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Abstract: High-throughput microarray data are extensively produced to study the effects 

of different treatments on cells and their behaviours. Understanding this data and identi-

fying patterns of groups of genes that behave differently or similarly under a set of ex-

perimental conditions is a major challenge. This has motivated researchers to consider 

multiple methods to identify patterns in the data and study the behaviour of hundreds of 

genes. This paper introduces three methods, one of which is a new technique and two are 

from the literature. The three methods are cluster mapping, Rank Products and SAM. 

Using real data from a number of microarray experiments comparing the effects of two 

very different products we have identified groups of genes that share interesting expres-

sion patterns. These methods have helped us to gain an insight into the biological prob-

lem under study.   

1   Introduction  

Over the last few years we have seen an explosion of high throughput microarray data 

being produced by biologists and other researchers, studying the behaviour of multiple 

genes at the same time. These experiments, mostly related to gene response analysis, have 

been applied to several biological processes. One of the most popular applications is to 

detect the differences of gene expressions between two or more conditions. Each condition 

may be related to a treatment, physiological state or other type of study. Each experiment 

normally involves some biological replicates. When conditions or treatments are studied, 

two hypotheses may exist:  

(i) there is no difference in gene expressions between two or more conditions, when 

conditions or treatments are compared directly. This implies that the true ratio be-

tween the expression of each gene in the comparing samples is one,  

(ii) there is a significant difference in gene expressions between two or more condi-

tions, when conditions or treatments are compared. This implies that the ratios be-

tween the two conditions is not the same and the goal is to identify group of genes 

that behaved differently and look for patterns that indicate their differences. 

 

     The problem studied here was gene response analysis of microarray data from multiple 

biological experiments that involve using various treatments. The overall goal of this in-
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vestigation was to identify the effects of these treatments on a particular problem under 

consideration. 

 

    To achieve our data mining objectives, three issues were important: (i) selecting the 

right method, (ii) applying the correct data analysis strategy, and (iii) providing a certainty 

factor for each identified gene. Here we applied three methods, two of which are listed in 

the literature and one that has been introduced as part of our research. No a-priori informa-

tion about attributes of interest or their behaviour was used in these studies. However, 

extensive validation techniques were used to evaluate the set of identified attributes. 

The paper continues as follows. We first provide a brief overview of related work and 

introduce methods applied. We then follow with a detailed section on experimental analy-

sis that consists of description of the data, our data preprocessing, results and validation. In 

the last section we present our conclusions. 

2   Related work 

Accurate identification of differentially expressed genes and their related patterns using 

high throughput data has been investigated by many researchers. Here we report most of 

the research related to the knowledge discovery aspect of this paper. Considering gene 

expression data as a matrix (the rows are genes and the columns the results of each ex-

periment), identifying differentially expressed genes can be done by comparing rows or 

analyzing experiments. While most researchers investigate either gene dimensions or ex-

periments, a few investigations combine both [1]. Getz et al [6] proposed a complex, two-

way clustering method with the idea of identifying subsets of the genes and samples so that 

when one group is used to cluster the others, stable and significant partitions are identified. 

Tang et al [8] also investigated a two-way clustering method in which relationships be-

tween genes and experiments are dynamically taken into account. The method iteratively 

clusters through both gene dimensions and experiments. Troyanskaya et al [9] compare 

three model-free approaches, to identify differentially expressed genes. These are: non-

parametric t-test, Wilcoxon Rank Test, and a heuristic method based on high Pearson cor-

relation. Their results using simulated and real data showed very low false positive rates. 

Cui and Churchill [4] applied modified t-test and ANOVA to detect differential expressed 

genes in microarray experiments.  Similarly, Tsai et al [10] used a combination of type-I 

error, power of one- and two-sample t-tests and one- and two-sample permutation tests for 

detecting differentially expressed genes. Their results showed the two-sample t-test to be 

more powerful than others. Of other comparative studies to be listed is the research on 

feature selection and classification by Li et al [7] where multi-class classification of sam-

ples based on gene expressions is investigated.  

Among related work on methods directly related to our research are: (i) Rank Products 

[2] and (ii) Significance Analysis of Microarrays-SAM [11]. The Rank Products method is 

based on biological reasoning and has been evaluated on biological data and shown to 

perform better than a t-test and SAM. SAM, on the other hand assigns a score to each gene 

on the basis of change in gene expression, relative to the standard deviation of all meas-

urements. Performance of SAM was reported in the same paper to be better than conven-



 

tional methods, in terms of false discovery rates.  These methods are explained in the next 

section.   

