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Abstract

The objective of this study was to examine the effects of the antioxidant �-lipoic acid (ALP) versus a medium chain triglyceride oil

mixture (MCTo), which was designed to increase energy expenditure and to improve lipid profiles containing medium chain triglycerides,

phytosterols, and omega-3 fatty acids in the form of flaxseed oil. A total of 48 hamsters were fed a) hypercholesterolemic (HC) control, b)

HC MCTo, c) HC ALP, or d) HC MCTo/ALP diet for 4 weeks. No differences were observed on food intake, body weight, total body water,

lean and fat mass, and tissue thiobarbituric acid reactive substances (TBARS). ALP alone had no effect on total cholesterol (TC); however,

MCTo feeding increased TC with (P � 0.03) and without (P � 0.003) ALP when compared with control. ALP increased HDL levels

compared with control (P � 0.04) and MCTo/ALP (P � 0.007) groups. MCTo, with (P � 0.0001) or without (P � 0.006) ALP, increased

non-HDL cholesterol levels versus control. The non-HDL:HDL cholesterol ratio was decreased by ALP compared with MCTo (45%) and

MCTo/ALP (68%) (P � 0.0001), a similar trend was seen when compared with the HC control (22%) group (P � 0.14). Triglyceride levels

were not altered by any dietary treatment. Liver and heart tissue reduced glutathione (GSH) was increased (P � 0.05) by all three treatments

when compared with control. Both tissues showed an increase (P � 0.05) in oxidized glutathione (GSSG) when fed ALP as compared with

other treatments. Hamsters fed ALP had a lower (P � 0.05) GSH/GSSG ratio compared with other treatment groups. In conclusion, MCTo

feeding does not elicit beneficial effects on circulating plasma lipids and measures of body composition. In addition, our results do not

clearly support an improvement in oxidative status through supplementation of ALP. However, our results do support the existence of

beneficial effects of ALP on circulating lipoprotein content in the hamster. © 2004 Elsevier Inc. All rights reserved.

1. Introduction

Diseases of the heart and blood vessels, collectively

known as cardiovascular disease (CVD), are the leading

cause of death in Canada [1]. Primary risk factors for CVD

are obesity, diabetes, hypertension, elevated blood choles-

terol levels, and oxidative stress. In an attempt to combat

these risk factors, science has turned to the investigation of

bioactive substances that may offer protection to the car-

diovascular system.

Several studies suggest that oxidative stress plays a sig-

nificant role in the pathogenesis of atherosclerosis [2–4].

Therefore, in formulating a combination of bioactive com-

ponents to combat CVD, a powerful antioxidant, �-lipoic

acid (ALP) was used. ALP has been shown to protect LDL

cholesterol from in vivo oxidation [5–8]. Levels of other

functional antioxidants such as, vitamins C and E and glu-

tathione have also been shown to be increased via recycling

through supplementation with ALP [5,9,10]. Apart from the

antioxidant functions of ALP, effects of ALP on plasma

lipid profiles in animals have also been examined yielding

inconclusive results. Early studies in the 1970s and 1980s

have shown the capacity of ALP to decrease serum total

cholesterol in rabbits [11] and atherosclerosis in quail [12].

In contrast, more recent research has reported no significant

effects of ALP supplementation on cholesterol levels

[7,13,14].

Medium chain triglycerides (MCT) have been shown to

be more easily absorbed into the intestinal lumen compared

with long chain triglycerides (LCT) [15]. MCT also differ

from LCT in that they are transported directly to the liver

via the portal vein and thus do not pass the adipose tissue

A portion of these data have been presented at the Experimental

Biology Conference (FASEB), New Orleans, LA, April 20–24, 2002.
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before hepatic disposal. These characteristics are thought to

be responsible for the different rates of fat oxidation for

MCT versus LCT. In addition, MCT have been shown to

undergo increased oxidation in both animal studies [16,17]

and human studies [18–20]. These reports of increased

oxidative capacity have made MCT appealing as a possible

adjunct for the treatment of obesity; however, MCT have

also been shown to have deleterious effects on the blood

lipid profile, causing their use to be less desirable. There is

strong evidence in the literature to suggest that MCT in-

crease circulating triglyceride levels [19,21,22]. In addition,

MCT have also been shown to increase circulating LDL

cholesterol levels [23,24]. However, some studies have ob-

tained different results demonstrating no effect of MCT on

plasma triglycerides [23,24], as well as the capacity to

decrease circulating triglycerides [25] in addition to im-

provements in plasma LDL and total cholesterol (TC) levels

[22,26,27].

