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ABSTRACT 

A number of operations for processing deterministtic signals obtained from measurements 

of structural dynamics have been carried out in the frequency domain. They include 

instrument correction including angular motion, integration and differentiation, baseline 

adjustment, and filtering. A survey of computational considerations includes aliasing, the 

Fast Fourier Transfor~n (FFT),  the transformation of long records, wrap-around, and the 

leakage phenomenon. Numerical examples illustrate baseline adjust~nent, leakage, and 

wrap-a,round. 

L'aut.eur a effect& un certain nombre d'op4rations3 dans le domaine des frdque~lces, err 

vue de tra.iter les signaux dkterministes obtenus B partir de rnesures de dynamique struc- 

turale : correction instrument pour tenir compte du mouvement angulaire, intkgration 

et diffkrenciation, ajustement des valeurs de rdfkrence et filtrage. I1 passe en revue cer- 

tains p a r a m h e s  de calcul comme ]'aliasing, la transformation rapide de Fourier (TRF),  la 

transformation des longs enregistrements, le bouclage et le phGnom6.n~ de fuite. I1 donne 

des exemples num4riques d'ajustement des valeurs de rdfkrence, de fuite et de bouclage. 



INTRODUCTION 

Signals obtained from ~rieasurements in structural dynamics (and other disciplines) need 

to be processed before they can be used in interpreting the behaviour of the object under 

investigation. Such processing may include instrument correction, integration and differ- 

entiation. filtering, and consideration of othcr irifluences on transducer behaviour such as 

angular motion that accompanies horizontal movement of slender structures. This applies 

to signals from both laboratory tests and full-scale field observations. The latter are more 

likely to require some of the above operations since the experimental conditions are not 

always under the full control of the investigator; some effects are also more pronounced at  

the low frequencies that pertain to the motions of large structures. 

The traditional method of processing signals from transducers has been in the time domain 

using digital or analog methods. With the advent of the efficient computation scheme of 

the Fast Fourier Transform (FFT),  processing in the frequency domain has become a. 

practical reality. The frequency domain not only provides a viable alternative to time 

domain methods, but permits the solution of problems tha.t involve frequency dependent 

parameters. 

This report discusses the application of some corrlInon methods of processing signals from 

structural dynamics in the deterministic sense. Probabilistic or statistical procedures such 

as signal averaging and probability distributions are not discussed here. Although some 

aspects of the following operations are well known, they are included here to provide 

the necessary background to  new procedures such as baseline correction and instrument 

correction for angular motion. 

THE FOURIER TRANSFORM METHOD 

The Fourier transform method as it applies to structural dynamics will be reviewed only 

briefly since numerous books deal with this subject in detail 11-41. The Discrete Fourier 

Transform (DFT) of the discrete series x(kAt),  consisting of N points of uniform spacing 

At, is: 
N-1 

X ( n A  f) = z (kAt)e-  j 2 r n k l N  (I) 

for n  = 0,1 , .  . . N - 1; the inverse Fourier transform is: 

for k = O , l ,  . . .  N - I ;  j = G .  



The DFT corresponds to the int,egral form of the Fourier transform at  the discrete points, 

provided that the signal is fully within the range of summation, and the frequency content 

is less than half t,he Nyquist frequency (f,,) i2:4]. 

The response of a linear systern with impulse response function h( t )  when subjected to a 

disturbance x(t)  is give11 by the convolution integral. also called the Duhamel integral: 

This convolution is commonly written as: 

Taking the Fourier tra.nsform throughout Eqs. (3) or (4) gives 

Y (w)  = X(w) H ( w )  ( 5 )  

where H(w),  called the frequency response function, is the Fourier transform of the impulse 

response function h(t) ,  and X ( w )  and Y ( w )  are the Fourier tra.nsforms of x(t) and y(t), 

respec.tively. H ( w )  is, in general, a complex function and can be obtained from the dif- 

ferential equation of motion, from the Fourier transform of the impulse response function 

K ( t ) ,  or by measuring the phase and amplitude response of the system to sinusoidal inputs. 

Once the desired frequency response function of the system is known, the multiplication 

in Eq. (5) is carried out over the entire frequency range and the signal y(t) is obtained by 

taking the inverse Fourier transform according to  Eq. (2) .  An example of the computation 

of the response of a single-degree-of-freedom oscillator subjected to  the El Centro 1940 3 - S  

ground motion is given in Reference 5. 

