
Publisher’s version / Version de l'éditeur:

Applied Soft Computing, 11, 8, p. 4971–4980, 2011-12-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien

DOI ci-dessous.

https://doi.org/10.1016/j.asoc.2011.06.003

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

An Evolutionary Framework Using Particle Swarm Optimization for

Classification Method PROAFTN
Al-Obeidat, Feras; Belacel, Nabil; Carretero, Juan A.; Mahanti, Prabhat

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=ab0d4beb-dfd6-4ec8-97e3-2f052515ccdd

https://publications-cnrc.canada.ca/fra/voir/objet/?id=ab0d4beb-dfd6-4ec8-97e3-2f052515ccdd

An Evolutionary Framework Using Particle Swarm

Optimization for Classification Method PROAFTN

Feras Al-Obeidat∗,a, Nabil Belacela,c, Juan A. Carreterob, Prabhat Mahantic

aInstitute of Information Technology, National Research Council, NB, Canada
bDepartment of Mechanical Engineering, University of New Brunswick, Fredericton, NB, Canada

cDepartment of Computer Science, University of New Brunswick, Saint John, NB, Canada

Abstract

The aim of this paper is to introduce a methodology based on the particle swarm

optimization (PSO) algorithm to train the Multi-Criteria Decision Aid (MCDA)

method PROAFTN. PSO is an efficient evolutionary optimization algorithm using

the social behavior of living organisms to explore the search space. It is a rela-

tively new population-based metaheuristic that can be used to find approximate

solutions to difficult optimization problems. Furthermore, it is easy to code and

robust to control parameters. To apply PROAFTN, the values of several parame-

ters need to be determined prior to classification, such as boundaries of intervals

and weights. In this study, the proposed technique is named PSOPRO, which

utilizes PSO to elicit the PROAFTN parameters from examples during the learn-

ing process. To test the effectiveness of the methodology and the quality of the

obtained models, PSOPRO is evaluated on 12 public-domain datasets and com-

pared with the previous work applied on PROAFTN. The computational results

demonstrate that PSOPRO is very competitive with respect to the most common

classification algorithms.

Key words: Knowledge Discovery, Particle Swarm Optimization, MCDA,

PROAFTN, Classification.

∗Corresponding author

Email addresses: Feras.Al-Obeidat@nrc-cnrc.gc.ca (Feras Al-Obeidat),

Nabil.Belacel@nrc-cnrc.gc.ca (Nabil Belacel), Juan.Carretero@unb.ca (Juan A.

Carretero), pmahanti@unbsj.ca (Prabhat Mahanti)

Preprint submitted to Applied Soft Computing October 12, 2010

1. Introduction

The classification problem consists of using some known objects, usually de-

scribed by a large set of vectors. Each vector is composed of a set of attributes and

a class label, where the latter represents the category of the objects. The classifi-

cation procedures require the development of a classification model that identifies

the behaviors of the available objects to recommend the assignment of unknown

objects to predefined classes [4, 27, 43]. For instance, in medical diagnosis, pa-

tients are assigned to disease (positive or negative) classes according to a set of

symptoms.

In recent years, the most common approaches to address the classification

problem have been from the fields of Artificial Intelligence/machine learning [35,

50] and Multi-Criteria Decision Aid (MCDA) [39, 54]. Machine learning algo-

rithms are designed to learn a function which maps a large vector of attributes

into one of several classes. The learning procedure is performed by working on

a set of input-output objects called training datasets, which are used to find a

function that assigns these training examples to those classes to which they really

belong. After the learning process, the induced classification model is used by

the algorithm to classify a new, unknown object (testing dataset) into one of the

predefined classes. Some examples of common machine learning algorithms are

Decision Tree (C4.5), Naive Bayes (NB), Support Vector Machine (SVM), Neu-

ral Networks (NN), k-nearest neighbor (k-nn), instance-based learning, inductive

logic programming, reinforcement learning, and PART [51].

MCDA methods are formal approaches which help in making decisions and

evaluations mainly in terms of choosing, ranking or sorting/classifying the alter-

natives [48]. MCDA methods have been widely used in many research fields; they

are categorized into three fields: (1) Value measurement models (AHP [26] is a

well known method belonging to this category); (2) Goal, aspiration and reference

level models (Goal programming [12] is an example of this group); and finally (3)

Outranking models (ELECTRE [20], PROMETHEE [49] and PROAFTN [9] are

the methods that belong to this group).

MCDA [39] is another paradigm to address classification problems (a.k.a.

nominal sorting problems). In MCDA, the problem of assigning objects to prede-

fined classes is known as a multiple criteria classification problem (MCCP) [54].

The decision problems in MCCP require a comparison between alternatives or

objects based on the scores of attributes using absolute evaluations [32]. In this

case, the evaluation is performed by comparing the alternatives to different pro-

totypes of classes, where the category or class is assigned to the objects based on

2

the highest score value. Each prototype is described by a set of attributes and is

considered to be a good representative of its class [30].

This study focuses on the MCCP method PROAFTN, which is introduced

by Belacel [8]. PROAFTN has been applied to the resolution of many real-

world practical problems such as medical diagnosis, asthma treatment, and e-

Health [9, 11]. PROAFTN has several advantages; for example, it uses the MCDA

paradigm and therefore can be used to gain understanding about the problem do-

main. Furthermore, PROAFTN has direct techniques which enable the decision-

maker (DM) to adjust its parameters. PROAFTN is also a transparent classifica-

tion method, that is, the fuzzy approach enables a PROAFTN user to have access

to more detailed information concerning the classification decision [9].

However, PROAFTN uses the outranking relation models for classification

purposes; hence, the implementation of outranking methods in general and PROAFTN

in particular is burdensome, due to the large number of parameters that the deci-

sion maker (DM) must identify. That is, to apply PROAFTN, the values of several

parameters need to be determined prior to classification, such as boundaries of

intervals and weights. In an MCDA context, these parameters are usually depen-

dant on the judgment of the DM, who sets the “boundaries” of the attributes and

the weights. This approach has shortcomings, such as it is time consuming and

dependant on the availability of the DM; furthermore, there is some uncertainty

whether a DM can assign accurate quantitative values to these parameters in some

cases (e.g., data considered in the decision problem might be vague for the DM).

To overcome these limitations, an automatic approach can be used to induce the

classification model from data.

Particle Swarm Optimization (PSO) is a population-based metaheuristic in-

spired by the social behavior of bird flocking or fish schooling introduced by

Kennedy and Eberhart in 1995 [22]. The major advantages of PSO compared

with other evolutionary algorithms could be summarized as follows: a) PSO is

easy to implement and there are few control parameters to be tuned, and b) PSO

is conceptually simple, computationally efficient, and robust to control parame-

ters [23, 31, 37]. PSO has been successfully applied in a wide range of appli-

cations such as task assignment problem [40], n-queen problem [29], and power

systems [52]. In the context of classification, PSO is used for enhancing the clas-

sification accuracy rate of linear discriminant analysis [34]. Furthermore, it has

been applied to a variety of tasks, such as the training of artificial neural net-

works [14, 16, 40, 53]. PSO is also proposed in [28] as a new tool for Data Min-

ing. According to [44], PSO proved to be a suitable candidate for classification

tasks, as it can obtain competitive results against C4.5/J48. PSO is utilized in [24]

3

to handle the problem of classification of instances in multiclass databases. In the

MCDA literature, PSO was proposed recently in [33] to improve the outranking

method ELECTRE.