With the existing knowledge of possible negative effects

of MCT feeding on blood lipids, the concept of combining

MCT with phytosterols and n-3 fatty acids to negate nega-

tive effects is provocative. Plant sterols have been shown to

decrease both plasma total [28,29] and LDL cholesterol

[30,31] without significant alterations in plasma HDL cho-

lesterol and triglyceride concentrations. Phytosterols are

known to elicit these actions through inhibition of dietary

cholesterol absorption from the intestine [32]. In addition,

supplementation with alpha-linolenic acid in the form of flax-

seed oil has been shown to increase tissue eicosapentanoic

(EPA) concentrations in vivo [33]. EPA is thought to be one

of the components responsible for the capacity of fish oils to

decrease plasma triglyceride levels [34]. Alpha-linolenic

acid feeding has been shown to decrease plasma triglyceride

levels by 22–24% in humans [35]. These results support the

rationale for the combined feeding of phytosterols and flax-

seed oil in an attempt to temper increases in plasma cho-

lesterol and triglyceride levels caused by MCT feeding.

This medium chain triglyceride oil mixture (MCTo) has

been tested in human subjects by our research team. MCTo

feeding for 27 days in 17 healthy obese women elicited a

decrease of 10.2% in LDL cholesterol, with no significant

change in circulating triglyceride or HDL cholesterol con-

centrations [36]. In addition, MCTo feeding in these women

was shown to increase average energy expenditure and fat

oxidation as measured through indirect calorimetry [37].

Similar results were obtained when 24 healthy overweight

men were fed MCTo for 28 days [38]. In concert with the

favorable changes in the lipid profile, these participants

exhibited a decrease in upper adipose tissue measured

through magnetic resonance imaging [39].

In light of the aforementioned findings our main objec-

tive of this study was to examine the efficacy of orally

administered ALP and MCTo, given both independently

and in combination, on body weight, lipid profiles, and

antioxidant status in the Golden Syrian hamster. We tested

the null hypothesis that feeding male Golden Syrian ham-

sters a moderately high cholesterol diet containing a MCTo

composed of MCT, phytosterols, and n-3 PUFAs alone and

in combination with ALP would not elicit beneficial effects

on blood lipid concentrations, body weight, and measures of

oxidative stress.

2. Methods and materials

This experimental protocol was approved by the Animal

Ethical Review Committee of the Faculty of Agriculture

and Environmental Sciences for the School of Dietetics and

Human Nutrition at McGill University, Montreal, Canada.

2.1. Diet preparation and animal accommodation

A total of 48 Golden Syrian hamsters weighing 80–100g

(Charles River Laboratories, Wilmington, MA) were used

in this experiment. Hamsters were acclimatized for 2 weeks

while receiving free access to water and were fed a standard

nonpurified laboratory diet (Charles River Laboratories,

Wilmington, MA) ad libitum. For the duration of the study

hamsters were exposed to a 12 hour light–dark cycle start-

ing at 9 AM. After this 2-week period, animals were ran-

domized into four groups and switched to semipurified diets

(ICN Pharmaceuticals, Inc.). Diets were prepared weekly

and stored at �80°C. Dietary composition is shown in

Table 1. All diets were designed to be moderately athero-

genic, with a total cholesterol content of 0.25% wt/wt. The

total fat content of the diet was 10% fed as a mixture of beef

tallow and safflower oil with a calculated fatty acid com-

position [40] as follows: 4% 14:0, 21.4% 16:0, 5.9% 16:1,

13.8% 18:0, 44.9% 18:1, 3.3% 18:2 n-6, 0.02% 18:3 n-3).

