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a b s t r a c t

A reptation-based model, that incorporates transient polymer–nanoparticle surface interactions, is pro-

posed to describe the dynamics and rheological behaviors of linear entangled polymers filled with

isotropic rigid nanoscale particles. Dispersed nanoparticles are sufficiently small such that even at low

volume fractions, the average particle wall-to-wall distance is on the order of the chain size. The model

predicts a scaling law in the form, �d,eff ∼�d(�adN + 1)2, where �d,eff is the effective reptation time of a

chain in the presence of attractive nanoparticles, �d is its reptation time in the neat polymer, �ad is the

fraction of attached monomers per chain, and N is the number of monomers per chain. Hence, the over-

all relaxation is extremely retarded by attractive nanoparticles in the limit of strongly adsorbed chains.

Also, it is found that the effective reptation time, �d,eff, can be controlled through five main parame-

ters, i.e., the molecular weight of the polymer chain, N, the size of the nanoparticles, df, the density

of attractive site on the nanoparticle surface, nas, the monomer–nanoparticle energetic interaction, ε,

and the nanoparticle volume fraction, �f. The nonequilibrium dynamics of detachment/re-attachment

of monomers from/to nanoparticle surfaces under flow conditions is incorporated in the model to elu-

cidate the effect of monomer–surface interactions on the nonlinear viscoelastic behavior. The resulting

model correctly captures the linear dynamical properties and shear rheological behaviors of nanocom-

posite systems studied. Under very slow shear flow conditions, these filled systems exhibit a strong

non-Newtonian behavior and a large enhancement in the viscosity as a certain number of monomers in

the chain are attached to nanoparticle surfaces, while at very high shear rates, the neat polymer dom-

inates the shear thinning behavior, suggesting that addition of nanoparticles contributes negligible to

the viscosity in strong flows. A picture that is based on transient polymer–particle surface interactions,

i.e., the detachment/re-attachment dynamics of monomers from/to nanoparticle surfaces is proposed to

interpret the observed huge alteration in rheological properties.

Crown Copyright © 2010 Published by Elsevier B.V. All rights reserved.

1. Introduction

During the recent past, polymers filled with nanoparticles have
attracted considerable technological and scientific interest because
of dramatic enhancements in physical, thermal, and mechanical
properties observed experimentally. To investigate the microscopic
reasons underlying these macroscopic properties and to improve
the manufacturing procedure of such mixtures, it is of interest to
understand in detail the dynamics and conformational changes of
entangled polymer chains close to a solid surface along with, the
influence of the nature of polymer–particle surface interactions,
the interparticle distance, particle dispersion and particle size on
the rheological behaviors. The present work contributes to these
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(K.K. Kabanemi).

issues by constructing a molecular-based model that can be used
for quantitative predictions of macroscopic rheological properties
of such polymer systems filled with nanoscale particles.

