Y_4$, and ab crosses cd. Then (i) the ratio between the shortest side and the longer diagonal of the quadrilateral acbd is no greater than $1/\sqrt{2}$, and (ii) the shortest side of the quadrilateral acbd is strictly shorter than either diagonal.

Lemma 5. Let a, b, c, d be four distinct nodes in V, with $c \in Q_1(a)$, such that (i) $\overrightarrow{ab} \in Q_1(a)$ and $\overrightarrow{cd} \in Q_2(c)$ are in Y_4 and cross each other, and (ii) ad is a shortest side of quadrilateral acbd. Then $\mathcal{P}_R(a \to d)$ and $\mathcal{P}_R(d \to a)$ have a nonempty intersection.

Lemma 6. Let a, b, c, d be four distinct nodes in V, with $c \in Q_1(a)$, such that (i) $\overrightarrow{ab} \in Q_1(a)$ and $\overrightarrow{cd} \in Q_3(c)$ are in Y_4 and cross each other, and (ii) ad is a shortest side of quadrilateral acbd. Then $\mathcal{P}_R(d \to a)$ does not cross ab.

The next lemma relies on all of Lemmas 2–6.

Lemma 7. Let $a, b, c, d \in V$ be four distinct nodes such that $\vec{ab} \in Y_4$ crosses $\vec{cd} \in Y_4$, and let xy be a shortest side of the quadrilateral abcd. Then there exist two paths \mathcal{P}_x and \mathcal{P}_y in Y_4 , where \mathcal{P}_x has x as an endpoint and \mathcal{P}_y has y as an endpoint, with the following properties:

- (i) \mathcal{P}_x and \mathcal{P}_y have a nonempty intersection.
- (ii) $|\mathcal{P}_x| + |\mathcal{P}_y| \le 3\sqrt{2}|xy|$.
- (iii) Each edge on $\mathcal{P}_x \cup \mathcal{P}_y$ is no longer than |xy|.

Proof. Assume without loss of generality that $b \in Q_1(a)$. We discuss the following exhaustive cases:

1. $c \in Q_1(a)$, and $d \in Q_1(c)$. In this case, ab and cd cannot cross each other (by Lemma 3), so this case is finished.

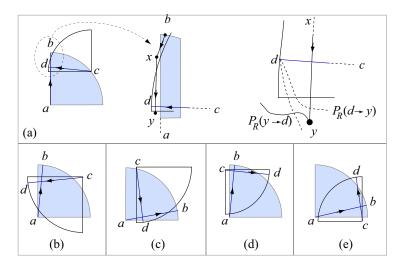


Fig. 4. Lemma 7: (a, b) $c \in Q_1(a)$ (c) $c \in Q_2(a)$ (d) $c \in Q_4(a)$.

2. $c \in Q_1(a)$, and $d \in Q_2(c)$, as in Figure 4a. Since ab crosses cd, $b \in Q_2(c)$. Since $ab \in Y_4$, $|ab| \leq |ac|$. Since $cd \in Y_4$, $|cd| \leq |cb|$. These along with Lemma 4 imply that ad and db are the only candidates for a shortest edge of acbd. Assume first that ad is a shortest edge of acbd. By Lemma 3, $\mathcal{P}_a = \mathcal{P}_R(a \to d)$ does not cross cd. It follows from Lemma 5 that \mathcal{P}_a and $\mathcal{P}_d = \mathcal{P}_R(d \to a)$ have a nonempty intersection. Furthermore, by Lemma 2, $|\mathcal{P}_a| \leq |ad|\sqrt{2}$ and $|\mathcal{P}_d| \leq |ad|\sqrt{2}$, and no edge on these paths is longer than |ad|, proving the lemma true for this case. Consider now the case when db is a shortest edge of acbd (see Figure 4a). Note that d is below b (otherwise, $d \in Q_2(c)$ and |cd| > |cb|) and, therefore, $b \in Q_1(d)$). By Lemma 3, $\mathcal{P}_d = \mathcal{P}_R(d \to b)$ does not cross ab. If $\mathcal{P}_b = \mathcal{P}_R(b \to d)$ does not cross cd, then \mathcal{P}_b and \mathcal{P}_d have a nonempty intersection, proving the lemma true for this case. Otherwise, there exists $\vec{xy} \in \mathcal{P}_R(b \to d)$ that crosses cd (see Figure 4a). Define