Once dietary treatment commenced the unmodified athero-

genic control diet was fed to one group of hamsters (Group

1). Groups 2–4 were supplied with the same basic diet, with

substitutions to the fat content. Group 2 received 75% of the

supplied fat as the MCTo with a calculated fatty acid com-

position [41] as follows: 0.2% 6:0, 37.0% 8:0, 30.4% 10:0,

3.6% 12:0, 1.1% 14:0, 3.5% 16:0, 0.2% 16:1, 0.7% 18:0,

13.8% 18:1, 4.6% 18:2n-6, 4.9% 18:3n-3, 0.1% 20:0, with

the remaining 25% given as the beef tallow/safflower mix-

ture. Group 3 received the control fat blend with powdered

racemic ALP added at 0.3% wt/wt of diet. Group 4 received

MCTo as 75% of dietary fat in addition to 0.3% wt/wt of

racemic ALP. Food intake and food spillage were measured

daily, and body weight was recorded every 3 days.

2.2. Sample collection

After 30 days of dietary treatment, hamsters were fasted

for a 12-hour period. After the fasting period, animals were

injected with 0.3 g of deuterium oxide, which had been

precisely weighed. Three hours post-injection, hamsters

were anesthetized with carbon dioxide and blood samples

were collected by decapitation. Blood was collected in eth-
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ylenediamine tetracetic acid (EDTA) tubes and centrifuged

at 1500 � g for 15 minutes to obtain red blood cells and

plasma. Plasma was immediately separated and aliquoted

into microcentrifuge tubes. Liver, heart, and kidney tissues

were harvested, weighed, snap-frozen in liquid nitrogen. All

samples were coded and maintained in �80°C storage until

further analysis.

2.3. Plasma lipid measurements

Plasma total cholesterol, high-density lipoprotein (HDL)

cholesterol, and triglyceride levels were measured in dupli-

cate using an Abbott VP Super System Autoanalyser (Ab-

bott, Irving, TX) in conjunction with commercial enzymatic

kits (Abbott Laboratories, Montreal, PQ, Canada). Measure-

ment of HDL cholesterol in plasma was carried out after

precipitation of apo-B containing lipoproteins with dextran

sulfate and magnesium chloride [42]. Results were ex-

pressed as non-HDL (VLDL � IDL � LDL) cholesterol

instead of LDL cholesterol because the Friedewald equation

[43] may not be applicable to hamsters. Thus the concen-

tration of lipoprotein (non-HDL) cholesterol was calculated

by subtracting HDL cholesterol concentrations from plasma

total cholesterol.

2.4. Deuterium oxide enrichments

Deuterium analyses were conducted using standard vac-

uum techniques as previously described by Jones et al. [44].

To determine D2O enrichment, lengths of 6 cm (OD) Pyrex

tubing were attached to a vacuum system containing 0.06 g

of zinc. A capillary tube (1 �L) filled with plasma was

added before immersion in liquid nitrogen. Gases were

evacuated and each tube was flame-sealed. Samples were

prepared in triplicate. They were then combusted for 1 hour

at 520°C to produce hydrogen gas. After reaching room

temperature, analyses were carried out using a 903D dual-

inlet isotope ratio mass spectrometer (IRMS) (Cheshire,

England). Isotope enrichments were determined against a

standard curve produced from varying concentrations of

deuterium and doubly distilled water, thus enabling the

calculation of total body water. Variation in sample repli-

cates was tolerated within 1%. Calibration of the mass

spectrometer was conducted by using Vienna standard mean

ocean water.

2.5. Body composition calculations

Body composition was calculated using total body water

calculated from deuterium oxide enrichment and final body

weight (FBW) on day 30. Total body water was calculated

using the enrichment of plasma samples taken at 3 hours

after deuterium administration. Based on the assumption

that fat-free mass (FFM) is 73.2% water, FFM was calcu-

lated using the equation: FFM � TBW/0.732 [45]. Fat mass

(FM) was then determined using the equation: FM � FBW

� FFM.

2.6. Analysis of thiobarbituric acid reactive substances

Plasma concentrations of thiobarbituric acid reactive

substances (TBARS) were measured using a modified

method of Asakawa and Matsashita [46] and Wong et al.

[47]. Before the TBARS assay, liver and heart tissue, 0.5g

Table 1

Composition of experimental diets.