As demonstrated by most of the aforementioned applications, PSO gets bet-

ter results in a faster and more efficient way compared with other evolution-

ary population-based methods. Based on this motivation and the structure of

PROAFTN, PSO is proposed here for the PROAFTN method. The proposed ap-

proach is named PSOPRO; it employs PSO for training and improving the effi-

ciency of the PROAFTN classifier. In this perspective, the optimization model

is first presented, and thereafter a PSO algorithm is used for solving it. During

the learning stage, PSO uses training samples to induce the best PROAFTN pa-

rameters in the form of prototypes. Then, these prototypes which represent the

classification model are used for assigning unknown samples. The target is to ob-

tain the set of the prototypes that maximizes the classification accuracy on each

dataset.

To check the performance of the proposed approach, firstly, PSOPRO is eval-

uated on 12 classification datasets commonly used to benchmark the performance

of classification algorithms. Secondly, the performance of PSOPRO is compared

with the previous work applied on PROAFTN [1, 2, 3]. Finally, the efficiency of

PSOPRO is evaluated against six machine learning classifiers, chosen from differ-

ent machine learning perspectives including: Logical/Symbolic techniques such

as Decision Tree (C4.5 [38]), Statistical learning algorithms (e.g., Naive Bayes

(NB [18])), Support Vector Machine (SVM [13]), Perceptron-based techniques

(e.g., Neural Networks (NN) [15]), Instance-based learning (e.g., k-nearest neigh-

bor (k-nn) [46]), and the rule-based classifiers such as PART [21, 51]. The com-

parisons and evaluations are made on the proposed datasets by using stratified 10

fold cross-validation. The numeric comparative study shows that PSOPRO is able

to provide competitive and promising results.

The rest of the paper is organized as follows: in Section 2, the PROAFTN

method and PSO are briefly presented. In Section 3, the proposed approach PSO-

PRO is introduced. Description of datasets, experimental results, and a compar-

ative study are presented in Section 4. Finally, conclusions are summarized in

Section 5.

4

2. Overview of the PROAFTN method and Particle Swarm Optimization

(PSO)

In this section, the PROAFTN methodology and PSO structure are reviewed.

Thereafter, PSOPRO, which integrates PSO and PROAFTN for solving the clas-

sification problem, is introduced. A PSO algorithm is designed for obtaining

PROAFTN parameters from the training dataset in (near) optimal form. During

the execution of the PSO algorithm, each individual representing the prototypes

(i.e., potential solutions) has to be evaluated, which means that a value indicating

the suitability of presenting the classification accuracy is returned by an objective

(i.e., fitness) function. More details are presented in Section 3.

2.1. PROAFTN Method

In this section the PROAFTN methodology is described. PROAFTN belongs

to the class of supervised learning to solve classification problems. The follow-

ing subsections describe the notations and the classification procedure used by

PROAFTN.

2.1.1. Notations

The PROAFTN notations used in this paper are presented in Table 1.

2.1.2. Initialization

Let n represents a set of objects known as a training set, consider a ∈ n is an

object which requires to be classified; given this object a is described by a set of

m attributes {g1,g2, ...,gm} and k classes {C1,C2, ...,Ck}. The different steps of

the procedure are as follows:

For each class Ch, a set of Lh prototypes are determined. For each pro-

totype bh
i and each attribute g j, an interval [S1

j(b
h
i), S2

j(b
h
i)] is defined where

S2
j(b

h
i) ≥ S1

j(b
h
i). Two thresholds d1

j (b
h
i) and d2

j (b
h
i) are introduced to define the

fuzzy intervals: the pessimistic interval [S1
j(b

h
i),S

2
j(b

h
i)] and the optimistic interval

[S1
j(b

h
i)−d1

j (b
h
i),S

2
j(b

h
i)+d2

j (b
h
i)].

Figure 1 depicts the representation of PROAFTN’s intervals. To apply

PROAFTN, the pessimistic interval [S1
jh,S

2
jh] and the optimistic interval [q1

jh,q
2
jh]

[10] for each attribute in each class need to be determined, where:

q1
jh = S1

jh −d1
jh (1a)

q2
jh = S2

jh +d2
jh (1b)

5

Table 1: Notations used by PROAFTN

A Set of objects {a1,a2, ...,an} to assign to different

categories

m Set of criteria or attributes, {g1,g2, ...,gm}
Ω set of k categories or classes such as

Ω = {C1,C2, ...,Ck}, k ≥ 2

Bh Prototype set of hth category, where

Bh = {bh
i |h = 1, ...,k, i = 1, ...,Lh}

with bh
i representing the i prototype of hth category

B Set of all prototypes, such as B =
∪k

h=1 Bh

[S1
j(b

h
i), S2

j(b
h
i)] The interval of the prototype bh

i

for each attribute g j in each class Ch

with j = 1,2, ...,m
d1

j (b
h
i) and d2

j (b
h
i) The preference thresholds belong to the prototype bh

i

for each attribute g j in each class Ch

w jh The weight for each attribute g j in each class Ch

applied to:

q1
jh ≤ S1

jh (2a)

q2
jh ≥ S2

jh (2b)

Hence, S1
jh = S1

j(b
h
i), S2

jh = S2
j(b

h
i), q1

jh = q1
j(b

h
i), q2

jh = q2
j(b

h
i), d1

jh = d1
j (b

h
i), and

d2
jh = d2

j (b
h
i). The following subsections explain the stages required to classify the

object a to the class Ch using PROAFTN.

2.1.3. Computing the fuzzy indifference relation: I(a,bh
i)

The initial stage of classification procedure is performed by calculating the

fuzzy indifference relation I(a,bh
i). The fuzzy indifference relation is based on

the concordance and non-discordance principle which represents the relationship

(membership degree) between the object to be assigned and the prototype [7, 10];

it is formulated as:

I(a,bh
i) =

(
m

∑
j=1

w jhCi
jh(a,b

h
i)

)
m

∏
j=1

(

1−Di
jh(a,b

h
i)

w jh

)

(3)

6

Cj(a, bh
i)

Indifference

Indifference

1

0

S2

jh q2

jhq1

jh

gj(a)

d1

jh d2

jh

Strong

Weak

Indifference
No

Indifference

No

S1

jh

Figure 1: Graphical representation of the partial indifference concordance index between the ob-

ject a and the prototype bh
i represented by intervals.

where w jh is the weight that measures the importance of a relevant attribute g j of

a specific class Ch:

w jh ∈ [0,1] , and
m

∑
j=1

w jh = 1

Ci
jh(a,b

h
i) is the degree that measures the closeness of the object a to the prototype

bh
i according to the attribute g j.