$$\mathcal{P}_b = \mathcal{P}_R(b \to d) \oplus \mathcal{P}_R(y \to d)$$

 $\mathcal{P}_d = \mathcal{P}_R(d \to y)$

By Lemma 3, $\mathcal{P}_R(y \to d)$ does not cross cd. Then \mathcal{P}_b and \mathcal{P}_d must have a nonempty intersection. We now show that \mathcal{P}_b and \mathcal{P}_d satisfy conditions (i) and (iii) of the lemma. Proposition 1 applied on the quadrilateral xdyc tells us that |xc| + |yd| < |xy| + |cd|. We also have that $|cx| \ge |cd|$, since $\overrightarrow{cd} \in Y_4$ and x is in the same quadrant of c as d. This along with the inequality above implies |yd| < |xy|. Because $xy \in \mathcal{P}_R(b \to d)$, by Lemma 2 we have that $|xy| \le |bd|$, which along with the previous inequality shows that |yd| < |bd|. This along with Lemma 2 shows that condition (iii) of the lemma is satisfied. Furthermore, $|\mathcal{P}_R(y \to d)| \leq |yd|\sqrt{2}$ and $|\mathcal{P}_R(d \to y)| \leq |yd|\sqrt{2}$. It follows that $|\mathcal{P}_b| + |\mathcal{P}_d| \leq 3\sqrt{2}|bd|$.

- 3. $c \in Q_1(a)$, and $d \in Q_3(c)$, as in Figure 4b. Then $|ac| \geq \max\{ab, cd\}$, and by Lemma 4 ac is not a shortest edge of acbd. The case when bd is a shortest edge of acbd is settled by Lemmas 3 and 2: Lemma 3 tells us that $\mathcal{P}_d = \mathcal{P}_R(d \to b)$ does not cross ab, and $\mathcal{P}_b = \mathcal{P}_R(b \to d)$ does not cross cd. It follows that \mathcal{P}_d and \mathcal{P}_b have a nonempty intersection. Furthermore, Lemma 2 guarantees that \mathcal{P}_d and \mathcal{P}_b satisfy conditions (ii) and (iii) of the lemma. Consider now the case when ad is a shortest edge of acbd; the case when bc is shortest is symmetric. By Lemma 6, $\mathcal{P}_R(d \to a)$ does not cross ab. If $\mathcal{P}_R(a \to d)$ does not cross cd, then this case is settled: $\mathcal{P}_d = \mathcal{P}_R(d \to a)$ and $\mathcal{P}_a = \mathcal{P}_R(a \to d)$ satisfy the three conditions of the lemma. Otherwise, let $\vec{xy} \in \mathcal{P}_R(a \to d)$ be the edge crossing cd. Arguments similar to the ones used in case 1 above show that $\mathcal{P}_a = \mathcal{P}_R(a \to d) \oplus \mathcal{P}_R(y \to d)$ and $\mathcal{P}_d = \mathcal{P}_R(d \to y)$ are two paths that satisfy the conditions of the lemma.
- 4. $c \in Q_1(a)$, and $d \in Q_4(c)$, as in Figure 4c. Note that a horizontal reflection of Figure 4c, followed by a rotation of $\pi/2$, depicts a case identical to case 1, which has already been settled.
- 5. $c \in Q_2(a)$, as in Figure 4d. Note that Figure 4d rotated by $\pi/2$ depicts a case identical to case 1, which has already been settled.
- 6. $c \in Q_3(a)$. Then it must be that $d \in Q_1(c)$, otherwise cd cannot cross ab. By Lemma 3 however, ab and cd may not cross, unless one of them is not in Y_4 .
- 7. $c \in Q_4(a)$, as in Figure 4e. Note that a vertical reflection of Figure 4e depicts a case identical to case 1, so this case is settled as well.

We are now ready to establish the main lemma of this section, showing that there is a short path between the endpoints of two intersecting edges in Y_4 .

