NRC Publications Archive
Archives des publications du CNRC

Voice Code: An Innovative Speech Interface for Programming-by-
Voice
Désilets, Alain; Fox, D.C.; Norton, S.

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut étre I'une des suivantes : la version prépublication de l'auteur, la version
acceptée du manuscrit ou la version de I'éditeur.

Publisher’s version / Version de I'éditeur:

Extended Abstracts of the 2006 Conference on Human Factors in Computing
Systems (CHI 2006) [Proceedings], 2006

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=b06acf25-cc91-4d3d-bafb-32fc47e8f206
https://publications-cnrc.canada.ca/fra/voir/objet/?id=b06acf25-cc91-4d3d-bafb-32fc4 7e8f206

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accés a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la premiére page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

National Research Conseil national de C d“l
I*I Council Canada recherches Canada ana, a

I*I National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de technologie
Information Technology de l'information

NC-CN\NC

Voice Code: An Innovative Speech Interface
for Programming-by-Voice *

Désilets, A., Fox, D.C., and Norton, S.
April 2006

* published in the Extended Abstracts of the 2006 Conference on Human
Factors in Computing Systems (CHI 2006). Montreal, Quebec, Canada.
April 24-27, 2006. NRC 48547.

Copyright 2006 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

Canada

Alain Désilets

National Research Council of
Canada

Bldg M-50, Montreal Road
Ottawa, On, Canada
alain.desilets@nrc-cnrc.gc.ca

David C. Fox

Nuance
1 Wayside Road
Burlington, MA 01803

davidcfox@post.harvard.edu

Stuart Norton

School of Engineering
U. C. Santa Cruz

1156 High Street
Santa Cruz, CA 95060
stuart@soe.ucsc.edu

Abstract

In this paper we describe
VoiceCode, a system for
programming-by-voice.
With VoiceCode,
programmers can dictate
code in an easy to
pronounce syntax, which
the system translates to
native syntax in the current
programming language. We
illustrate how this approach
addresses most of the
usability issues for
programming-by-voice.

Keywords
Programming-by-voice,
speech interfaces.

ACM Classification
Keywords
H5.2. User Interfaces;

Copyright is held by the author/owner(s).
CHI 2006, April 22-27, 2006, Montréal, Québec, Canada.

ACM 1-59593-298-4/06/0004.

VoiceCode: an Innovative Speech
Interface for Programming-by-Voice

Introduction

For the growing number of programmers suffering from
Repetitive Strain Injury (RSI), programming-by-voice
(i.e. speech input of programming language code)
could be an attractive alternative to mouse and
keyboard. Unfortunately, programming-by-voice with
standard off-the-shelf Speech Recognition (SR) tools is
not practical, mainly because programming languages
were never meant to be spoken. For example, to
dictate the simple C++ statement below:

if (currRecNum < maxCf f Set)
{

One might have to say something like this:

" if open-paren Charlie uniform Romeo Romeo cap
Romeo echo Charlie cap-November uniform Mike less-
than max begin-capitalize begin-no-space off set end-
capitalize end-no-space close-paren new-line open-
brace new-line new-line close-brace up-arrow tab-key”

This simple example illustrates many of the usability
issues of programming-by-voice described in [3]. These
are: (i) code dictation (punctuation, indentation, and
symbols), (ii) code navigation (local within screen and
global project wide), (iii) error correction and (iv)
mouse-free operation. Various tools have been

developed to address these issues ([1, 2, 3, 4, 5]) but
to date, no single tool exists to address them all.

In this paper, we give an overview of VoiceCode [6] an
OpenSource system for programming-by-voice that
addresses all but one of those issues (for a more
dynamic view of the system, see also the
accompanying video by googling for "VoiceCode CHI
Demo Movie”). Our basic approach is to allow the
programmer to dictate code using a spoken syntax
which is natural, concise as well as easy to utter and to
learn. These natural utterances are then translated in
real time to the more awkward native syntax of the
programming language under use (ex: Python, C++).
For example, to dictate the C++ statement from the
Introduction, one would say something like this:

“if current record number is less than max offset then”

This is much shorter and less cognitively demanding to
speak than the utterance shown in the Introduction.
With VoiceCode, the programmer can also navigate and
modify the code by uttering a continuous stream of
natural spoken commands. In the above example, the
word "then” moves the cursor to the beginning of the
body of the if. Other forms of navigation are possible,
which we will describe later in the paper.

VoiceCode interprets continuous utterances as a
sequence of mostly independent context-sensitive
commands. Commands may do a humber of things
such as: typing template code, moving the cursor,
typing a symbol, deleting code, etc. The commands are
context-sensitive in that the same spoken command
may result in different actions depending on contextual
information such as: code surrounding the cursor,

language of the active source file, nature of the
command that preceded it, etc.

In the rest of the paper, we show with examples how
this approach addresses all but one of the usability
issues listed earlier (namely, global navigation).

Continuous dictation and navigation

With VoiceCode, programmers dictate continuously and
can pause whenever it feels natural. In addition, they
can intersperse continuous navigation commands within
a dictation stream. For example the following
continuous utterance (navigation command in bold):

“clients array at index i jump out equals zero”
Would result in this code:
clientsArray[i] = 0%,

Standard dictation systems do not allow such mixing of
dictation and navigation commands because a phrase
like “jump out” could mean either one of: “jump out of
the brackets pair” or “type the literal string ‘jump out.
Consequently most dictation interfaces require the user
to disambiguate explicitly by speaking navigation
commands as single isolated utterances. In the context
of programming-by-voice where much navigation is
needed, this is too cumbersome. Therefore in
VoiceCode, we allow the programmer to mix commands
and dictation utterances continuously.