For calcula.ting the DFT, the Fast Fourier Transform (FFT) algorithm [1,6] represents an 

efficient computational method. It requires, however, that the total number of discrete 

points N be an integer power of 2; i.e., N = P. Where the available real points do not 

form a full 2" values, zeros can be added. See References 1 and 6 for further details. 

OPERATIONS ON DETERMINISTIC SIGNALS 

Instrument Correction of Transducer Signals 

The signal from the transducer represents the motion of the structure as modified by 

the instrument characteristics. That  is, the t,ransducer signal y ( t )  can be viewed as the 

convolution of the structure 11lotion x ( t )  by the transducer characteristic h(t)  as given by 

Eq. (4) in the time domain or Eq. (5) in the frequency domain. In order to obtain the 

true structural motion x( t ) ,  i t  is necessary to apply an instrument correction, in which 



the transducer signal is "deconvolved" by t,he instrument ~haracterist~ics. In the frequency 

domain, this becomes: 

The frequency response function H ( w )  for a transducer that is modelled by a spring-mass 

oscillator can be obtained from the differential equation of motion: 

where: 

u = displacement of mass relative to transducer base, 

wo = natural frequency of the transducer (rad/s), 

p = critical damping ratio of the transducer, 

x ( t )  = ba.se motion, 

and dots refer to differentiation with respect to time. 

Assuming a base motion z( t )  = ~ e i ~ ~  and response u ( t )  = ~ e ( j ~ ~ + + ) ,  the frequency 

response function is the ratio of relative output displacement u to the input displacement X: 

where the frequency ratio n = W - .  Thus for a transducer that is closely modelled by a 
W o  

single-degree-of-freedom oscillator, it is only necessary to know its natural frequency and 

damping ratio, and the correction function can be obtained by Eq. (8). Complex multi- 

plication with the Fourier-transformed signal I J ( ~ )  a.ccording to Eq. ( 5 ) ,  and application of 

the inverse Fourier transform gives the instrument-corrected signal, z ( t ) .  

The instrument correction can be carried through and beyond the resonance frequency of 

the transducer and thereby frequency components can be restored which were attenuated 

due to inadequate transducer response. This correction procedure also restores the original 

phase relationships among the signal components. Although such instrument correction is 

not always necessary, it becomes important for impulsive types of loading and for processing 

of strong-motion seismograph signals when the frequency content of the signal is near the 

natural frequency of the transducer. 

Instrument Correction Including Angular Motion 

When angular motion is present simultaneously with horizontal movement, the signal from 

a transducer placed to respond in tlre horizontal direction will be affected by this rotation. 



Transducers on tall slender structures such as towers and chimneys. and long slender cable 

structures such as suspension bridges are particularly prone to this effect. 

The frequency response function for relative displaccrnent of the transducer mass wheri 

subjected to a base displaccrnent and arlgular ~rlotion is 7': 

where: 

g = acceleration due to gravity, 

= radius of rotation of transducer base, 

wo = natural frequency of instrument (rad/s). 

The complex division of Y ( w )  by H(w), as indicated by Eq. (6), and the inverse Fourier 

t,ransform, gives the actual horizontal motion of the st,ructure, x ( t ) .  

Further details of rotation correction procedures and numerical examples are presented in 

References 7 and 8. 

Filtering 

Filtering is removal of specific ranges of frequency components from a signal. This can 

be achieved nunierically or by.. analog methods in the time domain, or by computing the 

Fourier transform, deleting undesired frequency components, and then calculating the 

inverse Fourier transform to obtain the filtered time signal. Specifically, if H(w) is a 

function having the desired filter shape in the frequency domain ( a  'frequency window'), 

taking the product with the transform of the signal, as in Eq. ( 5 ) ,  and the inverse Fourier 

transform, as in Eq. (2) ,  yields the desired filtered signal. Representative window shapes 

in the time and frequency domains are shown in Figure I. Aspects of leakage need to be 

considered, however; these are discussed in another section. 

A useful property of the filtering described above is that the phase relationships of the 

frequency components of the signal are not changed, which is not the case for analogue 

filters. The mean and other boundary conditions may change, however, so that a baseline 

adjustment may be necessary for every filtering operation. Baseline adjustment will be 

discussed below. 