Lemma 8. Let $a, b, c, d \in V$ be four distinct nodes such that $ab \in Y_4$ crosses $\overrightarrow{cd} \in Y_4$, and let xy be a shortest side of the quadrilateral abcd. Then Y_4 contains a path p(x, y) connecting x and y, of length $|p(x, y)| \leq \frac{6}{\sqrt{2}-1} \cdot |xy|$. Furthermore, no edge on p(x, y) is longer than |xy|.

Proof. Let \mathcal{P}_x and \mathcal{P}_y be the two paths whose existence in Y_4 is guaranteed by Lemma 7. By condition (iii) of Lemma 7, no edge on \mathcal{P}_x and \mathcal{P}_y is longer than |xy|. By condition (i) of Lemma 7, \mathcal{P}_x and \mathcal{P}_y have a nonempty intersection. If \mathcal{P}_x and \mathcal{P}_y share a node $u \in V$, then the path $p(x, y) = \mathcal{P}_x[x, u] \oplus \mathcal{P}_y[y, u]$ is a path from x to y in Y_4 no longer than $3\sqrt{2}|xy|$; the length restriction follows from guarantee (ii) of Lemma 7. Otherwise, let $\overline{a'b'} \in \mathcal{P}_x$ and $\overline{c'd'} \in \mathcal{P}_y$ be two edges crossing each other. Let x'y' be a shortest side of the quadrilateral a'c'b'd', with $x' \in \mathcal{P}_x$ and $y' \in \mathcal{P}_y$. Lemma 7 tells us that $|a'b'| \leq |xy|$ and $|c'd'| \leq |xy|$. These along with Lemma 4 imply that $|x'y'| \leq |xy|/\sqrt{2}$. This enables us to derive a recursive formula for computing a path $p(x, y) \in Y_4$ as follows:

$$p(x,y) = \begin{cases} x, & \text{if } x = y\\ \mathcal{P}_x[x,x'] \oplus \mathcal{P}_y[y,y'] \oplus p(x',y'), & \text{if } x \neq y \end{cases}$$

Simple induction on the length of xy establishes the claim of the lemma.

4 Y_4^{∞} and Y_4

We prove that every individual edge of Y_4^{∞} is spanned by a short path in Y_4 . This, along with the result of Theorem 1, establishes that Y_4 is a spanner. Fix an edge $\overrightarrow{xy} \in Y_4^{\infty}$. Define an edge or a path as *t*-short (with respect to |xy|) if its length is within a constant factor *t* of |xy|. In our proof that *ab* is spanned by a *t*-short path with respect to |ab| in Y_4 , we will make use of the following three statements.

- **S1** If *ab* is *t*-short, then $\mathcal{P}_R(a \to b)$, and therefore its reverse, $\mathcal{P}_R^{-1}(a \to b)$, are $t\sqrt{2}$ -short by Lemma 2.
- **S2** If $ab \in Y_4$ is t_1 -short and $cd \in Y_4$ is t_2 -short, and if ab intersects cd, Lemmas 4 and 8 show that there is a t_3 -short path between any two of the endpoints of these edges with $t_3 = t_1 + t_2 + 3(2 + \sqrt{2}) \max(t_1, t_2)$.
- **S3** If p(a, b) is a t_1 -short path and p(c, d) is a t_2 -short path and the two paths intersect, then there is a t_3 -short path P between any two of the endpoints of these paths with $t_3 = t_1 + t_2 + 3(2 + \sqrt{2}) \max(t_1, t_2)$, by **S2**.

Lemma 9. For any edge $ab \in Y_4^{\infty}$, there is a path $p(a,b) \in Y_4$ between a and b, of length $|p(a,b)| \le t|ab|$, for $t = 29 + 23\sqrt{2}$.