Recent molecular dynamics simulations [1–3] suggested that
the polymer–particle surface interactions can be the dominant fac-
tor in the rheology of confined systems. These interactions include
the short-range forces between the surfaces and the polymer seg-
ments, and can be responsible for the suppression of the mobility
of polymer segments at the surfaces and even result in the forma-
tion of an immobilized glassy layer at the surfaces. Dionne et al. [2]
studied the structure and dynamics of an amorphous polyethylene
melt containing homogeneously distributed spherical nanoparti-
cles. The polyethylene chains were simulated using both molecular
dynamics and Monte Carlo methods. The chain dynamics were
monitored by computing the Rouse relaxation modes and the
mean-square displacement (MSD). The most notable observation
they pointed out, was the slowing down in the Rouse dynam-
ics seen on all subsections of the chain no matter how small the
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subsections were, meaning that on average every monomer feels
the confinement of the neighboring particles, slowing the relax-
ation of every chain subsection. They also showed that the slowing
down due to polymer–particle energetic interaction was similar
for all relaxation modes, independent of their wavelength. Shaf-
fer [4] investigated the effects of chain topology on the dynamics
of confined polymer melts by conducting computer simulations.
Their results suggested that entanglements are neither induced
nor enhanced by confinement between impenetrable adsorbing
surfaces. However, Sternstein and Zhu [5] reported experimen-
tal studies on the nonlinear viscoelastic properties for composites
of fumed silica with various surface treatments. They suggested
that the primary mechanism for the high reinforcement levels
observed at low strains appear to be the polymer–particle inter-
actions, but not particle agglomeration or percolation and that
the polymer–particle interactions result in a change in the entan-
glement (density and distribution) state of the polymer matrix.
Filler particle size also plays a key role. They proposed that tem-
porary bonding of chains to the nanoparticle surface results in
trapped entanglements and chain loops (chain with multiple bond-
ing contacts with the nanoparticle). Very recently, Oh and Green
[6] presented an experimental study revealing how the relax-
ation dynamics and glass transition of unentangled polystyrene
PS/PS-nanoparticle polymer nanocomposites can be tailored to
increase, or decrease in magnitude, through careful control of the
molecular parameters of the system, i.e., the nanoparticle volume
fraction, nanoparticle size, and grafting chain degree of polymer-
ization. Taken together, these findings show that, polymer–particle
surface interactions play an essential role in the dynamics behav-
ior of polymer chains at larger scales. Hence, depending on the
polymer–particle energetic interaction and the interparticle dis-
tance (the particle volume fraction and size), the mobility of chain
segments located on or near nanoparticle surfaces could be consid-
erably slowed down.

Our aim here is to capture this physics in a molecular-based
constitutive model on larger scales. A simple way to tackle the
dynamics and rheology of polymers filled with nanoparticles is to
utilize the ideas of transient networks theories [7]. Along these
lines, Inn and Wang [8] applied a transient network model to
provide a phenomenological account of some reported rheologi-
cal behaviors of filled polymer melts. Entanglement points were
described by one kind of temporary junctions with lifetime �p.
Presence of nanoparticles introduced another kind of network
junctions with a lifetime �s. The degree of compatibility of par-
ticle surfaces with the polymer medium was characterized in
terms of the adsorption time �s relative to the disentanglement
time �p. The model can explain the variation of shear viscosity
with surface treatment of particles and with molecular weight
of polymer matrix at a given particle volume fraction. How-
ever, the dependence of viscoelastic properties on particle size
and interparticle spacing was not captured by the model. Havet
and Isayev [9] proposed a rheological model of highly interactive
polymer–particle mixtures, based on a double network created by
the entangled polymer matrix and the adsorbed polymer. Both
networks were represented by a Giesekus constitutive equation.
The dependence of rheological properties on particle concentra-
tion was taken into account through the bridging density resulting
from polymer–particle interactions and a hydrodynamic reinforce-
ment. The relative contribution of both networks was computed
through the energy balance consistent with the thermodynamics
of the polymer–particle chemical interactions and fluid mechan-
ics. This approach allowed calculating shear rate dependence
of stresses under steady simple shear flow and upon start-up
and cessation of shear flow. The authors recognized that a fur-
ther refinement of this model is possible by taking into account
kinetics of adsorption–desorption, adsorbed layer thickness, con-

formation and molecular weight distribution. Sarvestani and Picu
[10] proposed a network model for nanofilled polymeric mix-
tures in the unentangled regime and in which the wall-to-wall
distance between nanoparticles is on the order of the chain size.
The resulting model captured the main features that distinguish
nanocomposite and microcomposite behaviors, for example, the
enhanced reinforcement at low deformation rates. More recently,
Sarvestani and Picu [11] analysed the dynamics of polymer melts
and concentrated solutions reinforced with nanoscale rigid spher-
ical particles. The effects of entanglement were represented by
requiring the diffusion in the chain contour direction to be more
pronounced than in the direction transverse to the chain primitive
path. The influence of polymer–particle interaction was captured
within a continuum approximation, in which an attachment point
was represented as a region of enhanced friction for the respective
chain. Hence, the model is purely frictional in nature. The draw-
backs and limitations of the model are related to the homogenized
representation of the polymer–particle attachments and the dumb-
bell simplification used.