Differentiation and Integration 

Differentiation and integration in the frequency domain correspond to multiplication of 

the appropriate function of jw, since: 



T I M E  D O M A I N  F R E Q U E N C Y  D O M A  I N 

a )  R E C T A N G U L A R  O R  B O X C A R  

b )  C O S I N E  T A P E R  

C )  T R A P E Z O I D A L  

Figure 1 Some common time and frequency windows. 

Thus for differentiation, the applicable frequency response function is: 

differentiations: 
2 H(w)  - -W . 



Similarly, for single or double integration: 

Here, w = 27r f ,  where f is the circular frequency in Hz. After multiplication throughout the 

frequency range, a.s indicated by Eq. (5), the inverse transform then yields the integrated 

or differentiated signal y ( t ) .  

In performing the integration, w or j = 0 cxnnot he admitted, since the result of the 

division by zero would yield oo. This is resolved by setting the first term in the frequency 

domain equal to zero, which results in a signal with zero mean, as will be discussed below. 

Baseline Adjustment 

Baseline adjustment becomes necessary when the signal or some function of it needs to 

satisfy certain boundary conditions, which can include zero initial and final values, zero 

rnean, or zero final value of the integral of the signal. The required baseline adjustments 

have co~nmonly been carried out in the time domain and are incorporated into widely 

accepted methods of processislg strong-motion seismograph records [9]. Many of such 

boundary conditions can also ..be achieved by specifying the necessary conditions in the 

frequency domain [10,11]. The simplest such form of baseline adjustment is the requirement 

for zero mean value. Examination of Eq. (1) shows that the term corresponding to f = 0 

or n = 0 represents the sum of all the signal amplitudes, which is the rnean value times 

the signal length. Consequently, with the zero'th term set to zero, the signal will have a 

baseline correction that, corresponds to zero mean value. 

In a more general case, based on physical considerations of elastic behaviour, the following 

boundary conditions may need to be sa.tisfied by a ground motion record obtained from 

blasting or seismic activity: 
1) zero mean acceleration, velocity and displacement; 

2) zero beginning and final velocity; 

3) zero beginning and final displacement. 

For the FFT to be employed in the analysis of a record, N = 2n points are required. For 

record length of k points less than N ,  the signal thus has two parts: 1) the actual record 

up to time t k ;  and 2) the augmented port,ion of zeros up to  time t ~  (Fig. 2a). Since the 

augmented record is the more general case, it will be treated here in detail. The boundary 

conditions listed above need to be satisfied for the actual portion of the record up to t k ,  

as well as for the entire signal used for computation up to time t N .  



The baseline adjustment of the acceleration record is carried out in two stages. satisfying i11 

turn the boundary conditions for both the velocity and the displacement. The procedure 

is illustrated on a recorded acceleration ground  notion from a distant excavatior~ blast, 

shown in Figure 2 along with unadjusted int,egrat,ed velocities and displacements. Thc 

acceleration record has been adjusted for instrument characteristics and the integrations 

are carried out in the frequency domain according to the ~rlethods described above. 

Velocity boundary conditions Since the start and finish of the velocity up to time t k  

is to be equal (and eventually zero), an angular baseline shift from the starting value vo 

at  time t o  -- 0 to  the finishing value v k  at  time tk, has to be made. This corresponds to a 

constant adjustment to the acceleration trace: 

The resulting acceleration tra.ce is shown in Figure 3a and the corresponding velocity 

trace in Figure 3b. The acceleration trace is virtually indistinguishable from that of the 

uncorrected trace in Figure 2a because the correction is so small, but it is included here 

and in subsequent correction stages for completeness and for comparison purposes. 

Now a constant shift v on the velocity trace is performed to bring the start and finish to 
1 

zero. In order to maintain the zero mean velocity, a parabola that has the same area as 

the rectangle formed by the total time t~ rnultiplied by the amount of adjustrnent a is 

subtractNed from the actual velocity record of duration t k .  

The area of the correction parabola is gy,tk, where yc is the centre amplitude of the 

parabola, and this is equal to ~ t k ,  the area of rectangle up to  time t k ;  thus: 

From geometry, the equation of the parabola that corrects the velocity curve is then: 

Since the acceleration represents the derivative of the velocity with respect to time, the 

acceleration adjustment is: 

However, the total area of the rectangle to bc correct,ed in the computation is v i ~ ,  so that 

the correction ter~rl  has to bc rrlultiplicd by t N i ' t k :  
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b )  V E L O C I T Y  

Figure 2 Unadjusted acceleration record and resulting velocity and displacement. 