Ci
jh(a,b

h
i) = min{Ci1

jh(a,b
h
i),C

i2
jh(a,b

h
i)}, (4)

where

Ci1
jh(a,b

h
i) =

d1
j (b

h
i)−min{S1

j(b
h
i)−g j(a),d

1
j (b

h
i)}

d1
j (b

h
i)−min{S1

j(b
h
i)−g j(a),0}

and

Ci2
jh(a,b

h
i) =

d2
j (b

h
i)−min{g j(a)−S2

j(b
h
i),d

2
j (b

h
i)}

d2
j (b

h
i)−min{g j(a)−S2

j(b
h
i),0}

Di
jh(a,b

h
i), is the discordance index that measures how far the object a is from

the prototype bh
i according to the attribute g j. Two veto thresholds ε1

j (b
h
i) and

7

ε2
j (b

h
i) [8], are used to define this value, where the object a is considered perfectly

different from the prototype bh
i based on the value of attribute g j. Generally, the

determination of veto thresholds through inductive learning is risky. These values

need to be obtained by an expert familiar with the problem. However, this study is

focused on the automatic approach; therefore, the effect of the veto thresholds is

eliminated by setting them to infinity. As a result, only the concordance principle

is used, so Eq (3) is summarized by:

I(a,bh
i) =

m

∑
j=1

w jhCi
jh(a,b

h
i) (5)

For more illustrations, three comparative procedures between the object a and

prototype bh
i according to the attribute g j are obtained (Fig. 1):

• case 1 (strong indifference):

Ci
jh(a,b

h
i) = 1 ⇔ g j(a) ∈ [S1

jh,S
2
jh]; (i.e., S1

jh ≤ g j(a)≤ S2
jh)

• case 2 (no indifference):

Ci
jh(a,b

h
i) = 0 ⇔ g j(a)≤ q1

jh, or g j(a)≥ q2
jh

• case 3 (weak indifference):

The value of Ci
jh(a,b

h
i) ∈ (0,1) is calculated based on Eq. (4). (i.e., g j(a)

∈ [q1
jh,S

1
jh] or g j(a) ∈ [S2

jh,q
2
jh])

Table 2 presents the performance matrix which is used to evaluate the proto-

types of classes on a set of attributes. The rows of the matrix represent the pro-

totypes of the classes and the columns represent the attributes. The intersection

between the row i and the column j corresponds to the partial indifference relation

Ci
jh(a,b

h
i) between the prototype bh

i and the object a to be assigned according to

the attribute g j.

2.1.4. Evaluation of the membership degree: δ (a,Ch)

The membership degree between the object a and the class Ch is calculated

based on the indifference degree between a and its nearest neighbor in Bh. The

following formula identifies the nearest neighbor:

δ (a,Ch) = max{I(a,bh
1), I(a,b

h
2), ..., I(a,b

h
Lh
)} (6)

8

Table 2: Performance matrix of prototypes according to their partial fuzzy indifference relation

with an object a.

g1 g2 ... g j ... gm

b1
1 C1

11(a,b
1
1) C1

21(a,b
1
1) ... C1

j1(a,b
1
1) ... C1

m1(a,b
1
1)

b1
2 C2

11(a,b
1
2) C2

21(a,b
1
2) ... C2

j1(a,b
1
2) ... C2

m1(a,b
1
2)

...
...

... ...
... ...

...

bh
i Ci

1h(a,b
h
i) Ci

2h(a,b
h
i) ... Ci

jh(a,b
h
i) ... Ci

mh(a,b
h
i)

...
...

... ...
... ...

...

bk
Lk

C
Lk

1k(a,b
k
Lk
) C

Lk

2k(a,b
k
Lk
) ... C

Lk

jk (a,b
k
Lk
) ... C

Lk

mk(a,b
k
Lk
)

2.1.5. Assignment of an object to the class:

The last step is to assign the object a to the right class Ch; the evaluation

required to find the right class is performed by applying the following decision

rule:

a ∈Ch ⇔ δ (a,Ch) = max{δ (a,Ci)/i ∈ {1, ...,k}} (7)

2.2. Particle Swarm Optimization Algorithm

As mentioned earlier, Particle Swarm Optimization (PSO) is a population-

based and adaptive optimization technique introduced by Eberhart and Kennedy

in (1995) [22, 23]. The concepts of PSO is intuitively inspired by social swarming

behavior of birds flocking or fish schooling.

PSO is a metaheuristic evolutionary algorithm (EA). As in the case of many

EAs, during the initialization phase potential solutions are randomly generated

and then keep updating until the approximate optimum is attained. Compared

with Genetic Algorithms (GA), the evolution strategy in PSO is inspired from the

social behavior of living organisms, whereas the concept of GA is inspired from a

biological perspective, where the potential solutions are evolved based on mating

and breeding of new offspring (crossover and mutation).

The information-sharing technique in PSO is different from GA. In PSO, the

potential solutions, called particles, move around the multi-dimensional search

space, following and tracking the current optimum particles by changing their

internal velocity. In GAs, chromosomes share information with each other. So

the whole population moves like a single group towards an optimal area. From

the implementation perspectives, PSO is easy to implement and computationally

efficient compared with other EAs algorithms [31, 37].

9

To illustrate the concept of PSO, consider a group of birds flocking (called

population, particles, or swarm) randomly flying in the search space seeking the

best solution (i.e., food source). If one particle recognizes a better point to go to,

the rest of the swarm will quickly follow this particle. The particles adapt them-

selves iteratively by progressing or returning stochastically toward optimal regions

by updating their velocity and current position according to their own experience

and that of the group. More specifically, each particle in the swarm has reposi-

tory memory, which maintains and tracks iteratively the best position the particle

has ever visited. Each particle in the swarm is influenced by two environmental

factors: one is social behavior presented by the whole swarm, also called a global

best; and the second is the personal behavior called personal best [22, 31, 37, 41].

The general procedure of PSO is outlined in Algorithm 1.

Algorithm 1 PSO Evolution Steps

Step 1: Initialization phase, Initialize the swarm

Evolution phase

repeat

Step 2: Evaluate fitness of each particle

Step 3: Update personal best position for each particle

Step 4: Update global best position for entire population

Step 5: Update each particle’s velocity

Step 6: Update each particle’s position

until (termination criteria are met or stopping condition is satisfied)

2.2.1. Functionality of PSO

Each particle in the swarm has mainly two variables to evolve and seek the

optimum position in the search space:

Position vector : xi(t)

Velocity vector : vi(t)

thus, each particle xi(t) is represented by [xi1(t),xi2(t), ...,xiD(t)] where i ∈ Npop

is the index number of each particle in the swarm Npop (i.e., number of particles),

D represents the dimension of the search space and t is the iteration number.

During the evolutionary phase, each particle is drawn stochastically toward

the global optimum based on the updated value of vi and the particle’s current

position xi. Thus, each particle’s new position xi(t +1) is updated using:

xi(t +1) = xi(t)+vi(t +1) (8)

10

vi(t)

xi(t) P
Best
i (t)

(a)

vi(t + 1)
xi(t)

P
Best
i (t) − xi(t)

G
Best(t) − xi(t)

vi(t)

(b)

G
Best(t)

xi(t + 1)

Figure 2: Particles’ evolution process through updating xi(t) and vi(t +1).

The new position of the particle is influenced by the best position it has visited

(i.e., its own experience), called personal best and denoted here as PBest
i (t), and

the position of the best particle in its neighborhood, called the global best and

represented by GBest(t). At each iteration t, the velocity vi(t) is updated based on

the two best values PBest
i (t) and GBest(t) using the formula,

vi(t +1) = ϖ(t)vi(t)
︸ ︷︷ ︸

inertial parameters

+ τ1ρ1(P
Best
i (t)−xi(t))

︸ ︷︷ ︸

personal best velocity components

+ τ2ρ2(G
Best(t)−xi(t))

︸ ︷︷ ︸

global best velocity components

(9)

where ϖ(t) is the inertia weight factor that controls the exploration of the search

space. τ1 and τ2 are the individual and social components/weights, respectively,

also called the acceleration constants, which change the velocity of a particle to-

wards the PBest
i (t) and GBest(t). ρ1 and ρ2 are random numbers between 0 and 1.