Taking advantage of these insights, we use a reptation-based
model that incorporates an effective disengagement time to treat
the dynamics of chain entanglements in the presence of attrac-
tive impenetrable nanoparticles. The model is further refined by
adding the nonlinear dynamics of detachment/re-attachment of
monomers from/to nanoparticle surfaces under flow conditions.
Such a dynamics strongly depends on the polymer–particle affinity,
the particle volume fraction, the particle size, and the degree of con-
finement of polymer chains. The paper is organized as follows: We
first propose a mechanism of chain diffusion to estimate the effec-
tive curvilinear diffusion coefficient of a polymer chain along its
tube in the presence of attractive nanoparticles. Next, we introduce
the dynamics of detachment/re-attachment of monomers from/to
nanoparticle surfaces under flow conditions. Then, we turn to the
prediction of chain conformation by means of the Rouse-CCR tube
model [12,13] that incorporates an effective reptation time and
an effective Rouse relaxation time. In the subsequent section, we
analyse the behavior of the underlying model in step shear strain,
steady shear, and start-up of steady shear flow experiments, and
perform quantitative comparisons of its behavior to the experi-
mental data of Zhang and Archer [14,15]. A final discussion that
includes an extension to a multi-mode version of the model for
future improvements concludes the paper.

2. Terminal relaxation time

We start with the reptation motion of an arbitrary polymer chain
in an entangled polymer melt. In the standard tube-based model,
the main large-scale motion of a polymer chain is its reptation along
the tube, which can be viewed as a random sequence of forward
and backward displacements along the tube axis, with a certain
curvilinear diffusion constant Dc [16,17]

Dc =
kbT

N�
, (1)

where N is the number of monomers or Kuhn segments per polymer
chain, � is the friction coefficient due to topological interactions, T

is the absolute temperature and kB is the Boltzmann constant.
The contour length of the tube is given by the primitive chain

length, consisting of Z primitive path steps (chain segments) which
connect two consecutive entanglement points. At equilibrium, the
average primitive path step or the tube segment length, l0, is
expected to be of the same order as the equilibrium tube diameter,
a, and the equilibrium contour length of the whole tube is written
as L = Zl0 = Za. According to Gaussian chain statistics, al0 = Neb2 or
a2 = Neb2, where b is the length of a monomer, Ne is the number
of monomers between entanglements at equilibrium and N = ZNe
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is the number of monomers per chain. In the reptation theory, the
time required for a chain to escape from its tube by curvilinear
diffusion, i.e., the disengagement or reptation time, �d, is given by

�d =
L2

Dc
=

(

Na

Ne

)2 1

Dc
=

�N3b4

�2kBTa2
= 3

(

N

Ne

)

�R = 3

(

N

Ne

)3

�e, (2)

where �R and �e are the Rouse relaxation time of the entire poly-
mer chain with N monomers and the Rouse relaxation time of an
entanglement strand, respectively. Based on Eq. (2), the curvilinear
diffusion coefficient of the chain along its tube can be expressed as

Dc =
1

3

(

a2

�e

)

Ne

N
. (3)