3   Methods 

 

This section provides an overview of the three methods applied in this research. We start 

with Cluster Mapping, which is introduced in this paper, and continue with a brief descrip-

tion of the other two methods that are listed in the literature. 

3.1   Cluster Mapping 

This method was originally introduced to search for interesting patterns in time series data 

[5]. It consists of a combination of unsupervised and supervised learning techniques. Un-

supervised learning does not need any user’s involvement or interference during the entire 

data mining process (e.g. clustering). Supervised learning requires some forms of user’s 

participation along the line of data analysis process. The first step is to apply a sliding 

window of size x for partitioning experiments (e.g. time points) and move the sliding win-

dow by a step of one. Therefore, for a data set consisting of n experiments (n attribute 

vectors containing gene expression data), the total number of windows to analyze, S (or 

number of combined data points selected), is (n-x) + 1. For example, for a data set with 5 

experiments (n=5) and a window size of 2 (x=2) with a step of one, we will have S=4.  

In the second step, an unsupervised learning process, a clustering method, is applied to 

each window to identify group of genes that, based on a measure of similarity, belong to a 

particular group. The unsupervised method selected for this step will depend on the charac-

teristics of the application for which the data is generated. The gene expression data matrix 

is then labeled with cluster assignments (Fig. 1). 

 

 

 

 

 

 

 

 

 

Fig. 1. Left side of the figure shows the initial structure of the data matrix and right side of the figure 

shows the structure of the data matrix with the list of all clusters obtained with the assigned labels 

      

  We then group together genes that always remain in the same cluster in the sequences of 

clustering on each window. Following is the pseudo code of the algorithm which recur-

sively splits the data matrix based on the labels 
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Procedure SplitData (DataMatrix, StartLabelIndex) 

Attribute at StartLabelIndex with outcomes v
1
, v

2
 …, v

m; 

m is number of the clusters at the StartLabel (ini-
tially, L

1 
is the start label); 

 

    #Split DataMatrix D into subsets D
v1
,…, D

vj,
 …, D

vm;
 

count = 0; # for new labels 
    For i=0; i<m; i

++ 
;           

        If (StartLabelIndex of D
vi
 + 1 != n - x + 1)     

            Then SplitData (D
vi
, (StartLabelIndex + 1)) 

        Else  

   count++; {D
vi
 ∈ D, Label D

vi
 with L

count
};  

        End if 
    End for 
End 

 

As an example, if we use K-Means for clustering with K=k, the total number of new at-

tribute vectors S=s, and then the maximum number of new clusters could be k
s
. The pat-

terns in clusters would then be evaluated based on some domain knowledge and three main 

properties of cluster centroid information: (i) properties of individual experiments (e.g. 

mean, median, etc.), (ii) properties of each experiment with respect to comparing experi-

ments (e.g. dimensionless terms such as forward-centroid ratio, backward-centroid ratio, 

etc.), and (iii) properties of all or a sub-set of experiments (e.g. partitioned slope).  

In this study, instead of clustering every two or three adjacent experiments or condi-

tions, we applied K-Means clustering method, with k=8 to cluster all the genes in each 

individual experimental condition, which was the average of all biological replicates under 

that condition. The value of k=8 was chosen based on a set of experiments, in which we 

tried to minimize the number of genes belonging to more than one cluster. The results 

showed visually good separation that the highly over- and under- expressed genes were 

clearly distinguished from other genes under each individual experimental condition. Due 

to the characteristic of the data, the way of choosing k could be priori, which usually re-

quires a good understanding of the characteristic of the data and the background knowl-

edge of the data. After choosing the value k, we then applied the algorithm described 

above to generate a set of new clusters.  

3.2 Rank Products 

This method has been recently introduced by Breitling et al [2], and is based on ranking of 

genes across different experiments or replicates. The rank of up-regulation (denoted as up
r ) 

for each gene in each experiment is defined as its position on the list after sorting all genes 

by decreasing expression values. Using these rank values across experiments, the com-

bined probability of observing a certain rank pattern in random lists of genes can be esti-

mated as ∏ =
=

K

I i

up

gi

up

g nrRP
1 , )/( , where 

,

up

i gr is the position of gene g in the list of genes sorted 

by decreasing expression values in the ith experiment and ni is the total number of genes. 