Ingredients (% wt/wt) Group 1

Control

Group 2

MCT Oil Mix

Group 3

Lipoic Acid

Group 4

MCT Oil Mix &

Lipoic Acid

Vitamin Free Casein 20.0 20.0 20.0 20.0

Corn Starch 26.0 26.0 26.0 26.0

Sucrose 33.0 33.0 33.0 33.0

Beef Tallow/Safflower Mixture1 10.0 2.5 10.0 2.5

DL-methionine 0.5 0.5 0.5 0.5

Mineral Mixture2 4.0 4.0 4.0 4.0

Vitamin Mixture3 1.0 1.0 1.0 1.0

Choline Bitartrate 0.2 0.2 0.2 0.2

Butylhydroxytoluene 0.02% of oil 0.02% of oil 0.02% of oil 0.02% of oil

Cholesterol 0.25 0.25 0.25 0.25

Cellulose 5.0 5.0 5.0 5.0

MCT Oil Mixture4 0.0 7.5 0.0 7.5

Lipoic Acid5 0.0 0.0 0.3 0.3

1 Of the 10% or 2.5% dietary fat content, 98% was beef tallow and 2% was safflower oil.
2 AIN-93 Mineral Mix, ICN Pharmaceuticals, Costa Mesa, CA (cat# 960401).
3 AIN-93 Vitamin Mix, ICN Pharmaceuticals, Costa Mesa, CA (cat# 960402).
4 MCT oil mixture: 64.7% medium chain triglycerides, 3.4% phytosterols, 6.8% flaxseed oil, 12.6% olive oil, 6.8% canola oil, 5.8% coconut oil. The oil

was blended once prior to study commencement and was stored at 4°C. The oil blend was predetermined based on previous human studies in our laboratory.
5

�-Lipoic acid was given as a racemic powder. It was blended into the fat component of the diet and then added to the dry ingredients during diet

preparation periods. Supplied by Forbes Medi-Tech, Vancouver, BC.
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and 0.2g respectively, were homogenized in a 1:10 ratio of

ice-cold KCl. The tissue homogenate was stored on ice and

aliquoted into triplicate tubes each containing 250�L.

The thiobarbituric acid (TBA) reaction was initiated

when the sample or standard was added along with buty-

lated hydroxy-toluene, orthophosphoric acid, and TBA. The

mixture was heated for 1 hour in a 100°C water bath,

allowing for color change. After color change, butanol:

pyridine solution (15:1) was added and centrifuged at 3000

rpm for 15 minutes to obtain an upper butanol phase, which

was added to a microcuvette and read for absorbance at

triple wavelengths of 508, 532, and 556 nm using a Beck-

man Spectrophotometer (DU 640). A regression curve was

calculated from the standards and sample values were ob-

tained.

2.7. Glutathione (GSH) measures

Before analysis, liver and heart tissues were homoge-

nized in a 1:10 dilution of MES buffer, containing 2-(N-

norpholino) ethanesulphonic acid, phosphate, and EDTA.

Homogenates were centrifuged at 10,000 � g for 15 min-

utes. Supernatants were deproteinated using meta-phospho-

ric acid (MPA), and stored at –20°C until complete kit

analysis (Cayman Chemical Company, Ann Arbor, MI,

2000).

Levels of GSH and GSSG were measured using Cayman

Chemical Kits (Ann Arbor, MI, GSH Assay Kit Cat#

703002) following the same methodology outlined in

Poirier et al. [48]. The kit employs a carefully optimized

enzymatic recycling method, using glutathione reductase,

for the quantification of GSH. Measurement of the absor-

bance was done at 405nm (Wallac Victor 2 1420 Mulilabel

Counter).

GSH is readily oxidized to the disulphide dimer GSSG.

GSSG is produced during the reduction of hydroperoxides

by GSH peroxidase, GSSG may then be reduced to GSH by

GSH reductase. Due to the GSH reductase within the Cay-

man kit, GSSG can be measured by derivatizing GSH with

2-vinylpyridine (VP), followed by a 60-minute incubation

at room temperature. Measurement of the absorbance was

done at 405nm (Wallac Victor 2 1420 Mulilabel Counter).

2.8. Statistical methods

All data were tested for normality and are expressed as

means � SD. Endpoint data between treatments were ana-

lyzed using one-way analysis of variance (ANOVA). Ob-

served treatment differences were evaluated using Tukey’s

post-hoc comparison. The level of significance for rejection

of the null hypothesis was set at p�0.05. Version 8.0 of

SAS Software (SAS Institute, Cary, NC, US, 1999) was

used to perform all statistical analysis.