Let us now consider a system of linear entangled monodisperse
polymers and a random uniform distribution of non-aggregated
isotropic rigid spherical nanoparticles. A similar model system has
been also studied by Zhang and Archer [14] and Sarvestani and Picu
[11]. For such a system, molecular simulations [2,10] estimated that
a bridging network linking neighboring nanoparticles forms once
the wall-to-wall distance between nanoparticles, dw, approximated
by [18]

dw

df
=

[

�m

�f

]1/3

− 1, (4)

was on the order of the average random coil diameter, 2Rg. In Eq. (4),
�m is the maximum random packing volume fraction, whose value
is close to 0.638, df is the diameter of nanoparticles and �f is the
nanoparticle volume fraction. Simple calculations show that if the
nanoparticles are homogeneously distributed on a cubic lattice in a
polymer host and have a diameter of 10 nm at particle volume frac-
tion of about 3%, then the average wall-to-wall distance between
nanoparticles, dw, is about 18 nm. For those filled systems where the
particle spacing is comparable to or lower than the average random
coil diameter, 2Rg, any polymer chain may simultaneously attach to
more than one nanoparticle in equilibrium configuration, resulting
in a bridging network. Such a representation, however, is approx-
imate since real nanoparticles are faceted. This affects the chain
structure through the different geometry and through the fact that
a faceted particle has a nonuniform propensity for bonding with
the polymer chain over its surface [19].

The internal chain scale structure of an attached polymer chain
to nanoparticle surfaces may be divided into four components [3]:
bridges which start at one nanoparticle surface and end at another
nanoparticle surface, attached sections, which have contacts with
only one nanoparticle surface, i.e., trains of monomers, which are
contiguous series of attached monomers on the nanoparticle sur-
face but their lengths are relatively small; a train is therefore
considered as a single contact point [20,21]; loops, which are series
of unattached monomers between two trains, and tails, which are
chain segments connected at one end to the nanoparticle surface
and having the other end free. In the general case these components
(bridges, loops and tails) are polydisperse, i.e., they incorporate a
different number of monomers. As first approximation, however,
we assume that these components incorporate a similar number of
monomers. Needless to say, quantitative comparison with exper-
imental data will be affected within the context of single-mode
model as presented here.

Obviously, in such a filled system, simple reptation is not pos-
sible but, as shown by Zhang and Archer [14], polymer chains may
relax via dissociation, i.e., detachment from attractive sites of the
nanoparticles, disentanglement from other immobilized chains, or
other mechanisms.

In order to estimate the effective reptation time, �d,eff, of a poly-
mer chain in the presence of attractive nanoparticles, we take a

view similar to that presented by Leibler et al. [22] and Vanhoorne
and Register [23] to study the dynamics of reversible networks.

An attached monomer is assumed to be characterized by a finite
lifetime, �g, which reflects the average time which a monomer
spends on an attractive site of the nanoparticle surface. For time
scales longer than, �g, the monomer detaches from an attractive
site of the nanoparticle surface (on time scale �g) and re-attaches to
another attractive site, on time scale, �reatt, which allows the diffu-
sive motion of the chain segment to which the attached monomer
is bound. For a polymer chain which contains a large number of
attached monomers, diffusion of the center of mass of the chain will
require a very large number of these detachment/re-attachment
processes, because these diffusive motions of short chain segments
are uncorrelated. This relaxation mechanism allows a polymer
chain to make a reptation step without requiring all attached
monomers in the polymer chain to be released simultaneously, the
probability of which becomes vanishingly small as the number of
attached monomers per chain increases.

In line with the above picture, an attached monomer may detach
from the nanoparticle surface by a strong thermal fluctuation. If we
use the theory of activation process [3], the characteristic time of
detachment of a monomer from the nanoparticle surface, i.e., the
lifetime of an attached monomer, �g, is approximated by

�g ∼= �0 exp

[

Ua − F˛

kBT

]

, (5)

where the front factor, �0∼b(m/kBT)1/2, is the characteristic time of
molecular oscillation, 1/�g represents the rate of detachment pro-
cess, Ua ∼= εkBT is the activation energy of an individual monomer
attached to the nanoparticle surface, m is its mass, ε is a parame-
ter representing the monomer–nanoparticle energetic interaction,
F is the tensile force in the chain segment, and ˛ is a constant
activation length. In writing Eq. (5), it is acknowledged that, in acti-
vation processes like that of monomer detachment from attractive
nanoparticle surfaces, the lifetime of an adsorbed monomer also
depends on tensile force in the strand.