PBest
i (t) is the personal best position of the particle i, and GBest(t) is the neigh-

borhood best position of particle i. During the optimization process, particle ve-

locities in each dimension d are evolved to a maximum velocity vdmax (where

d = 1...D). If the velocity of the particle in any dimension exceeds the value

vdmax, then the velocity in that dimension is forced to return to its limit value. Fig-

ure 2 explains graphically the velocity and position update during the evolution

stage.

As shown in Eq. (9), the formula is composed of three terms: the first term

represents the diversification process in the search procedure, whereas the last

11

Algorithm 2 PSO procedure for maximizing

Initialization of particles (t = 0)

for i = 1 to Npop do

Initialize xi, vi and PBest
i (t)

end for

Optimization:

Obtain GBest(t), the particle with the best fitness value of all the particles

while maximum iterations or optimal criteria is not attained do

for each particle do

Calculate particle velocity vi(t +1) according to Eq. (9)

Update particle position xi(t +1) according to Eq. (8)

end for

for each particle xi do

Calculate fitness value f

if f (xi) > f (PBest
i (t)) in history then

set PBest
i (t) = xi

end if

end for

Get GBest(t)
end while

two terms represent the intensification process. Hence, the method has a balanced

mechanism to utilize diversification and intensification in the search procedure

efficiently. The pseudo code of the PSO procedure is detailed in Algorithm 2.

3. Development of PSOPRO algorithm

As discussed earlier, PROAFTN requires the elicitation of its parameters

S1
jh,S

2
jh,q

1
jh,q

2
jh, and w jh for the purpose of classification. In the MCDA literature,

there are two main approaches used to obtain these parameters: direct techniques

and indirect techniques. In the direct techniques, an interactive interview with the

DM for whom the problem is being solved is needed. Usually, this approach is

time consuming and greatly dependant on the ability of the DM and the certainty

of the provided information. On the other hand, the indirect techniques, which

are based on automatic learning methods, are alternative solutions to obtain the

values of these parameters from the dataset during the learning phase.

In this work, the indirect technique (an optimization-based technique) is pro-

posed to get these parameters from data in optimal form. In this approach, the nec-

12

essary preferential information required to construct a classifier is first extracted

from the set of examples known as the training set. Then, this extracted infor-

mation, called prototypes, is used as a classification model for assigning the new

cases (testing dataset) to the target class. Finally, the classification model is eval-

uated to test the performance of the classification algorithm. This approach is

widely used by most machine learning classifiers [6, 21]. As mentioned earlier,

to apply PROAFTN, the intervals [S1
jh, S2

jh] and [q1
jh,q

2
jh] satisfy the constraints in

Eq. (2) and the weights w jh are required to be obtained for each attribute g j in

class Ch. To simplify the constraints in Eq. (2), the variable substitution based on

Eq. (1) is used. As a result, the parameters d1
jh and d2

jh are used instead of q1
jh and

q2
jh, respectively. Therefore, the optimization problem which is based on maxi-

mizing classification accuracy providing the optimal parameters S1
jh,S

2
jh,d

1
jh,d

2
jh

and w jh, is defined here,

P : Maximize f (S1
jh,S

2
jh,d

1
jh,d

2
jh,w jh) (10)

Subject to: S1
jh ≤ S2

jh;d1
jh,d

2
jh ≥ 0

m

∑
j=1

w jh = 1

0 ≤ w jh ≤ 1

where f is the function which calculates the classification accuracy, and n repre-

sents the number of training samples used during the optimization. The procedure

for calculating the fitness function f (S1
jh,S

2
jh,d

1
jh,d

2
jh,w jh) is described in Table 3.

To solve the optimization problem presented in Eq. (10), PSO is adopted here.

Table 3: The steps for calculating the objective function f .

For all a ∈ A :

Step 1: - Compute the fuzzy indifference relation I(a,bh
i) according to Eq. (5)

- Evaluate the membership degree δ (a,Ch) according to Eq. (6)

- Assign the object to the class according to Eq. (7)

Step 2: - Compare the value of the new class with the true class Ch

- Identify the number of misclassified and unrecognized classified objects

- Calculate the classification accuracy (i.e. the fitness value):

f =
number of correctly classified objects

n

13

n

C1 C2 Ck

Classes

g1 g2 gm

Attributes

S1 w

Parameters

q1 S2 q2

Dataset

D

Figure 3: Dimensions of PROAFTN.

The problem dimension D (i.e., the number of parameters in the optimization

problem) is described as follows: Each particle x is composed of the parame-

ters S1
jh,S

2
jh,d

1
jh,d

2
jh and w jh, for all j = 1,2, ...,m and h = 1,2, ...,k. Therefore,

each particle in the population is composed by D = 5×m× k real values (i.e., x

D = dim(x)), which is graphically presented in Fig. 3. Because of the hierarchal

structure of PROAFTN parameters, the elements for each particle position xi are

updated using:

xih jd(t +1) = xih jd(t)+ vih jd(t +1) (11)

where the velocity update vi for each element based on PBest
i (t) and GBest(t) is

formulated as:

vih jd(t +1) = ϖ(t)vih jd(t)+ τ1ρ1(P
Best
ih jd (t)− xih jd(t))

+τ2ρ2(G
Best
h jd (t)− xih jd(t)) (12)

i = 1, ...,Npop; h = 1, ...,k

j = 1, ...,m; d = 1, ...,D

Algorithm 3 demonstrates the required steps to evolve the velocity vi and par-

ticle position xi for each particle containing PROAFTN parameters.

Algorithm 4 illustrates the flow of the PSOPRO procedure. After the initializa-

tion of the swarm of particles, where each particle is composed of the parameters

14

Algorithm 3 Update of vi and xi based PSOPRO

Require:

m - number of attributes,

k - number of classes

D problem dimension

τ1, τ2, and ϖ control parameters

PBest
i (t) and GBest(t)

vmax - boundary limits for S1
jh,S

2
jh,d

1
jh,d

2
jh and w jh in each dimension

for h = 1 to k do

for j = 1 to m do

for d = 1 to D do

Update vih jd for each dth element according to Eq. (12)

Update xih jd for each dth element according to Eq. (11)

end for

end for

end for

Return xi

(S1
jh,S

2
jh,d

1
jh,d

2
jh and w jh) for each attribute in each class, the optimization is then

implemented iteratively. At each iteration, and based on the new fitness value for

each particle, the updating of the velocity and position is applied to all particles

in each generation. The target solution is to obtain the best parameters to reach

best classification accuracy applied on training data. After this stage, the optimal

parameters represented by GBest∗ and the testing data are submitted to PROAFTN

to validate the classification model. The equations (5) to (7) are used to assign

unseen data.

4. Application and Analysis of the Developed Algorithm PSOPRO

4.1. Datasets Description

The proposed PSOPRO algorithm is implemented in Java and applied to 12

popular datasets: Breast Cancer Wisconsin Original (BCancer), Transfusion Ser-

vice Center (Blood), Heart Disease (Heart), Hepatitis, Haberman’s Survival (HM),

Iris, Liver Disorders (Liver), Mammographic Mass (MM), Pima Indians Diabetes

(Pima), Statlog Australian Credit Approval (STAust), Teaching Assistant Evalu-

ation (TA), and Wine. The details of the datasets’ description and their dimen-

15

sionality are presented in Table 4. The datasets are in the public domain and are

available at the University of California at Irvine (UCI) Machine Learning Repos-

itory database [5].