3. Results

A total of 48 hamsters completed the 30-day feeding

trial. At all times during the study, animals appeared to

remain in a healthy condition. There were no signs of

impaired growth, unusual behavior, or excessive hair loss,

which are often signs that animals are experiencing adverse

effects related to treatment.

3.1. Food intake and body weight

Daily dietary feed intake of hamsters did not differ

among groups over the 30 day study period (Fig. 1). In

addition, body weight over days 0–30 did not show any

significant differences across groups (Fig. 2).

3.2. Plasma lipid profile

Plasma lipid values are presented in Table 2. ALP alone

fed to hamsters at 0.3 % wt/wt had no effect on plasma TC.

However, MCTo feeding at 7.5% wt/wt of diet increased

TC both with (P � 0.03) and without (P � 0.0003) ALP

compared with the control diet.

ALP alone increased HDL-C levels compared with the

Fig. 1. Effects of dietary treatment on the daily feed intake of hamsters. No

significant differences were observed between groups. Data are presented

as means � SD; n � 12 per group. ALP � �-lipoic acid; MCTo � medium

chain triglyceride oil mixture.

Fig. 2. Effects of dietary treatment on hamster body weight. No significant

differences were observed between groups. Data are presented as means �

SD, n � 12 per group. ALP � �-lipoic acid; MCTo � medium chain

triglyceride oil mixture.
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control (P � 0.04) and MCTo/ALP (P � 0.0007) groups.

However, ALP treatment was not significantly different

from MCTo feeding. Plasma non-HDL cholesterol fraction

was increased with MCTo feeding both with (P � 0.0001)

and without (P � 0.006) ALP, when compared with the

control group.

ALP supplementation decreased the non-HDL:HDL ra-

tio compared with MCTo (45%) and MCTo/ALP (68%) (P

� 0.0001). ALP exhibited a similar though non significant

trend of non-HDL:HDL cholesterol decrease (22%) (P �

0.14) when compared with the HC control diet (Fig. 3).

Triglyceride levels were not altered by any of the dietary

treatments after 30 days.

3.3. Body composition

There were no significant differences observed between

groups for total body water, lean body mass, fat mass, final

body weight (Table 3). A significant positive correlation

was found between hamster body weight and fat mass (r �

0.71, p � 0.0001).

3.4. Reduced GSH concentrations in liver and heart

Treatment effects on liver and heart tissue GSH are

shown in Table 4. ALP and MCTo, alone and in combina-

tion, increased (P � 0.0004) liver tissue GSH compared

with the HC control diet. Similar results were obtained in

heart tissue where ALP at 0.3% wt/wt diet, MCTo at 7.5%

wt/wt diet and the combination treatment, each increased

(P � 0.05) GSH levels when compared with the HC

control diet.

3.5. Oxidized glutathione concentrations (GSSG) in liver

and heart

Treatment effects on GSSG in liver and heart tissue are

shown in Table 4. In liver, dietary treatment had a signifi-

cant main effect (P � 0.0001) on GSSG concentrations.

ALP supplementation increased GSSG concentrations com-

pared with the MCTo (P � 0.0001), MCTo/ALP (P �

0.0007), and the HC control diet (P � 0.0001). The MCTo/

ALP treatment also resulted in increased GSSG concentra-

tions when compared with MCTo alone (P � 0.03) and the

HC control diet (P � 0.0008).

A significant main effect of dietary treatment was also

seen in heart tissue (P � 0.0006). ALP supplementation of

0.3% wt/wt increased GSSG concentrations compared with

MCTo/ALP (P � 0.0055), MCTo alone (P � 0.0002), and

the HC control diet (P � 0.0005). No significant differences

Table 2

Plasma total-cholesterol, HDL-cholesterol, non-HDL-cholesterol, and triglyceride concentrations1.