9 



a )  A C C E L E R A T I O N  

A t  = 0. 005 s 
Af = 0 . 1 9 5  H z  

b )  V E L O C I T Y  

TIME, s 

Figure 3 Acceleration record adjusted by constant fj and resulting velocity and dis- 

placement. 



Thus the acceleration trace corrected to satisfy the velocity boundary conditions is: 

The velocity-corrected acceleration trace is shown in Figure 4a and the resulting velocity 

and displacements in Figures 4b and c,  respectively. Again, this acceleration trace is 

virtually indistinguishable from the uncorrected one in Figure 2a. 

Displacement boundary conditions The displa.cement that results from the acceler- 

ation record xu adjusted for the velocity conditions is shown in Figure 4c. An adjustment 

similar to tha.t for the velocity boundary condition is now applied in order to  satisfy the 

boundary conditions of the displacement record. But here the adjustment function to the 

displacement trace needs to have a continuous slope or derivative a t  tk, where it joins 

the augmented portion, i11 order not to result in a discontinuity in the corrected velocities 

or accelerations. Therefore the correction cannot be a second degree parabola. The sim- 

plest acceptable function is a third degree polynomial, or the trigonometric function with 

amplitude u: 

= U cos 2 r t / tk .  [all 

The corresponding derivatives are then: 

2 n 
Ai( t )  = (-)u sin 2'/rt/tk 

tk 

Again, A2 has to be multiplied by the ratio t N / t k  to compensate for the portion of the 

correction rectangle in the region with the added zeros. Thus: 

and the acceleration record corrected for both the velocity and displacement boundary 

conditions becomes: 

xd(t) = ~ ( t )  - a - A&(t) - Az(t).  P5) 

The a.djusted acceleration, resulting velocity, and displa.cernent are shown in Figures 5a, 

b, and c, respectively. 

The slight deviation from zero in the displacement trace in the extended region of the 

record is due to  small numerical inaccuracies such as round-off errors and discretization 



a )  A C C E L E R A T I O N  

Jitw,,iiiir*hcr*hcr*hcr*hc --- - - 

A t  = 0 . 0 0 5  s 
A f  = 0 . 1 9 5  H z  

b )  V E L O C I T Y  

C )  D I S P L A C E M E N T  

- 
\^ J' 

TIME, s 

Figure 4 Acceleration signal adjusted for velocity boundary conditions and resulting 

velocity and displacement. 
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b )  V E L O C I T Y  

C )  D I S P L A C E M E N T  

TIME, s 

Figure 5 Acceleration record adjusted for velocit,y and displa.cement boundary condi- 

tions and resulting velocity and displacement. 



effects. The example presented represents a particularly severe test of the met,hod since 

the result,ing displacenlents are extrcrnely small, in the order of 0.03 mm. 

COMPUTATIONAL CONSPDERATI[ONS 

Sampling Frequency 

The sampling frequency of a signal is governed by the following requirements. First, there 

must be adequate resolution so that closely-spaced frequencies can be distinguished and 

the frequency response curves be properly defined; this requires that the frequency incre- 

ment A f is approximately six times the half-power bandwidth of the frequency response 

curve for the vibration system, and for close frequency spacing, t,hat A f is a t  least six 

times the frequency difference to be resolved. Second, to avoid 'aliasing', the sampling 

frequency (f,) needs to be at  least twice the highest frequency component (fm,,) in the 

signal [3,4,12]. Finally, if the time record is to be represented with adequa.te resolution, 

then the sampling frequency should be at  least six times, prefera.bly ten times, the highest 

frequency component in the signal. 

Transform of Long Records 

When the number of points to be transformed exceeds t,he capacity of the available com- 

puter, either in storage capacity or on account of the software used, a method of sectioning 

the total number of points into an integer number of subarrays can be used, as is shown in 

Reference 13. Each of these subarrays needs to have Zn points, since the F F T  algorithm is 

employed there. This method also ;resents the possibility of transforming an array whose 

totma] number of points is not Zn, but is an integer multiple of a smaller power of 2. 