Algorithm 4 PSOPRO procedure

Require:

NT - training data, NS - testing data,

m - number of attributes,

k - number of classes

D problem dimension, assign initial values to parameters set (S1
jh,S

2
jh,d

1
jh,d

2
jh

and w jh)

Npop,τ1,τ2,ϖ control parameters

vmax, - boundary limits for each element in D

Initialization:

for i = 1 to Npop do

Initialize xi, vi and PBest
i (t) consisting of (S1

jh,S
2
jh,d

1
jh,d

2
jh and w jh)

Evaluate fitness value f (xi) (the classification accuracy Eq. (10))

end for

Obtain the GBest(t), which contains the best set of (S1
jh,S

2
jh,d

1
jh,d

2
jh and w jh)

Optimization stage:

while (maximum iterations or maximum accuracy is not attained) do

for each particle do

Update vi and xi for each particle according to Algorithm 3

end for

for each particle do

Calculate fitness value f (xi) according to Eq. (10)

if f (xi) > f (PBest
i (t)) then

set PBest
i (t) = xi

end if

end for

Choose the particle with the best fitness among particles as the GBest(t)
end while

Apply the classification:

Submit the best solution GBest∗ along with testing data (NS) for evaluation

16

Table 4: Dataset Description.

Dataset Instances Attributes Classes D = dim(x)

1 BCancer 699 9 2 90

2 Blood 748 4 2 40

3 Heart 270 13 2 130

4 Hepatitis 155 19 2 190

5 HM 306 3 2 30

6 Iris 150 4 3 60

7 Liver 345 6 2 60

8 MM 961 5 2 50

9 Pima 768 8 2 80

10 STAust 690 14 2 140

11 TA 151 5 3 75

12 Wine 178 13 3 195

4.2. Parameters Settings

To apply PSOPRO, the following factors are considered before applying the

optimization:

• The bounds for S1
jh and S2

jh vary between µ jh −6σ jh and µ jh +6σ jh, where

µ jh and σ jh represent mean and standard deviation for each attribute in each

class, respectively;

• The bounds for d1
jh and d2

jh vary in the range [0,6σ jh].

• The bounds for w jh are set between 0 and 1.

These regions are defined before starting the training stage. During the optimiza-

tion phase, the parameters S1
jh,S

2
jh,d

1
jh,d

2
jh and w jh evolve within the aforemen-

tioned boundary constraints.

The following technical factors are considered for implementing PSOPRO:

• The control parameters are set as follows: τ1 = 2, τ2 = 2 and the inertia

weight ϖ(t) = 1. More details about setting the control values are described

by Clerc and Kennedy (2002) in [17], and by van den Bergh and Engelbrecht

in [47];

17

• The size of population is fixed at 80;

• The maximum iteration number (genmax) is fixed at 500. In this context,

three termination criteria are used as stopping condition. First, if the pre-

defined maximum iteration (generation) is reached. Second, if the solution

(i.e., the classification accuracy) cannot be further improved after a large

number of iterations (i.e., 40 iterations). Third, if the optimal solution is

reached during the optimization, that is, the classification accuracy on the

training set reaches 100 %.

It is worth mentioning that each application has different properties, such as a

different number of attributes, instances, or classes. Furthermore, some datasets

have less noise than others (e.g., some datasets are linearly separable and others

are not). Therefore, the performance of PSOPRO varies from one application to

another, and the choice of optimal parameters may vary as well. However, in this

work the PSO parameters are fixed for all applications.

4.3. Setting of PROAFTN’s parameters

The datasets described in Section 4.1 are divided into two subsets: a training

set used to obtain PROAFTN parameters:(S1
jh, S2

jh, d1
jh and d2

jh) during learning

(optimization) process, and a testing set used to evaluate the performance of the

PROAFTN method in terms of classification accuracy. The experimental work is

performed in two stages:

1. In the first stage (before optimization), the preliminary solution is calculated

based on setting initial values for S1
jh, S2

jh, d1
jh, d2

jh and w jh. The initial

values for PROAFTN parameters are initially fixed as follows: S1
jh, S2

jh are

set to µ jh − 2σ jh and µ jh + 2σ jh, respectively. The values d1
jh and d2

jh are

both set to 4σ jh. The values of weights w jh are set initially to 1.

2. In the second stage (optimization stage), the parameters are free to evolve

within the boundary constraints between µ jh −6σ jh and µ jh +6σ jh for S1
jh

and S2
jh, respectively. The bounds for d1

jh and d2
jh vary in the range [0,6σ jh].

The values of weights w jh are free to evolve within the range 0 to 1.

4.4. Performance evaluations of PSOPRO

It was noticed that for some applications the distribution of classes is or-

dered sequentially, which affects the performance of the algorithms when test-

ing or training set are used. To eliminate this issue, the evaluation of the clas-

sifiers is examined based on stratified 10-fold cross-validation. In stratified 10-

fold cross-validation, each dataset is divided into ten disjointed partitioned groups

18

(also known as folds) containing approximately the same number of instances

(i.e., ≈ n/10). Using the stratified method, each fold contains approximately

(n/10)/(number of classes) from instances belonging to each class. These par-

titions maintain the class distribution presented in the original dataset (stratified

folds) [51].

The performance of PSOPRO is evaluated in two stages. In the first stage,

PSOPRO is tested on both training and testing on each dataset. In the second

stage, the PSOPRO algorithm is compared with six machine leaning classifiers.

That is, the performance of PSOPRO is computed as the percentage of correctly

classified testing set instances based on the best particle obtained (prototypes)

during the learning (optimization) phase. Then the results provided by PSOPRO

on testing data are compared to those provided by other classifiers.

Because of the limited space and in the interest of avoiding unnecessary de-

tails, the first stage of experimental work presents the detailed results on one

dataset (e.g., Breast Cancer (BCancer)) presented in Table 5. The results are ob-

tained on both training and testing data for each fold. As discussed above, the

dataset is portioned into 10 stratified subsets and the PSOPRO algorithm is run

for each partition. Each time a different set is used for testing (i.e. 1/10 of data)

and the remaining data (i.e. 9/10 of data) are used for training. This procedure is

repeated until each partition of the dataset is tested. Columns 3, 4, and 5 present

the preliminary solution (the results obtained before performing optimization);

they are the number of unrecognized classified (UR) (i.e., the class value is not

determined for the object), the result of classification accuracy based on testing

data (column 4), and the result of classification accuracy based on training data

(column 5). Likewise, the last three columns (6, 7, and 8) represent the same

quantities, but the results are obtained after the optimization, by using PSOPRO.

In the same way, Table (6) documents the same experimental procedure performed

on all datasets. The only difference is that some details are omitted, such as the

results for each fold. Here, the average is only documented before and after the

optimization.