Proof. For the sake of clarity, we only prove here that there is a short path p(a, b) between a and b, and skip the calculations of the actual stretch factor t (which are detailed in the appendix of [1]). We refer to an edge or a path as *short* if its length is within a constant factor of |ab|. Assume without loss of generality that $\overrightarrow{ab} \in Y_4^{\infty}$, and $\overrightarrow{ab} \in Q_1(a)$. If $\overrightarrow{ab} \in Y_4$, then p(a, b) = ab and the proof is finished. So assume the opposite, and let $\overrightarrow{ac} \in Q_1(a)$ be the edge in Y_4 ; since $Q_1(a)$ is nonempty, \overrightarrow{ac} exists. Because $\overrightarrow{ac} \in Y_4$ and b is in the same quadrant of a as c, we have that

$$\begin{aligned} |ac| &\leq |ab| \qquad (i) \\ |bc| &\leq |ac|\sqrt{2} \qquad (ii) \end{aligned} \tag{8}$$

Thus both ac and bc are short. And this in turn implies that $\mathcal{P}_R(b \to c)$ is short by **S1**. We next focus on $\mathcal{P}_R(b \to c)$. Let $b' \notin R(b,c)$ be the other endpoint of $\mathcal{P}_R(b \to c)$. We distinguish three cases.

Case 1: $\mathcal{P}_R(b \to c)$ and *ac* intersect. Then by **S3** there is a short path p(a, b) between *a* and *b*.

Case 2: $\mathcal{P}_R(b \to c)$ and ac do not intersect, and $\mathcal{P}_R(b' \to a)$ and ab do not intersect (see Figure 5b). Note that because b' is the endpoint of the short path $\mathcal{P}_R(b \to c)$, the triangle inequality on $\triangle abb'$ implies that ab' is short, and therefore $\mathcal{P}_R(b' \to a)$ is short. We consider two cases:

(i) $\mathcal{P}_R(b' \to a)$ intersects *ac*. Then by **S3** there is a short path p(a, b'). So

$$p(a,b) = p(a,b') \oplus \mathcal{P}_R^{-1}(b \to c)$$

is short.

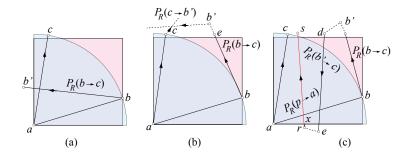


Fig. 5. Lemma 9: (a) Case 1: $\mathcal{P}_R(b \to c)$ and *ac* have a nonempty intersection. (b) Case 2: $\mathcal{P}_R(b' \to a)$ and *ab* have an empty intersection. (c) Case 3: $\mathcal{P}_R(b' \to a)$ and *ab* have a non-empty intersection.

(ii) $\mathcal{P}_R(b' \to a)$ does not intersect ac. Then $\mathcal{P}_R(c \to b')$ must intersect $\mathcal{P}_R(b \to c) \oplus \mathcal{P}_R(b' \to a)$. Next we establish that b'c is short. Let $\overrightarrow{eb'}$ be the last edge of $\mathcal{P}_R(b \to c)$, and so incident to b' (note that e and b may coincide). Because $\mathcal{P}_R(b \to c)$ does not intersect ac, b' and c are in the same quadrant for e. It follows that $|eb'| \leq |ec|$ and $\angle b'ec < \pi/2$. These along with Proposition 2 for $\triangle b'ec$ imply that $|b'c|^2 < |b'e|^2 + |ec|^2 \leq 2|ec|^2 < 2|bc|^2$ (this latter inequality uses the fact that $\angle bec > \pi/2$, which implies that |ec| < |bc|). It follows that

$$|b'c| \le |bc|\sqrt{2} \le 2|ac|$$
 (by (8)ii) (9)

Thus b'c is short, and by **S1** we have that $\mathcal{P}_R(c \to b')$ is short. Since $\mathcal{P}_R(c \to b')$ intersects the short path $\mathcal{P}_R(b \to c) \oplus \mathcal{P}_R(b' \to a)$, there is by **S3** a short path p(c, b), and so

$$p(a,b) = ac \oplus p(c,b)$$

is short.