Treatment Group TC2 HDL-C3 (non-HDL)-C4 TG5

Control 6.44 � 0.94c 4.70 � 0.69bc 1.74 � 0.61b 6.15 � 2.70

ALP6 6.79 � 0.88bc 5.26 � 0.75a 1.53 � 0.35b 5.45 � 1.31

MCTo7 7.61 � 0.65a 5.00 � 0.64ab 2.61 � 0.42a 6.65 � 1.97

MCTo/ALP 7.29 � 1.10ab 4.30 � 0.45c 2.99 � 0.83a 5.02 � 1.00

1 Values are expressed as mmol/L � SD. Values carrying different superscript letters indicate significant differences between treatment groups (p � 0.05)

n � 12 per group.
2 total cholesterol
3 high-density lipoprotein cholesterol
4 low, very low, intermediate-density lipoprotein cholesterol
5 triglycerides
6

�-lipoic acid
7 medium chain triglyceride oil mixture

Fig. 3. Effects of dietary treatment on plasma non-HDL:HDL ratio. Sig-

nificant differences between treatment groups are shown by letter sub-

scripts (P � 0.05). Points represent individual animals. Bars represent

treatment group means; n � 12 per group. ALP � �-lipoic acid; MCTo �

medium chain triglyceride oil mixture.

Table 3

Hamster body composition measures: total body water (TBW), lean

body mass (LBM), and fat mass (FM)1.

Treatment Group TBW LBM FM

Control 74.3 � 6.6 101.8 � 9.1 15.8 � 6.9

ALP 77.8 � 6.4 106.6 � 8.7 16.6 � 9.2

MCTo 78.2 � 7.6 107.1 � 10.4 22.6 � 14.7

MCTo/ALP 79.3 � 4.2 108.6 � 5.8 19.4 � 13.7

1 Values are expressed as grams � SD. There were no significant

differences between treatments n � 12 per group.
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were observed between MCTo/ALP, MCTo, or HC control

diet for heart GSSG concentrations.

3.6. Effects of dietary treatment on GSH/GSSG ratio in

liver and heart tissue

Hamsters fed ALP had significantly lower liver GSH/

GSSG ratios as compared with HC control (P � 0.0001),

MCT (P � 0.0002), and MCTo/ALP (P � 0.0024) treat-

ments. Although different from the ALP group, there were

no remaining significant differences between the other di-

etary treatments. This effect was not seen in the heart tissues

of hamsters (Fig. 4).

3.7. TBARS concentrations in liver and heart

In both liver and heart tissue there were no significant

differences in TBARS concentrations between diet treat-

ments (Table 4).

4. Discussion

Our results demonstrate that in the hamster model, treat-

ment with the MCT oil mixture (MCTo) was atherogenic,

despite the addition of ALP. In addition, supplementation of

ALP did not appear to offer improved oxidative status.

Reports of the effects of MCT feeding on circulating

lipid levels in animal [22,26,27] and human studies [19,21–

25] have been well documented. Recent studies in our

laboratory have shown that in humans, MCT oil in combi-

nation with phytosterols and flaxseed oil has the capacity to

negate the deleterious effects of plain MCT feeding [36].

Unexpectedly, this was not observed using the hamster

model. We report that MCTo feeding increased circulating

plasma total and non-HDL cholesterol fractions, which is a

risk factor for the development of CVD. This result is not

consistent with previous reports in hamsters [26] and rats

[22], where MCT feeding was shown to decrease plasma

LDL and total cholesterol levels. More specifically, our

findings are in contrast to those of Woollett et al. [27] who

found that dietary treatments composed of C8:0 and C10:0

plus 0.12% pure cholesterol resulted in no detrimental ef-

fects on plasma LDL-cholesterol in hamsters. Contradictory

findings may be attributed to the fact that our animals were

fed MCTo in combination with 0.25% wt/wt pure choles-

terol. Therefore, in our laboratory the same MCTo tested in

both humans and animals has elicited different results, lead-

ing us to focus our attention to the effects of ALP treatment.

ALP influenced the lipid profile through a significant

increase in circulating HDL-cholesterol levels, which re-

sulted in a concomitant decrease in the non-HDL:HDL

ratio. This shift in HDL provides evidence that ALP on its

own may offer improvement to the CVD risk profile

through a beneficial alteration in blood lipid components.