4.5. Comparative Study

To evaluate the performance of the proposed approach PSOPRO versus other

classifiers, two comparative studies were conducted. The first study compares

the performance of PSOPRO against the previous work applied on PROAFTN

method [1, 2, 3]. Secondly, further experimental work was conducted with six

machine learning techniques. These algorithms are chosen from different ma-

chine learning theories; they are: 1) Tree induction C4.5 (J48), 2) statistical mod-

19

eling, Naive Bayes (NB) [18], 3) Support Vector machines (SVM) [36], SMO, 4)

Function-based, Neural Network (NN), the multilayered perceptron (MLP) [42],

5) instance-based learning, IBk [46] with k = 3, and 6) rule learning, PART [45].

The open source platform Weka [51] is used to run these algorithms, using the

default settings provided by Weka.

Based on Demšar’s recommendation [19], the Friedman test and other ad-

Table 5: Detailed results obtained before and after optimization applied on BCancer data.

Before Optimization After Optimization

Dataset Folds UR Training Testing UR Training Testing

1 BCancer Fold1 9 38.78 40.98 0.00 97.77 96.80

Fold2 8 39.03 38.71 0.00 97.77 96.33

Fold3 14 38.61 42.86 0.00 98.25 95.71

Fold4 6 39.17 37.50 0.00 97.77 95.86

Fold5 6 39.17 37.50 0.00 97.46 97.57

Fold6 5 39.24 36.92 0.00 97.93 97.14

Fold7 9 38.96 39.34 0.00 97.30 98.57

Fold8 7 39.10 38.10 0.00 97.30 97.57

Fold9 8 39.03 38.71 0.00 97.30 98.57

Fold10 9 38.89 40.00 0.00 97.46 97.30

Average 8.1 39.00 39.06 0.00 97.68 97.14

Table 6: Average results obtained before and after optimization applied on all datasets.

Before Optimization After Optimization

Dataset UR Training Testing UR Training Testing

1 BCancer 8.10 39.00 39.06 0.00 97.68 97.14

2 Blood 15.3 69.79 69.78 0.00 79.94 79.25

3 Heart 0.10 58.96 59.13 0.00 86.27 84.27

4 Hepatitis 0.00 86.09 83.88 0.00 88.82 86.04

5 HM 4.60 36.08 35.22 0.00 77.66 75.73

6 Iris 1.30 64.55 65.86 0.00 97.93 96.21

7 Liver 2.60 59.09 55.61 0.00 69.34 69.31

8 MM 0.30 46.56 46.66 0.00 83.17 82.31

9 Pima 8.20 38.73 38.83 0.00 77.56 77.47

10 STAust 1.50 48.19 48.48 0.00 87.94 86.09

11 TA 0.20 47.41 46.12 0.00 58.55 60.55

12 Wine 0.00 80.59 77.33 0.00 97.76 96.79

20

Table 7: The performance of all approaches for learning PROAFTN introduced in this thesis based

on classification accuracy (in %).

dataset DEPRO [3] PSOPRO-RVNS [1, 2] PSOPRO

BCancer 96.97 97.33 97.14

Blood 79.59 79.46 79.25

Heart 83.74 84.36 84.27

Hepatitis 84.17 87.05 86.04

HM 80.36 76.27 75.73

Iris 96.47 96.30 96.21

Liver 71.01 70.97 69.31

MM 84.33 84.07 82.31

Pima 75.37 77.42 77.47

STAust 85.62 86.10 86.09

TA 61.8 60.62 60.55

Wine 96.87 96.72 96.79

Average 83.03 83.06 82.60

Ranking 1.83 1.75 2.41

vanced tests such as Bonferroni-Dunn’s, Hochberg’s, Hommel’s, and Nemenyi’s

procedures described in [19] and in [25] are used to determine which classifier(s)

performs the best is used to evaluate the overall performances of each classifier

on all applications.

Table 7 documents the performance of PSOPRO against the previous work

done on PROAFTN. In this regards, DEPRO is the abbreviation of using Differ-

ential Evolution for learning PROAFTN which has been explained in [3]. The

term PSOPRO-RVNS represents the utilization of PSO and Reduced Variable

Neighborhood Search (RVNS) for learning PROAFTN, more details are explained

in [1, 2]. For the sake of simplicity and to alleviate an extensive training load, PSO

is individually used in this study for training PROAFTN parameters.

Table 8: Holm / Hochberg Table for α = 0.05

i algorithm z = (R0 −Ri)/SE p Holm/Hochberg/Hommel

2 PSOPRO 1.633 0.102 0.025

1 DEPRO 0.204 0.838 0.050

Table 8 explains the performance among the the different learning methods

for PROAFTN. According to the advanced statistical measures investigated here,

21

Bonferroni-Dunn’s procedure rejects those hypotheses that have a p-value ≤ 0.025.

Holm’s procedure rejects those hypotheses that have a p-value ≤ 0.025, and Hom-

mel’s procedure rejects those hypotheses that have a p-value ≤ 0.025. Based on

this outcomes, one can see that there is no significant difference in term of classi-

fication accuracy between PSOPRO and PSOPRO-RVNS. Therefore, using PSO

independently for PROAFTN would sufficient.

Table 9 documents the results of classification accuracy (percentage of cor-

rectly classified instances) achieved by the 7 classifiers on each of the 12 appli-

cations. These results are evaluated on the testing dataset and the best results

achieved on each application are marked in bold. As observed from these results,

PSOPRO performs very well on medical applications BCancer, Blood, Heart,

Hepatitis, HM, MM and Pima.

Table 9: Experimental results based on classification accuracy (in %) to measure the performance

of the different classifier compared with PSOPRO.

Algorithm C4.5 NB SVM NN k-nn PART PSOPRO

Dataset J48 SMO MLP IBk, k = 3

1 BCancer 94.56 95.99 96.70 95.56 97.00 94.28 97.14

2 Blood 77.81 75.40 76.20 78.74 74.60 78.07 79.25

3 Heart 76.60 83.70 84.10 78.10 78.89 73.33 84.27

4 Hepatitis 80.00 85.81 83.87 81.94 84.52 82.58 86.04

5 HM 71.90 74.83 73.52 72.87 70.26 72.55 75.73

6 Iris 96.00 96.00 96.00 97.33 95.33 94.00 96.21

7 Liver 68.7 56.52 58.26 71.59 61.74 63.77 69.31

8 MM 82.10 78.35 79.24 82.10 77.21 82.21 82.31

9 Pima 71.48 75.78 77.08 75.39 73.44 73.05 77.47

10 STAust 85.22 77.25 85.51 84.93 83.62 83.62 86.09

11 TA 59.6 52.98 54.3 54.3 50.33 58.28 60.55

12 Wine 91.55 97.4 99.35 97.4 95.45 92.86 96.79

The Friedman test is also used here to evaluate the overall performances of

each classifier on all applications. Particularly, the focus is to evaluate whether

there is a difference in the performance between PSOPRO and other classifiers.

Provided that the Friedman test indicates statistically significant difference on 12

datasets and the seven classifiers including PSOPRO, other advanced tests such as

Bonferroni-Dunn’s, Hochberg’s, Hommel’s, and Nemenyi’s procedures described

are used to determine which classifier(s) performs the best. More particulary,

22

these tests are used to test whether the difference between PSOPRO versus other

classifiers is meaningful. Based on the classification accuracy results obtained by

each classifier presented in Table 9, the algorithms’ ranking results using Fried-

man test are shown in Table 10. The best technique is the one which gives the

lower value. According to these results, PSOPRO performs the best.