Case 3: $\mathcal{P}_R(b \to c)$ and ac do not intersect, and $\mathcal{P}_R(b' \to a)$ intersects ab (see Figure 5c). If $\mathcal{P}_R(b' \to a)$ intersects ab at a, then $p(a,b) = \mathcal{P}_R(b \to c) \oplus \mathcal{P}_R(b' \to a)$ is short. So assume otherwise, in which case there is an edge $\overrightarrow{de} \in \mathcal{P}_R(b' \to a)$ that crosses ab. Then $d \in Q_1(a)$, $e \in Q_3(a) \cup Q_4(a)$, and e and a are in the same quadrant for d. Note however that e cannot lie in $Q_3(a)$, since in that case $\angle dae > \pi/2$, which would imply |de| > |da|, which in turn would imply $\overrightarrow{de} \notin Y_4$. So it must be that $e \in Q_4(a)$.

Next we show that $\mathcal{P}_R(e \to a)$ does not cross *ab*. Assume the opposite, and let $\overrightarrow{rs} \in \mathcal{P}_R(e \to a)$ cross *ab*. Then $r \in Q_4(a)$, $s \in Q_1(a) \cup Q_2(a)$, and *s* and *a* are in the same quadrant for *r*. Arguments similar to the ones above show that $s \notin Q_2(a)$, so *s* must lie in $Q_1(a)$. Let *d* be the L_∞ distance from *a* to *b*. Let *x* be the projection of *r* on the horizontal line through *a*. Then

$$|rs| \ge |rx| + d \ge |rx| + |xa| > |ra|$$
 (by the triangle inequality)

Because a and s are in the same quadrant for r, the inequality above contradicts $\overrightarrow{rs} \in Y_4$.

We have established that $\mathcal{P}_R(e \to a)$ does not cross ab. Then $\mathcal{P}_R(a \to e)$ must intersect $\mathcal{P}_R(e \to a) \oplus de$. Note that de is short because it is in the short path $\mathcal{P}_R(b' \to a)$. Thus ae is short, and so $\mathcal{P}_R(a \to e)$ and $\mathcal{P}_R(e \to a)$ are short. Thus we have two intersecting short paths, and so by **S3** there is a short path p(a, e). Then

$$p(a,b) = p(a,e) \oplus \mathcal{P}_{R}^{-1}(b' \to a) \oplus \mathcal{P}_{R}^{-1}(b \to c)$$

is short. Straightforward calculations show that, in each of these cases, the stretch factor for p(a, b) does not exceed $29 + 23\sqrt{2}$.

Our main result follows immediately from Theorem 1 and Lemma 9:

Theorem 2. Y_4 is a t-spanner, for $t \ge 8\sqrt{2}(29 + 23\sqrt{2})$.

5 Conclusion

Our results settle a long-standing open problem, asking whether Y_4 is a spanner or not. We answer this question positively, and establish a loose stretch factor of $8\sqrt{2}(29 + 23\sqrt{2})$. Experimental results, however, indicate a stretch factor of the order $1 + \sqrt{2}$, a factor of 200 smaller. Finding tighter stretch factors for both Y_4^{∞} and Y_4 remain interesting open problems. Establishing whether Y_5 and Y_6 are spanners or not is also open.

References

- 1. P. Bose, M. Damian, K. Douïeb, J. O'Rourke, B. Seamone, M. Smid, and S. Wuhrer. $\pi/2$ -Angle Yao Graphs are Spanners. Technical Report, arXiv:1001.2913v1, 2010.
- P. Bose, A. Maheshwari, G. Narasimhan, M. Smid, and N. Zeh. Approximating geometric bottleneck shortest paths. *Computational Geometry: Theory and Applications*, 29:233–249, 2004.
- M. Damian, N. Molla, and V. Pinciu. Spanner properties of π/2-angle Yao graphs. In Proc. of the 25th European Workshop on Computational Geometry, pages 21–24, March 2009.
- M. Fischer, T. Lukovszki, and M. Ziegler. Geometric searching in walkthrough animations with weak spanners in real time. In ESA '98: Proc. of the 6th Annual European Symposium on Algorithms, pages 163–174, 1998.
- N. Molla. Yao spanners for wireless ad hoc networks. M.S. Thesis, Department of Computer Science, Villanova University, December 2009.
- J.W. Green. A note on the chords of a convex curve. Portugaliae Mathematica, 10(3):121–123, 1951.
- A.C.-C. Yao. On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM Journal on Computing, 11(4):721–736, 1982.