Another method of processing lorig records is the 'overlap-save' method, where sequential 

overlapping sections of the signal are processed and the overlap with the spurious results 

discarded. This is an approximate method, brat should provide adequate accuracy for many 

practical problems (see Reference 14 for further details). 

Wrap- Around 

The discrete Fourier transform (Eq. (1)) is a circular function which can be viewed as 

repeating itself for succeeding portions of 2N, 3 N .  . . points, This means that the end of 

the record can be thought of as continuing a t  the beginning of the succeeding identical 

record, or equivalently, the beginning of the same record. Thus, the record has to  start' 

arid end a t  the same value. otherwise a discontirluity results. As a consequence of this 

circular property, signals which result from a11 operation that employs the DFT (or FFT) 

and which have not died out before the end of the record will re-appear a t  the beginning, 

resulting in a phenomenon referred to as 'wrap-around'. 

This effect is particularly important when a, response calculat,ion is carried out according 

to Eq. (5) wit,h subsequent inverse Fourier transform. The calculated response of the 



vibrating system has to die out to zero (or sufficiently close to zero) before the end of 

the calculation period of 1Y points, otherwise the residual oscillations will re-appear a t  the 

start of the calculated signa.1. This require~nent is satisfied by the criterion (see Ref. 14): 

where: 
N = tota.1 number of points, 

P = number of points in the signal, 

Q = number of points of the impulse response function of the vibrating system or 

oscillator. 

Leakage 

Because the DFT encompasses only a finite length of record, any abrupt change of signal 

level at  the beginning or end of the record causes 'leakage' of frequency components and 

a distortion of the Fourier transform. It is therefore necessary to start and end the record 

with zero values and provide reasonably gradual transitions to  the signal. If the record 

itself is not inherently of such a type, then a time window function that accompiishes this 

objective needs to be applied. A time window commonly employed is the cosine taper, 

which can range over portions of the record duration, to a full cosine tapering over the 

entire record length (see Fig. 6). 

The leakage properties of a time window are governed by the side lobes in the Fourier 

transform of the window (see Figs. 7 and 8). The larger these lobes, the more extraneous 

oscillations the filtered signal will display. A detailed evaluation of the cosine taper time 

window follows. 

The cosine taper time window shown in Figure 6 is given by: 

1 :. and the Fourier transform can be shown to be:* 

T w  
a ) )  + sin(-)). 

2 

* H.H. Ireland, private communication. 



a )  C O S I N E  T A P E R  W I T H  a  = 0 . 2  ( a  

F U L L  R E C T A N G U L A R  
W I N D O W ,  a  = 0 . 0  

b )  C O S I N E  T A P E R  V I I T H  T A P E R  R A T I O  
a  = 1 . 0  ( C O S I N E  B E L L )  ( b )  

Figure 6 Cosine taper windows with vari- Figure 7 (a) Rectangular window 

ous taper ratios a,. (b) Fourier amplitude spectrum. 

Plots of G(f)  are presented in Figures 8a and b. For this example, the taper ratio a was 

set equal to 20% of the total digitization window length of 227.555 seconds. Figure 8 shows 

that the Fourier transform of the cosine taper is made up of a main central lobe, to either 

side of which occur periodically-spaced lobes of decreasing magnitude. The first or main 

lobe, having an actual spectral magnitude of 204.8, has been truncated so that the side 

lobes can be displayed more effectively; thus Figure 8b is a continuation of Figure 8a and 

is further magnified in amplitude and frequency. 

It is clear from Eq. (27) that as the value of the taper ratio a increases from a value close to 

zero towards 1.0, the cosine tapering of the beginning and end of the digitization window 

becomes increasingly more gradual. From an analysis of the Fourier tra.nsform of the taper 

cosine under the same conditions,* the first zero crossings to either side of the centre lobe 

take on increasing frequency values given by: 

* H.H. Ireland, private communication. 
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Furthermore, Eq. (29) shows that the centre lobe is spread over a larger bandwidth as a 

increases. At the same timc. the magnitude of this centre lobe decreases for i~icreasing 

values of a. according to: 

In qualitative terms, as the taper ratio a is decreased, or equivalently, as the sha.pe of 

the window becomes increasingly rectangular, the magnit,ude of the centre lobe increases 

and its bandwidth decreases, with a simultaneous increase in the magnitude of the side 

lobes. Therefore, a decrea.sed t,aper ratio increa.ses the amount of leakage. Conversely, as 

the taper ratio is increased or the window shape becomes more like that of a 'cosine bell' 

(Fig. 6b),  the ~rlain lobe becomes lower, its bandwidtli increases, and the magnitude of the 

side lobes decreases. The effect of this decrea.se in a is to reduce the amount of leakage 

but it gives rise to a decrease in the resolution of closely-spaced spect.ra1 colnponents since 

the width of the centre lobe increases. 