Table 10: Average rankings of the algorithms

Algorithm Ranking

PSOPRO 1.4166

SVM 3.4583

NN 3.5416

NB 4.3750

C4.5 4.8750

PART 5.0417

3-nn 5.2917

Friedman’s and Iman-Davenport’s statistics are respectively:

• Chi-square χ2 = 27.8661 with 6 degrees of freedom,

• F-distribution F = 6.94537 with k− 1 and (k-1)(N-1), that is 6 and 66 de-

grees of freedom.

k is the number of classifiers, and N is the number of datasets. The critical value of

F(6,66) for α = 0.05 is 2.24; this indicates that the performance of the algorithms

is significantly different.

Table 11 summarizes the classifiers ordered by their p-value and the adjust-

ment of α’s by Bonferroni-Dunn’s, Hochberg’s, Hommel’s, and Nemenyi’s sta-

tistical procedures [19, 25]. The difference z between PSOPRO identified by R0

and other classifiers Ri is presented in column 3. The standard error between two

classifiers is SE =

√
k(k+1)

6N
. The p-values are documented in the last column. p-

values identify the probability of difference in performance among the classifiers

over the datasets. According to this analysis, Nemenyi’s procedure rejects those

hypotheses that have a p-value ≤ 0.0023. Bonferroni-Dunn’s procedure rejects

those hypotheses that have a p-value ≤ 0.0083. Hochberg’s procedure rejects

those hypotheses that have a p-value ≤ 0.05. Hommel’s procedure rejects all hy-

potheses. Based on these outcomes, the pairwise comparisons between PSOPRO

and other classifiers are drawn as follows:

23

1. PSOPRO performs strongly better than 3-nn, PART, C4.5, and NB.

2. PSOPRO performs better than NN and SVM.

The above results show that PSOPRO is an effective classification technique

that outperforms widely used classification algorithms. The fact that PROAFTN

has five parameters to be obtained for each attribute for each class provides more

information to assign objects to the closest class; however, in some cases this may

cause some limitation on the speed of the PSOPRO. A possible future solution is

to exclude the weights from learning metaheuristically using other faster and con-

ceptual approaches; some techniques used in machine learning algorithms, such

as features ranking, might be good choices to obtain the values of these weights

without involving them in optimization. Possible improvements could be made

as well on the intervals. This would involve establishing the intervals’ bounds a

priori by using some clustering techniques, hence improving and speeding up the

search and improving the likelihood of finding the best solutions.

5. Conclusions

In this paper, a new methodology based the evolutionary algorithm PSO is

proposed for training the MCDA classification method PROAFTN. The proposed

learning technique is named PSOPRO for solving classification problems. PSO is

proposed to induce the classification model for PROAFTN by inferring the best

parameters from data with high classification accuracy. The major properties of

PSO are its ability to handle non-differentiable, nonlinear, real-valued parameters

and multidimensional problems, which is the case in this work.

The performance of PSOPRO applied to 12 classification dataset demonstrates

that PSOPRO outperforms the well-known classification methods PART, 3-nn,

C4.5, NB, SVM, and NN. PROAFTN is a stand alone classifier algorithm which

requires a technique to obtain its parameters for the studied application. PROAFTN

Table 11: PSOPRO versus other classifiers for α = 0.05
i algorithms z = (R0 −Ri)/SE p

1 SVM 2.3150 0.0206

2 NN 2.4095 0.0159

3 NB 3.3544 7.9527E-4

4 C4.5 3.9213 8.8042E-5

5 PART 4.1103 3.9503E-5

6 3-nn 4.3938 1.1136E-5

24

uses fuzzy approach to assign objects to classes; as a result, there is richer infor-

mation, more flexibility, and therefore an improved chance of assigning objects

to the preferred classes. PSO is a well-known metaheuristic used successfully

as a general purpose algorithm. In this study, using the PSO algorithm to obtain

PROAFTN’s parameters during the learning process proved to be a successful

approach for learning PROAFTN and thus greatly improving its performance.

In closing, it was observed that PSO significantly improved the performance

of the PROAFTN method. Hence, the integrated approach in so-called PSOPRO

demonstrates efficiency and competency in the domain of data classification.

Acknowledgment

We gratefully acknowledge the support from NSERC’s Discovery Award

(RGPIN293261-05) granted to Dr. Nabil Belacel.

References

[1] F. Al-Obeidat, N. Belacel, J. A. Carretero, and P. Mahanti, editors. Ad-

vances in Artificial Intelligence, 23rd Canadian Conference on Artificial In-

telligence, Canadian, AI 2010, Ottawa, Canada, May 31 - June 2, 2010.

Proceedings, volume 6085 of Lecture Notes in Computer Science. Springer,

2010.

[2] F. Al-Obeidat, N. Belacel, J. A. Carretero, and P. Mahanti. Automatic pa-

rameter settings for the proaftn classifier using hybrid particle swarm opti-

mization. In Canadian Conference on AI, pages 184–195, 2010.

[3] F. Al-Obeidat, N. Belacel, J. A. Carretero, and P. Mahanti. Differential evo-

lution for learning the classification method proaftn. Knowledge-Based Sys-

tems, 23(5):418 – 426, 2010.

[4] E. Alpaydin. Introduction to machine learning. MIT Press, 2004.

[5] A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.

[6] P.W. Baim. A method for attribute selection in inductive learning sys-

tems. IEEE Transactions on Pattern Analysis and Machine Intelligence,

10(6):888–896, 1988.

25

[7] N. Belacel. Multicriteria Classification methods: Methodology and Medical

Applications. PhD thesis, Free University of Brussels, Belgium, 1999.

[8] N. Belacel. Multicriteria assignment method PROAFTN: methodology

and medical application. European Journal of Operational Research,

125(1):175–183, 2000.

[9] N. Belacel and M. Boulassel. Multicriteria fuzzy assignment method: A

useful tool to assist medical diagnosis. Artificial Intelligence in Medicine,

21(1-3):201–207, 2001.

[10] N. Belacel, H. Raval, and A. Punnen. Learning multicriteria fuzzy classifi-

cation method PROAFTN from data. Computers and Operations Research,

34(7):1885–1898, 2007.

[11] N. Belacel, Q. Wang, and R. Richard. Web-integration of PROAFTN

methodology for acute leukemia diagnosis. Telemedicine Journal and e-

Health, 11(6):652–659, 2005.

[12] D. Bouyssou, T. Marchant, M. Pirlot, P. Perny, A. Tsoukias, and P. Vincke.

Evaluation and decision models. a critical perspective. Kluwer Academic

Publishers, 2000.

[13] C. Burges. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2(2):1–47, 1998.

[14] Xindi Cai, Nian Zhang, Ganesh K. Venayagamoorthy, and Donald C. Wun-

sch, II. Time series prediction with recurrent neural networks trained by a

hybrid pso-ea algorithm. Neurocomput., 70(13-15):2342–2353, 2007.

[15] G. Castellano, A. Fanelli, and M. Pelillo. An iterative pruning algorithm

for feedforward neural networks. IEEE Transactions on Neural Networks,

8(3):519–531, 1997.

[16] Ying-Pin Chang and Chia-Nan Ko. A pso method with nonlinear time-

varying evolution based on neural network for design of optimal harmonic

filters. Expert Systems with Applications., 36(3):6809–6816, 2009.

[17] M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and

convergence in a multidimensional complex space. IEEE Transactions on

Evolutionary Computation, 6(1):58–73, Feb 2002.