Effective use of code templates

VoiceCode addresses the issue of punctuation and
indentation through the use of pre-punctuated and
pre-indented code templates for common structures

(conditionals, for loops, class definitions, etc.). The
programmer can then move around those templates
using natural utterances like "then” and “add
arguments”. In the example from the Introduction,
the word "if” was translated to the following template:

it (")
{

and the word "then” moved the cursor to the blank line
between the two braces. This combination of template
and natural navigation commands allows the
programmer to leave much unsaid (in this case, the
braces, parentheses, all the new-lines, and the tab
key). Note that the word "if” is highly ambiguous
because it is often part of a symbol name (ex:

checkl f Busy). We deal with this issue through context
sensitivity. More precisely, the word "if” types template
code only if it is uttered onto a blank line. Otherwise, it
is considered to be part of a symbol.

Natural dictation of symbols

VoiceCode addresses symbol dictation by allowing the
programmer to utter them as a sequence of English
words, without worrying about abbreviations and
formatting. In the Introduction example, the phrase
“current record number” was automatically translated
to curr RecNum When translating an utterance, if
VoiceCode encounters a phrase that does not
correspond to a known command, it assumes it to be
the spoken form of a symbol. It then looks in a
dictionary of known symbols (compiled from standard
libraries and source files in the current project) to see if
any of them is a likely abbreviation for the spoken form

that was uttered. If it finds one, it simply types it in,
and otherwise, it formats the spoken form to create a
new symbol. When creating a new symbol, it uses the
surrounding code context to decide how to do it. For
example, utterance "current record number” could be
formatted as Cur r ent Recor dNunber or

current Recor dNunber, depending on whether a class
or a method name was expected there. This is another
example of context-sensitivity.

Flexible wording

To facilitate learning of the spoken syntax, VoiceCode
supports different ways of saying the same thing. This
allows programmers to use the form that comes most
naturally to them. For example, all the following
utterances would result in the same code "class bubble
sorter inherits from sorting strategy”, "new class bubble
sorter with superclass sorting strategy”, “define class

bubble sorter subclass of sorting strategy”.

Transferability across programming
languages

In addition, the bulk of the spoken syntax can be used
across different programming languages. This too
facilitates learning since it allows programmers to learn
the syntax once and use it across languages. For
example, if the programmer says: "define class bubble
sorter” into a Python file, VoiceCode will type code that
defines a class in the Python syntax. If the same
utterance is spoken into a C++ file, VoiceCode will type
code that defines a class in the C++ syntax. This is
another example of context-sensitivity.

Local Navigation
VoiceCode addresses local within-screen navigation,
by supporting a variety of strategies: (i) Template

Navigation, (ii) Navigation by Punctuation and (iii)
Navigation by Pseudo Code. We already provided
examples of Template Navigation (ex: "then”, "add
arguments”). Navigation by Punctuation involves
moving the cursor before or after a particular

7o

punctuation mark (ex: "next comma”, “after paren”,
“out of brace”, “jump out”). Navigation by Pseudo
Code involves moving the cursor before or after a
particular snippet of code. This is done by uttering a
word like "before” or “"after” followed by an utterance
that could be used to dictate the desired snippet of
code (ex: “after clients array at index zero”).
Navigation commands can be repeated using
subsequent commands, in the same or reverse
direction (ex: “again 2 times”, “previous one”). Such
utterances are considered repetition commands, only if
the previous command allows repetition (of which
navigation commands are particular examples). If not,
they are taken to be part of a symbol. This is another
example of context sensitivity. Combined together,
these 3 strategies provide much better support for
navigating code than standard commands like "move
up/down/left/right”. Moreover, they are effective
enough to support mouse-free operation.

Error correction

VoiceCode supports two types of error correction: (i)
Not What I Said and (ii) Not What I meant. Not What
I Said is the standard type of correction and addresses
situations where VoiceCode did not correctly recognize
the words that were spoken. Not What I Meant is
non-standard and addresses situations where
VoiceCode did recognize the spoken words correctly,
but translated them to the wrong code. For example, if
“current record number” was translated to symbol
current _record_nb when the user actually meant

symbol curr RecNum For both types of correction,
VoiceCode is able to correct the content of the source
files based on the user’s correction, and also to adapt in
order to avoid the same mistake in the future.

Conclusion

We believe VoiceCode is one of the best (if not the
best) and most complete tools currently available for
programming-by-voice. It represents an innovative
application of speech interfaces to a domain that is not
well serviced by standard dictation systems. To achieve
this, we had to use several non-standard techniques:
mixing dictation and commands in a continuous speech
stream, context-sensitive commands, Not What I Meant
correction, and automatic generation of abbreviations.
Some of those techniques may have applications to
speech interfaces outside of the programming domain.

References

[1] Arnold, S. et al. Programming by Voice,
VocalPrograming. In Proc. of the ACM Conference on
Assistive Technologies. Nov 2000.

[2] Begel, A. Programming By Voice: A Domain-specific
Application of Speech Recognition. AVIOS Speech
Technology Symposium-SpeechTek West (2005)

[3] Désilets, A. VoiceGrip: A Tool for Programming-by-
Voice. Int. J. of Speech Technology 4, 2 (2001), 103-
116.

[4] Price D. et al. NaturalJava : A Natural Language
interface for Programming in Java. In Proc. of the Int.
conf. on Intelligent User Interface. January 2000.

[5] Snell, L. An Investigation Into Programming by
Voice and Development of a toolkit for Writing Voce-
Controlled Applications. M Eng. Report. Imperial college
of Science, Technology and Medicine, London. June,
2000.

[6] The VoiceCode project. http://voicecode.iit.nrc.ca/.