To estimate the effective curvilinear diffusion coefficient, Dc,eff,
of a polymer chain along its tube in the presence of attractive
nanoparticles, we argue as follows. At initial time, t = 0, the test
chain is trapped in a certain tube imposed by the surrounding
chains. At the same time, a fraction of the test chain is attached
at a certain number of attractive sites of the nanoparticles. Accord-
ing to the reptation theory [16], on the time scales of the order
of the reptation time, �d, the polymer chain is supposed to dis-
engage from the tube it was confined at t = 0. However, in a filled
system, because the nanoparticles can be visualized as surrounded
by a very high friction region, it is natural to assume that the near-
wall segments have a very small mobility, giving rise to a slowing
down of the overall reptation motion, through the constraint of
chain connectivity.

Inspired by the theory of polymer dynamics for reversible net-
works [22], let, nad, be the average number of attached monomers
per chain, and, �ad = nad/N, the fraction of attached monomers per
chain. The average number of monomers along the chain between
two successive attached points can be estimated by

Ns ∼=
N

nad + 1
. (6)

When one monomer detaches from the nanoparticle surface,
i.e., one attached link breaks, a chain segment consisting of 2Ns

monomers between attached ends of the chain segment undergoes
Rouse-like motion. The mean-square curvilinear segment displace-
ment along the tube varies with time as

s2(t) ∼= (2Ns)b
2
[

t

�R(2Ns)

]1/2

= Neb2
[

t

�e

]1/2

t < �R(2Ns), (7)
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where the Rouse relaxation time of the chain segment of 2Ns

monomers is given by

�R(2Ns) =

(

2Ns

Ne

)2

�e. (8)

For times longer than, �R(2Ns), the mean-square curvilinear seg-
ment displacement along the tube is constrained by attached ends
of the chain segment of 2Ns monomers, and the mean-square curvi-
linear segment displacement is

s2(t) ∼= (2Ns)b
2 t > �R(2Ns). (9)

On average, after time, �reatt, the monomer re-attaches such that
the maximum curvilinear segment displacement along the tube is,
s(�reatt). Since only a fraction, 1/(nad + 1), of the chain is between
successive attached points in the chain, the center of mass of the
polymer chain moves along the tube by

�c ∼=
s(�reatt)

nad + 1
. (10)

Hence, a sequence of such random elementary steps results in
reptation-like diffusion of the polymer chain in the presence of
attractive nanoparticles. It is implicitly acknowledged that the
dominant process, i.e., the most probable elementary step, is the
one involving the detachment of one attached monomer in the
chain. Other elementary steps involving simultaneous detachment
of many monomers per chain are neglected. For a polymer chain
which contains a large number of attached monomers, nad, diffu-
sion of the center of mass of the chain will require a very large
number of these elementary steps, since during these steps, the
center of mass of the chain is displaced by a small curvilinear dis-
tance. It would be relatively straightforward to modify the model
so as to account also for elementary steps involving simultane-
ous detachment of many monomers per chain. The frequency, �,
of an elementary step involving the detachment of one attached
monomer in the chain is given by

� =
1 − �ad

�reatt
. (11)

During a time span, �, the average number of these elementary
steps per chain will be, �·�. Thus, the total mean-square curvilinear
displacement of the center of mass of the polymer chain along the
tube during time span � is

	2
= ��	2

c . (12)

Therefore, the effective curvilinear diffusion coefficient of a chain
along its tube in the presence of attractive nanoparticles is

Dc,eff
∼=

	2

�
. (13)

Based on Eqs. (7)–(13), the effective curvilinear diffusion coefficient
can be written as

Dc,eff
∼=

Neb2

(�reatt�e)1/2

(1 − �ad)

(nad + 1)2
�reatt < �R(2Ns), (14)

Dc,eff
∼=

(2Ns)b2

�reatt

(1 − �ad)