Several authors have commented on the cardiovascular ben-

efits of increasing circulating HDL-cholesterol levels

[49,50,51]. Specifically, Williams [49] reported that an in-

crease of 1 mg/dL in HDL cholesterol translates into a 4.7%

decrease in CVD mortality and a 29% decrease in the risk of

developing heart disease in humans. Despite the encourag-

ing increase in HDL levels, it is important to keep in mind

that although we recognize that the beneficial value of an

increase in HDL-cholesterol may exist, clinically the pre-

dictability of a treatment agent may be dependent on a

number of other factors [52]. Certainly this may be the case

for our present findings within the hamster model. Clearly

Table 4

Liver and heart tissue reduced glutathione (GSH), oxidized glutathione (GSSG) and thiobarbituric acid reactive substances (TBARS) concentrations1.

Treatment Group GSH GSSG TBARS

LIVER HEART LIVER HEART LIVER HEART

Control 3.05 � 0.92b 0.46 � 0.26b 0.37 � 0.12c 0.11 � 0.034b 87.44 � 28.54 80.76 � 28.20

ALP2 3.75 � 1.29a 0.61 � 0.21a 1.29 � 0.37a 0.14 � 0.057a 76.28 � 16.43 83.09 � 21.81

MCTo3 3.92 � 1.01a 0.57 � 0.23a 0.58 � 0.39bc 0.10 � 0.037b 83.26 � 28.37 78.35 � 17.86

MCTo/ALP 4.23 � 1.02a 0.60 � 0.26a 0.73 � 0.35b 0.11 � 0.036b 83.19 � 26.06 77.86 � 13.08

1 Values are expressed as mean �mol/g tissue concentrations � SD. Values carrying different superscript letters indicate significant differences between

diets (p � 0.05) n � 12 per group.
2

�-lipoic acid
3 medium chain triglyceride oil mixture

Fig. 4. Effects of dietary treatment on the reduced glutathione (GSH) to

oxidized glutathione (GSSG) ratio. Significant differences between groups

are shown by superscript letters (P � 0.05); n � 12 per group. ALP �

�-lipoic acid; MCTo � medium chain triglycerides.
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the predictability of ALP-mediated effects on lipid metab-

olism requires further exploration. Confounders such as

dietary habits, lifestyle, individual cholesterol metabolism,

genetics, and environment could all play a key role in the

magnitude of treatment effects and should be addressed in

future research investigating ALP supplementation.

One of the major concerns when feeding MCT is a

potential increase in plasma triglyceride concentrations

[19,21,22]. This was not observed in our study. In theory,

this may be attributed to alpha-linolenic acid contained in

flaxseed oil being converted to the long-chain n-3 eicosap-

entanoic acid (EPA) and tempering any increase in triglyc-

erides elicited from MCT feeding. However, at a flaxseed

oil supplemention level of 0.5%, it is unlikely this action is

responsible for such a finding. Furthermore, a review by

Harris [34] concluded that hamster plasma triglyceride lev-

els may not respond to n-3 PUFAs in the same manner as

humans. If this is the case, then our study supports the

findings that MCTo feeding does not affect circulating tri-

glyceride levels in hamsters as reported in other studies

[19,21,22,53,54].

ALP, MCTo, and MCTo/ALP all exhibited increased

GSH levels compared with the HC control diet in both liver

and heart tissues. GSH is one of the body’s most important

endogenous antioxidants responsible for free radical scav-

enging in all cell types [9,55]. Thus all three dietary treat-

ments containing bioactive components offered increased

antioxidant protection to hepatic and cardiac tissues when

compared with the hypercholesterolemic control diet. How-

ever, neither diet proved to be more effective than the other.

Similar results of oxidized glutathione (GSSG) concen-

trations in liver and heart tissues were observed, with both

tissues unexpectedly having increased GSSG levels after

supplementation with ALP. After absorption into the cells

of tissues, ALP is reduced to its dithiol form, dihydrolipoic

acid (DHLA). DHLA is a strong reducing agent that is

capable of converting GSSG to GSH [56]. However, despite

this action we observed increased GSSG levels in both

tissues. Packer et al. [57] comment that the ability of dehy-

rolipoamide dehydrogenase to reduce ALP to DHLA shows

a marked preference for the R-enantomer of ALP. Thus, in

the current study in which a racemic mixture was supple-

mented, the overall cellular levels of the highly active

DHLA may not have reached a beneficial threshold, thus

inhibiting the recycling of GSSG to GSH.