In this way, lower RP values indicate a lower likelihood of observing a gene on the top of 



 

the list of differentially expressed genes (up-regulated genes) just by chance. The same 

procedure is carried out to detect down-regulated genes, but sorting them by increased 

expression values. Breitling et al [2] also proposed a simple procedure to measure the 

statistical significance of observed differentially expressed genes based on the likelihood 

of observing a given RP value or better in a random set of experiments. The procedure is 

based on generating a number of random experiments by randomly shifting ranks of genes 

from the original dataset. Then, for each gene, RP values are calculated in each random 

dataset and the number of simulated RP values smaller than or equal to a given experimen-

tal RP value are counted. We can then calculate the average expected value, E(RP), just 

dividing by the number of random experiments. For each gene g, the percentage of false-

positives if this gene (and all genes with RP values smaller than this cutoff) would be con-

sidered as significantly differentially expressed can be also estimated as 

( ) )(/ grankRPEq gg = , where rank (g) denotes the position of gene g in a list of all genes 

sorted by increasing RP value. This estimates the false discovery rate and provides a way 

to assign a significance level to each gene. 

3.3 SAM (Significance Analysis of Microarrays) 

This statistical technique was introduced by Tusher et al [11] to identify differentially 

expressed genes under different experimental conditions. The method assigns a statistics 

score to each gene by considering the relative change of each gene expression level with 

respect to the standard deviation of repeated measurements. The relative difference is cal-

culated as following: 

0)(

)()(
)(

sis

ixix
id

ba

+

−
=      (1)   

where )(ixa  and )(ixb are defined as the average levels of expression for gene i in 

condition a and b, respectively, and )(is  is the standard deviation of the repeated experi-

ments: 

[ ] [ ]{ }� � −+−=
m n

bnam ixixixixqis
22

)()()()()(        (2) 

where�m
and�n

are summations of the expression measurements in condition a and 

b, respectively. In this equation, q = (1/n1+1/n2 )/( n1+ n2-2), where n1 and n2 are the num-

bers of measurements in condition a and b. s0 is a small constant which is chosen to mini-

mize the coefficient of variation. The genes with scores greater than a threshold are 

deemed potentially significant. A false discovery rate, which is the percentage of genes 

identified by chance, is also estimated by performing permutation. The number of falsely 

discovered genes corresponding to each permutation is computed by counting the number 

of genes that exceed a user defined cutoff for the induced and repressed genes. 

 



 

4   Experimental Analysis 

We performed a series of experiments to analyze the data, discover the most useful 

knowledge related to these experiments, and also evaluate the usefulness of CM in multi-

experiment comparison. The following sections provide some details on these studies. 

4.1 The data sets 

The data used in this study were a large data set representing a set of attributes for mul-

tiple biological experiments. Each biological experiment had 2-4 replicates, with 4 treat-

ments of substance A and B. Each data set contained 31200 data points, with two meas-

urements for each attribute of interest. Therefore, each experiment represented a log-ratio 

of biological stimulate and control for 15600 values. Missing data were flagged and the 

entire data was normalized using the Lowess method [3]. 

4.2 Data preprocessing 

The preliminary investigation on the data characteristics showed no particular anoma-

lies, and there were only 0.29% of the values that were found to be missing. According to 

the correlation of gene expression among the replicates under the same treatment, four 

biological samples did not correlate with others and therefore were removed. In addition, 

67 clones were removed due to a high standard deviation (threshold used was 1, empiri-

cally determined) in duplicated data points. Then the gene expression values of intra dupli-

cated clones were averaged. 53 clones were also filtered out due to a high standard devia-

tion (threshold used was 1, empirically determined) among replicates. Since some of our 

analysis methods did not accept data with missing values, we removed 40 data points 

which contained missing data. Finally, there were 15440 clones across the 8 experiments 

left for data analysis. They were: 3 replicates of Substance A, 3 replicates of one kind of 

Substance B and 2 replicates of another Substance B. We note that when CM was applied, 

the average of the biological replicates under each experimental condition was used. 