(nad + 1)2
�reatt > �R(2Ns). (15)

In the limit of a completely free chain, nad → 0, while the strand
of 2Ns monomers corresponds to the full chain of N monomers and,
�reatt, plays the role of the Rouse relaxation time of the full chain,
�R(N). Hence, the effective curvilinear diffusion coefficient, as given
by Eqs. (14) and (15), reduces to the standard curvilinear diffusion
coefficient, i.e.,

Dc,eff
∼=

(

a2

�e

)

Ne

N
. (16)

The effective reptation time, �d,eff, of a polymer chain in the pres-
ence of attractive nanoparticles corresponds to the displacement
along the tube on a distance of order of the total tube length, i.e.,
L = aN/Ne. Therefore

�d,eff =

(

aN

Ne

)2 1

Dc,eff
. (17)

Combining Eqs. (14) to (17) we get

�d,eff
∼=

(

N

Ne

)2

(�reatt�e)1/2 (nad + 1)2

(1 − �ad)
�reatt < �R(2Ns), (18)

�d,eff
∼=

(

N2

Ne

)

1

(2Ns)
�reatt

(nad + 1)2

(1 − �ad)
�reatt > �R(2Ns). (19)

The effective reptation time, �d,eff, is related to the reptation
time, �d, of a chain in the neat polymer as

�d,eff
∼= �d

2Ns

N

[

�reatt

�R(2Ns)

]1/2 (nad + 1)2

(1 − �ad)
�reatt < �R(2Ns), (20)

�d,eff
∼= �d

2Ns

N

�reatt

�R(2Ns)

(nad + 1)2

(1 − �ad)
�reatt > �R(2Ns). (21)

By neglecting numerical prefactors in Eqs. (20) and (21), the effec-
tive reptation time, �d,eff, is seen to scale with molecular weight

as �d,eff ∼�d(�adN + 1)2, which indicates that the overall relaxation
is extremely retarded by attractive nanoparticles in the limit of
strongly adsorbed chain, i.e., nad >> 1.

In the limit of a completely free chain, nad → 0, the effective rep-
tation time, as given by Eqs. (20) and (21), reduces to the reptation
time, �d, of a chain in the neat polymer system, i.e.,

�d,eff
∼=

(

N

Ne

)3

�e. (22)

We also use the effective curvilinear diffusion coefficient of the
chain along its tube, Dc,eff, to estimate the effective Rouse relaxation
of the chain as

�R,eff
∼=

�d,eff

3Z
. (23)

In writing Eq. (23), it is implicitly acknowledged that the pres-
ence of nanoparticles leads to changes in all relaxation processes
in the same way, independent of their wavelength. This issue was
investigated by Dionne et al. [2] who studied the structure and
dynamics of an amorphous polyethylene melt containing homoge-
neously distributed spherical nanoparticles, using both molecular
dynamics and Monte Carlo methods.

Finally, the number of attached monomers per chain, nad, can
be estimated from molecular parameters as

nad = �adN ∼=
nseg

nchain
, (24)

where nseg and nchain are the number of attached monomers per unit
volume and the number of chains per unit volume, respectively.
These quantities are defined by

nseg = �ana, (25)

and

nchain = (1 − �f )
�NA

Mw
, (26)

where �a is the nanoparticle coverage, i.e., the fraction of attractive
sites on the nanoparticle surface occupied by monomers, na is the
number of the attractive sites per unit volume, i.e., the number
density of attractive sites, �f is the nanoparticle volume fraction,
Mw is the molecular weight of the polymer chain, � is the weight of
the polymer per unit volume, and NA = 6.023 × 1023 mol−1 is the
Avogadro number.
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Let nas be the number of attractive sites per unit surface of the
nanoparticle, and naf the number of attractive sites per nanoparti-
cle. Then we have

naf = nasSf = � nasd
2
f , (27)

where Sf and df are the surface and the diameter of nanoparticles,
respectively. Let nf = �f /vf be the number of nanoparticles per unit
volume, where vf is the volume of a nanoparticle. Then the number
density of attractive sites, na, can be defined as follows

na = nf naf =
6 �f nas

df
. (28)