An increase in a also decreases the centre amplitudes of the resulting Fourier spectrum 

G(fc) according to Eq. (30) for cases where the signal energy is uniformly distributed over 

the duration T. For a full cosine bell (i.e., a - 1.0), t,he spectral amplitudes will then 

be half of the non-windowed case. This also corresponds to the area reduction of the full 

cosine taper relative to the full rectangular window. 

In order to dea.1 with the leakage effects, the following are indicated: 

1) a time window function with side lobes as small as possible should be chosen, which 

means a window functioIi having gradual slopes; 

2) the number of points in the time record at  the beginning and end should be augmented 

with zeros, so that, the effects of leakage occurring in these portions can be assessed 

and subsequently discarded. 

Illustrative ExarnpIes of Leakage 

The effects of leakage are illlistrated for various time windows applied to a record arising 

from floor vibrations due to a coordinated activity. The full time record and its Fourier 

transform are shown in Figures 9a and b. The record is composed of three main frequency 

components, and the time trace indicates a slight start-up phase. In order to  illustrate 

the leakage effects and t,o deal with a more constant signal, the first two seconds are 

zeroed (three seconds for the boxcar filter). After 'windowing' the time record, the Fourier 

transform is computed and rnultiplied by a frecluency cosine taper window with f l  = 0.2, 

fa 1.0, f3 = 2.5 and f4  - 3.0 HZ - hereafter designated by the array of the type (0.2, 

1.0, 2.5, 3.0 Hz). (See Figure 1 for a definition of the filter frequencies f l  to f4). Then 

the inverse Fourier transform is computed. The total operation effectively produces a 

bandpass filter around the lowest frequency comyoncrit at 2.36 Hz. Since this frequency 

u indow truncates the transform in a region of very lorn7 signal energy, the effects of leakage 
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S P E C T R U M  

Figure 9 Record of floor vibrations from coordinated activity. 
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Figure 10 Filtered time record with rectangular time window (boxcar) from 3 to 12 s. 

TIME, S 

Figure 11 Filtered time record with tapered cosine time window, a - 0.2. 
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Figure 1 2  Filtered time record with tapered cosine time window, a = 0.4. 
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Figure 13 Filtered time record with tapered cosine time window, a = 0.8. 



from a, frequency window will be negligible. The same frequency window is used for all 

subsequent examples. 

The results of filt,ering using various time windows are shown in Figures 10 to 14. Starting 

with the boxcar time window in Figure 10, to increasing values of the cosine taper rat,io a. 

in Figures 11, 12 and 13, the spurious oscillatiorls before the start of the signal decrea,se 

steadily, until for the (2, 6, 8, 12 second) t,aper window there is virtually no residual 

signal, meaning virtually no leakage. Within the transition zone, the signal amplitudes 

are of course reduced due to the t,ime window taper. However, significant portions of the 

signal in these zones could he recovered by dividing by the corresponding taper amplitudes. 

Away from the taper zones, the signal amplitudes are virtually indistinguishable among 

the various window functions. 

Another window funct,ion that. can be used is tBhe trapezoidal one. The results for the 

(2, 4, 10, 12 second) window are shown in Figure 14. The extraneous oscillations in the 

quiescent portion of the signal are virtua.11~ identical to the results shown in Figure 12, 

obtained from the time domain cosine taper window with fl = 2, fz = 4, f3 = 10, f4 = 12 

seconds, or a = 0.4. 

Further theoretical treatment of this topic can be found in References 4, 12, 15 and 16. 

" 3 . 2  
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Figure 14 Filtered time record with trapezoidal time window, a. = 0.4. 
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CONCLUSION 

The Discrete Fourier Transform computational method has been shown to be usefill for 

processing vibration signals to achieve in~t~rurnent. correction, integration, diRerent,iation, 

baseline adjustment, and filt>ering. However, aspects of aliasing: leakage and wrap-around 

need to be considered. 
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