4.3 Search for patterns 

To identify the most informative genes and to discover all associated patterns in the 

data, we defined a data analysis strategy that is shown in figure 2. We applied the three 

methods that were described earlier and selected a common strategy to validate the signifi-

cance of these genes. The main biological objective was to identify the most informative 

genes that showed a marked: 

(i) over- or under-expression in response to two different preparations of Substance B 

(common genes among Substance B); 

(ii) over- or under-expression in response to Substance B and Substance A compared to 

untreated cells (common genes among Substance B and Substance A); 

(iii) difference in their expression behavior in response to Substance A compared to 

Substance B treatments (different genes among Substance B  and Substance A). 



 

To this end we evaluated the results reported by: (i) CM, SAM and RP, (ii) SAM and 

RP and not CM. We were further interested to learn about all the genes that were validated 

using one of the acceptable techniques. 

We applied CM, SAM and RP to detect genes that were significantly over- or under- ex-

pressed in response to Substance A and Substance B treatments as well as genes that 

showed differences in their expression patterns between both treatments. Specifically, to 

identify meaningful clusters applying CM, we obtained new features (e.g. forward centroid 

slope) from the centroids of the new clusters generated (as described in section 3.1). Two 

criteria are used to determine whether a gene cluster is differently expressed or similarly 

expressed under two conditions, the absolute value of centroid and the slope of the centroid 

under the two experimental conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

If the absolute value of the slope was greater than or equal to certain threshold (1 was used 

in our case, which was determined by a domain expert), and the absolute value(s) of the 

centroid under either of the two conditions was greater than certain threshold (0.8 was used 

(in log 2 ratio), which was also determined by a domain expert), then we considered the 

cluster of genes as differently expressed under the two conditions. Otherwise, if the abso-

lute value of the slope was less than certain threshold (e.g. 1), and the absolute values of the 

centroid under both conditions were greater than certain threshold (e.g. 0.8), then we con-

sidered the cluster of genes similarly expressed under the two conditions. In our experi-

ments for RP, the expected RP-values and False Discovery Rate (FDR) were calculated 

using 100 random experiments (number of permutations) of the same size of the original 

dataset. We selected genes based on the zero false discovery rate. As for SAM, a one-class 

response was applied to identify the genes which were highly over- or under-expressed in 

Substance B (similarly expressed genes among Substance B), and also applied to deter-

mine the genes which were highly over- or under-expressed in Substance B and Substance 

A (similarly expressed among Substance B and Substance A). Two-class unpaired analysis 

was applied to identify genes which were similarly expressed among Substance B but dif-

ferent with respect to Substance A. In order to make proper comparison between the genes 
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Fig.2. Data analysis process 



 

discovered by SAM and RP, we applied the following strategy: based on the X number of 

genes identified by RP, we selected approximately the same number of genes from SAM. 

We should mention that the false discovery rate for SAM was between 0.38 and 10.00 and 

the analysis was based on 100 random permutations. 

4.4 Results  

Our first attempt was to list all the genes identified by the three methods for all biological 

problems (groups). Table 1 shows the number of genes identified by all three methods. The 

numbers in brackets represent unique genes and do not include the unknown ones. 

Table 1. Number of genes discovered by different methods 

 
  SAM RP CM SAM & RP CM & SAM & RP     

 

Group1* 127 104 83 86 (60 known) 69 (46 known)     

Group2* 190 216 74 150 (106 known) 71 (48 known)     

Group3*  56 45 30 41 (13 known) 25 (9 known)    

 

Group1*: Highly over- and under-expressed genes in Substance B (similarly expressed genes 

among all treatments of Substance B). Group2*: Highly over- and under- expressed genes in Sub-

stance B and Substance A (similarly expressed genes among Substance B and Substance A). 

Group3*: Similarly expressed genes among Substance B, but differently with respect to Substance 

A. 

 

     The very first observation in this study was that the number of genes reported by CM 

method, especially in the case of genes that were differentially expressed in the treatments 

with respect to the control, was less than the other two methods (e.g. 83 for CM, vs. 127 

and 104 for the other two, in group 1, in Table 1). SAM and RP methods tend to detect 

genes that are highly over- or under-expressed based on fold-changes in each condition 

compared to the control. CM aims to detect genes that show high absolute ratios of treat-

ment/control, but also show similarities in their expression patterns across treatments.  

To evaluate the usefulness of a complementary method, we defined two main properties 

for the list of genes in a Venn diagram, as listed in Figure 3. The usefulness of these genes 

was evaluated at a later step.  