The above equation shows that the number density of attractive
sites, na, increases with decreasing the nanoparticle dimension, df,
at constant nanoparticle volume fraction, �f. Combining Eqs. (24)
to (28), we get

nad = �adN ∼= 6
�f

1 − �f

�anas

�NAdf
Mw = 6

�f

1 − �f

�anas

�NAdf

C∞m0

(0.82)2
N, (29)

which predicts N scaling for the number of attached monomers per
chain, nad. Hence, the effective reptation, �d,eff, given by Eqs. (20)
and (21) can be written explicitly as

�d,eff
∼= �d

2Ns

N

[

�reatt

�R(2Ns)

]1/2 [6(�f /(1 − �f ))(�anas/�NAdf )(C∞m0/(0.82)2)N + 1]
2

(1 − �ad)
�reatt < �R(2Ns) (30)

�d,eff
∼= �d

2Ns

N

�reatt

�R(2Ns)

[6(�f /(1 − �f ))(�anas/�NAdf )(C∞m0/(0.82)2)N + 1]
2

(1 − �ad)
�reatt > �R(2Ns) (31)

It is apparent from Eqs. (30) and (31) that the effective reptation
time, �d,eff, can be controlled through five main parameters, i.e., the
molecular weight of the polymer chain, N, the size of the nanopar-
ticles, df, the density of attractive site on the nanoparticle surface,
nas, the monomer–nanoparticle energetic interaction, ε, and the
particle volume fraction, �f.

3. Detachment/re-attachment dynamics

In the preceding section, we examined the overall relaxation of
a polymer chain adsorbed to attractive nanoparticle surfaces, in the
equilibrium configuration. Under flow conditions, the detachment
process is favored by the tension in the chain, and this enables the
polymer chain to move more easily. This is accompanied with a cor-
responding decrease of the activation energy. Hence, depending on
the flow strength, the instantaneous average number of attached
monomers per chain, nad(t), may be different from the average
number of attached monomers per chain, nad,eq, in the equilibrium
configuration. It should be emphasized that the equilibrium value,
nad,eq, also represents the maximum number of monomers that can
be attached per chain.

We now move on to the dynamics of the detachment/re-
attachment processes of monomers from/to the nanoparticle
surface, which also involves several contributions. Let us first intro-
duce the instantaneous average fraction of attached monomers
per chain, �ad(t) = nad(t)/N. This number serves as an approxi-
mate measure of the degree of attachment of a chain to attractive
sites of the nanoparticle surfaces. Here, we make a simplification
in describing adsorbed configurations by a single parameter, �ad.
A more complete description would also include the location of
the attached monomers along the chain backbone as well the posi-
tion of the unattached monomers of the chain with respect to the
surface of the nanoparticles.

Let us now consider a polymer chain with a fraction �ad of
attached monomers and let us determine the rate at which this
fraction changes with time. In our simplified approach, the kinetic
equation of the fraction of attached monomers per chain, �ad, in

an average sense, can be obtained by first noting that the detach-
ment process depends on the tensile force in the strand, as imposed
by the macroscopic flow, i.e., due to hydrodynamic drag on it
from the mean-field friction of surroundings chains, while the re-
attachment process is independent of the force in the strand.

An attached monomer can be detached from an attractive site of
the nanoparticle by a strong thermal fluctuation. The lifetime of an
attached monomer also depends on the tensile force in the strand
as given by Eq. (5). Hence the detachment process is characterized
by the following equation

d�ad

dt
= −

1

�g
�ad +

1

�g,eq
�ad,eq, (32)

where, �ad,eq = nad,eq/N, is the average fraction of attached
monomers per chain in the equilibrium configuration, �g is the life-
time of a loaded monomer as defined by Eq. (5), and �g,eq, is the
lifetime time of an unloaded monomer, i.e., in equilibrium config-
uration. Eq. (32) ensures relaxation to, �ad,eq.