26

[18] G. Cooper and E. Herskovits. A bayesian method for the induction of prob-

abilistic networks from data. Machine Learning, 9(4):309–347, 1992.

[19] J. Demšar. Statistical comparisons of classifiers over multiple data sets. Jour-

nal of Machine Learning Research., 7:1–30, 2006.

[20] L. Dias, V. Mousseau, J. Figueira, and J. Climaco. An aggregation/disag-

gregation approach to obtain robust conclusions with electre tri. European

Journal of Operational Research, 138(2):332–348, 2002.

[21] D.M. Dutton and G.V. Conroy. A review of machine learning. The Knowl-

edge Engineering Review, 12:4:341–367, 1996.

[22] R. Eberhart and J. Kennedy. New optimizer using particle swarm theory.

In Proceedings of the 6th Int. Symposium on Micro Machine and Human

Science, pages 39–43, 1995.

[23] R. Eberhart and J. Kennedy. Particle swarm optimization. In Proc. of the

1995 IEEE Int. Conf. on Neural Networks, volume 4, pages 1942–1948,

1995.

[24] I. De Falco, A. Della Cioppa, and E. Tarantino. Facing classification prob-

lems with particle swarm optimization. Applied Soft Computing, 7(3):652 –

658, 2007.

[25] S. Garcia and F. Herrera. An extension on ”statistical comparisons of clas-

sifiers over multiple data sets” for all pairwise comparisons. Journal of Ma-

chine Learning Research, 9:2677–2694, 2009.

[26] Zlal Gngr, Grkan SerhadlIoglu, and Saadettin Erhan Kesen. A fuzzy ahp

approach to personnel selection problem. Applied Soft Computing, 9(2):641

– 646, 2009.

[27] M. Goebel and L. Gruenwald. A survey of data mining and knowledge

discovery software tools. SIGKDD Explor. Newsl., 1(1):20–33, 1999.

[28] N. P. Holden and A. A. Freitas. A hybrid pso/aco algorithm for classification.

In GECCO ’07: Proceedings of the 2007 GECCO conference companion on

Genetic and evolutionary computation, pages 2745–2750, New York, NY,

USA, 2007. ACM.

27

[29] X. Hu, R.C. Eberhart, and Y. Shi. Swarm intelligence for permutation opti-

mization: a case study of n-queens problem. In Swarm Intelligence Sympo-

sium, 2003. SIS ’03. Proceedings of the 2003 IEEE, pages 243–246, April

2003.

[30] K. Jabeur and A. Guitouni. A generalized framework for

concordance/discordance-based multi-criteria classification methods.

In The 10th International Conference on Information Fusion, 2007, pages

1–8, July 2007.

[31] J. Kennedy and R.C. Eberhart. Swarm intelligence. Morgan Kaufmann

Pubs., 2001.

[32] J. Lger and J-M. Martel. A multi-criteria assignment procedure for a nominal

sorting problematic. European Journal of Operational Research, 138:349–

364, 2002.

[33] Karim Lidouh, Yves De Smet, and Minh Tuan Huynh. Circular representa-

tions of a valued preference matrix. In Francesca Rossi and Alexis Tsoukis,

editors, ADT, volume 5783 of Lecture Notes in Computer Science, pages

261–271. Springer, 2009.

[34] Shih-Wei Lin and Shih-Chieh Chen. Psolda: A particle swarm optimization

approach for enhancing classification accuracy rate of linear discriminant

analysis. Applied Soft Computing, 9(3):1008 – 1015, 2009.

[35] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[36] S. Pang, D. Kim, and S.Y. Bang. Face membership authentication using

SVM classification tree generated by membership-based lle data partition.

IEEE Transactions on Neural Networks, 16(2):436–446, 2005.

[37] R. Poli. Analysis of the publications on the applications of particle swarm

optimisation. Journal of Artificial Evolution and Applications, 8(2):1–10,

2008.

[38] J. R. Quinlan. Improved use of continuous attributes in C4.5. Journal of

Artificial Intelligence Research, 4:77–90, 1996.

[39] B. Roy. Multicriteria methodology for decision aiding. Kluwer Academic,

1996.

28

[40] A. Salman, I. Ahmad, and S. Al-Madani. Particle swarm optimization for

task assignment problem. Microprocessors and Microsystems, 26(8):363 –

371, 2002.

[41] Jaco F. Schutte and Albert A. Groenwold. A study of global optimization

using particle swarms. J. of Global Optimization, 31(1):93–108, 2005.

[42] Y. Shirvany, M. Hayati, and R. Moradian. Multilayer perceptron neural net-

works with novel unsupervised training method for numerical solution of the

partial differential equations. Applied Soft Computing., 9(1):20–29, 2009.

[43] P. Smyth, D. Pregibon, and C. Faloutsos. Data-driven evolution of data min-

ing algorithms. Comm. ACM, 45(8):33–37, 2002.

[44] T. Sousa, A. Silva, and A. Neves. Particle swarm based data mining algo-

rithms for classification tasks. Parallel Computing, 30(5-6):767 – 783, 2004.

Parallel and nature-inspired computational paradigms and applications.

[45] D. K. Subramanian, V. S. Ananthanarayana, and M. Narasimha Murty.

Knowledge-based association rule mining using and-or taxonomies.

Knowledge-Based Syst., 16(1):37–45, 2003.

[46] Bhekisipho Twala. Multiple classifier application to credit risk assessment.

Expert Systems with Applications, In Press, Uncorrected Proof:–, 2009.

[47] F. van den Bergh and A.P. Engelbrecht. A study of particle swarm optimiza-

tion particle trajectories. Information Sciences, 176(8):937 – 971, 2006.

[48] Pandian Vasant, Arijit Bhattacharya, Bijan Sarkar, and Sanat Kumar

Mukherjee. Detection of level of satisfaction and fuzziness patterns for

mcdm model with modified flexible s-curve mf. Applied Soft Computing,

7(3):1044 – 1054, 2007.

[49] Xu Wei-hua, Zhang Xiao-yan, and Zhang Wen-xiu. Knowledge granulation,

knowledge entropy and knowledge uncertainty measure in ordered informa-

tion systems. Applied Soft Computing, 9(4):1244 – 1251, 2009.

[50] S. Weiss and C. Kulikowski. Computer Systems That Learn-Classification

and Prediction methods from Statistics, Neural Nets, Machine Learning and

Expert Systems. Morgan-Kaufmann, 1991.

29

[51] H. Witten. Data Mining: Practical Machine Learning Tools and Techniques.

Morgan Kaufmann Series in Data Management Systems, 2005.

[52] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi. A

particle swarm optimization for reactive power and voltage control consid-

ering voltage security assessment. Power Systems, IEEE Transactions on,

15(4):1232–1239, Nov 2000.

[53] Liman Zhang, Haiming Wang, Jinzhao Liang, and Jianzhou Wang. Decision

support in cancer base on fuzzy adaptive pso for feedforward neural network

training. In ISCSCT ’08: Proceedings of the 2008 International Sympo-

sium on Computer Science and Computational Technology, pages 220–223,

Washington, DC, USA, 2008. IEEE Computer Society.

[54] C. Zopounidis and M. Doumpos. Multicriteria classification and sorting

methods: A literature review. European Journal of Operational Research,

138(2):229–246, 2002.

30