4.5 Validation: Biological, Literature and others 

To verify the biologically relevant gene expression changes, a series of literature and bio-

logical experimental validations were performed based on the random selection of the 

known genes from each group (unknown genes and replicates were not considered). In this 

study, we compared the ratios of the positive discovery of the number of genes identified 

by all three methods and by two only (SAM and RP). 

   The three methods combined in this study, were able to take into account the statistical 

significance of the genes, and also the gene expression patterns. Tables 2 and 3 show that 

the true discovery rate of genes (which were calculated based on biological experimental 

validation and literature validation) related to the problem under study is increased when 



 

CM is involved for each biological problem (groups 1-2). Table 2 shows the genes found 

in the literature. Table 3 contains results of biological experimental validation. 

 

 
Fig. 3. The shadow in dark gray represents the number of genes identified by the three methods. The 

shadow in light gray is for the number of genes identified by SAM and RP only, and not CM 

Table 2. Number and percentage of literature validated genes from the known gene lists discov-

ered by all three methods and the genes discovered by SAM and RP (refer to fig. 3) 

 
  SAM and RP     SAM and RP and CM      SAM and RP (No CM) 

  discovery rate     discovery rate       discovery rate 

 (dark gray + light gray)    (dark gray)       (light gray)   

 
Group1*   22/60 known genes = 36.6%   18/46 known genes = 39%      4/14 known genes = 28.6% 

Group2*   34/106 known genes = 32%    22/48 known genes = 45.8%   12/58 known genes = 20.1% 

Group3*   6/13 know genes = 46%    2/9 known genes = 22%      4/4 known genes = 100% 

  
      Table 3. Number and percentage of biological experimental (RT-PCR) validated genes from 

randomly selected gene lists (refer to fig. 3) 

 
 SAM and RP    SAM and RP and CM  SAM and RP (No CM) 

 discovery rate   discovery rate   discovery rate 

(dark gray + light gray)    (dark gray)       (light gray)  

 
Group1*  8/60 known genes = 13%  7/46 known genes = 15%   1/14 known genes = 7% 

Group2*  7/106 known genes = 6.6%   6//48 known genes = 12.5%  1/58 known genes =1.7%   

 

 

CM has obviously been able to reduce the false discovery rate of the other two methods. 

This is evident from literature and biological experimental validation. For example, in 

table 2, for group 1 and 2, when CM was applied, the discovery rate increased from 36.6% 

to 39% and 32% to 45.8%, respectively. However, for group 3 CM did not perform this 

way. It is important to note that the validated results are based on some arbitrary selection 

of genes and did not follow any particular selection process. For example, in group3, for 

SAM and RP (not CM), all 4 genes were evaluated; however for SAM, RP and CM, only 2 

out of 9 genes were evaluated. This was due to the amount of time that was required for 

validation. Table 3 also shows that the CM involvement reduced the false discovery rate 

for the list of genes only listed by the other two (SAM and RP). For groups 1 and 2, the 



 

discovery rate increased from 13% to 15% and 6.6% to 12.5%, respectively, when CM was 

applied.  

Overall the discovered patterns were very interesting and most of them had not been re-

ported or validated before. 

 

5. Conclusion 

This paper deals with analyzing data from multiple biological experiments to identify gene 

responses to different experimental conditions. The main motivation for this research was 

to complement existing methods to achieve the best discovery rate when one needs to study 

the behaviour of hundreds of genes using an unsupervised approach. Two of the methods 

applied are from literature and one is a new approach. These methods have been applied to 

analyze data from a number of microarray experiments comparing the effects of two very 

different products. We have identified groups of genes that share interesting expression 

patterns. Through random selection, we have further validated certain genes from the list of 

genes identified by these methods. The approach has demonstrated (i) the strength and 

weakness of the three methods applied to genomics and (ii) that a single method may not 

be able to identify all gene responses under different experimental conditions, let alone that 

most methods by themselves provide a large list of genes.  

Overall, these methods have helped us to gain insight into the biological problem under 

study. The results also show that over-fitting may be resolved when multiple methods are 

applied. In addition to the methods presented here, other methods such as Wolpert’s 

stacked generalization [12], boosting and bagging also could be suitable. In the future 

research we will explore the possibility of using different k value for K-Mean clustering, 

and also applying other clustering techniques such as SOM and Hierarchical clustering. 

We may also evaluate these methods to other data sets and consider other approaches for 

gene validation. This would be valuable support for gene identification and gene response 

analysis using microarray data and many other genomics data mining tasks that require a 

complex data analysis process. 
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