A recent study by Jones et al. [58], examined the uptake

and antioxidant actions of ALP in endothelial cell cultures.

Results indicated that with concentrations of ALP �0.5

mmol/L in cell culture, there is a concomitant fall in cellular

GSH, NADPH, and NADH. The authors comment that the

reducing capacity of the cellular system is taxed at high

ALP concentrations, such that GSH is oxidized in response

to increased oxidative stress within the cells. Unfortunately,

cellular concentrations of ALP were not measured in the

current study, and therefore it is not possible to know

whether our animals experienced ALP concentrations that

reached this pro-oxidant threshold; however, we did see a

significant increase in oxidized glutathione in both liver and

heart tissues. Thus, the importance of measuring ALP con-

centrations in both plasma and tissues should not be over-

looked in future studies examining oxidative status in ani-

mal models.

The lack of change observed in hamster body weight and

body composition do not support the advantages proposed

of MCT use as an adjunct to weight management. In addi-

tion, our results do not support findings in studies in which

MCT feeding led to a decrease in fat tissue deposition and

overall weight loss [59–62]. However, it is noted that the

aforementioned studies fed between 30–50% of total kcal in

the form of dietary fat. The present study used 10% of

energy as fat, which is double that of the outlined require-

ments for hamsters. Our findings that MCTo feeding had no

effect on overall body weight does support previous work in

rats published by Hill et al. [63]. It is possible that the

proportion of C8:0 and C10:0 in the MCT oil tested has the

potential to alter the oils functioning [64]. Octanoate has

been described to exhibit increased oxidation rates, a lower

energy supply, and a decreased ability to form complex

lipids. Therefore, it is possible that an unfavorable ratio of

C8:0 to C10:0 fatty acids may have led to our varying

results of MCTo feeding in the hamster. Overall, it was

shown that feeding MCTo and ALP exhibited no adverse

effects on the normal growth and development of hamsters.

Studies by Gleiter et al. [65] and Hermann et al. [66]

have examined the influence of dietary components and the

bioavailability of ALP. The overall bioavailability of ALP

has been reported to range from 20% to 38% depending on

the isomer [(R)-lipoic acid or (S)-lipoic acid] and the for-

mulation tested [66]. Our study used a powdered synthetic

racemic mixture of ALP. With regard to absorption, Her-

mann et al. [66] found that ALP is absorbed more slowly as

an oral tablet compared with the rapid absorption of a

prepared oral solution. The present study outlines the effects

elicited from a powerful compound that may have a greater

potential for action if provided to the animals in the form of

an oral solution, thereby improving the overall absorption

into the biological system. Hermann et al. [66] also discuss

the structural similarity between ALP and MCT. In fact, it

has been reported that de novo synthesis of ALP originates

from octanoic acid (C8:0) and cysteine within the mitochon-

dria [67,68]. Hermann et al. [66] report that the hepatic

uptake of ALP may be carrier-mediated and selectively

inhibited by medium chain fatty acids. Hence, in our study

in which ALP and MCTo were fed in combination, there

exists the potential for competitive absorption into the liver,

which may have affected the results of our combination

treatment group (MCTo/ALP), thus negating any benefits

like those seen when feeding ALP alone. In addition, Gleiter

et al. [65] found that in human subjects the absorption of

racemic ALP decreased significantly when given with a

meal. Thus, this group of researchers suggests that in order

to achieve maximal absorption and hence a therapeutic
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effect, ALP is best ingested on an empty stomach. In con-

trast, we incorporated the ALP into the lipid fraction of the

synthetic diet; therefore the dose received was always in the

presence of food. It thus seems reasonable to propose that

possible interactions with other dietary components may

have reduced the overall absorption of ALP, although con-

clusive evidence of this phenomenon was not measured.

In conclusion, MCT administered in combination with

phytosterols, flaxseed oil, and ALP does not offer increased

benefits to the risk factor profile of CVD when tested in the

hamster model. This study does, however, provide signifi-

cant additions to the scientific knowledge of ALP supple-

mentation. ALP was not shown to offer any measured ben-

efits on hamster oxidant status; however, ALP was shown to

significantly increase circulating HDL-cholesterol levels in

hamsters, which lends evidence to a protective role of ALP

in the development of cardiovascular disease.
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