The detachment process due to thermal fluctuations and macro-
scopic flow, also occurs concurrently with the re-attachment
process of monomers residing in the bulk polymer by some acti-
vation process, and is characterized by the following equation

d�ad

dt
=

1

�reatt
(�ad,eq − �ad), (33)

where �reatt, represents the mean time during which a monomer
stays at its own initial position in the bulk polymer before migrat-
ing to the final state (trapped configuration), i.e., 1/�reatt, is the rate
at which a monomer lives its initial state in the bulk polymer and
re-attaches to the nanoparticle surface. The re-attachment time is
independent of the force in the strand. Eq. (33) also ensures relax-
ation to, �ad,eq.

Hence, the instantaneous average fraction of attached
monomers per chain, �ad, is governed by competitive
detachment/re-attachment processes by the following kinetic
equation:

d�ad

dt
= −

1

�g
�ad +

1

�reatt

[(

�reatt

�g,eq
+ 1

)

�ad,eq − �ad

]

. (34)

It is apparent from Eqs. (30), (31) and (34) that the effective rep-
tation time under flow conditions, �d,eff, depends on the dynamics
of detachment/re-attachment of monomers through �ad, which is
itself a measure of the instantaneous average number of attached
monomers per chain. This approach allows us to discuss, in a trans-
parent manner, the role of different molecular parameters involved,
i.e., the energetic interaction parameter between the polymer chain
and the nanoparticle surface, the particle volume fraction, the geo-
metrical characteristics of nanoparticles, the fraction of adsorbed
monomers, and the molecular weight of the polymer chain.

Finally, as far as the re-attachment process is concerned, let Ub

be the activation energy for an individual monomer residing in the
bulk polymer. In order to re-attach a monomer residing in the bulk
polymer to an attractive site, the polymer chain has to overcome
a potential barrier, Ub, much smaller than the activation energy,
Ua ∼= εkBT , of an individual monomer attached to the nanoparticle
surface. Hence, the characteristic time of re-attachment, �reatt, for
a monomer residing in the bulk polymer is written as

�reatt ∼= �0 exp(Ub/kBT). (35)
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4. Constitutive equation

We now turn to the prediction of polymer chain conforma-
tion. In this analysis we do not consider particle agglomeration or
percolation and assume that the filling fraction is small enough
for particle–particle interactions to be insignificant. Stress due to
particle–particle interactions is also neglected.

It was found in the previous section that the effective reptation
time under flow conditions scales with N as �d,eff ∼�d[�ad(t)N + 1]2.
In addition, molecular dynamics simulations [2] demonstrated that
the presence of nanoparticles leads to changes in all relaxation pro-
cesses in the same way, independent of their wavelength. Hence,
one may use a tube-based model, with an effective reptation time,
as given by Eqs. (30) and (31), to mimic the conformational changes
of chains in filled systems. Here, we use the Rouse-CCR tube model
for linear entangled polymers (Rolie–Poly), as developed by Likht-
man and Graham [12] and modified by Kabanemi and Hétu [13].
We include in a simple way the effect of polymer–particle energetic
interactions through an effective reptation time �d,eff, and an effec-
tive Rouse relaxation time, �R,eff, that incorporate the dynamics of
detachment/re-attachment through Eq. (34). Hence, for a polymer
system filled with nanoscale rigid particles, the conformation of the
polymer chain, �, in a flow field, u, evolves in time by an equation
of the form

�̇ = L · � + � · LT
+ f (�), (36)

where

f (�) = −
1

�d,eff
(� − I)

−
2

�R,eff
ks(�)

(

1 −

√

3

tr�

)

(

� + ˇ

(

tr�

3

)ı

(� − I)

)

, (37)

and the corresponding stress is taken to be of the form

� = Gks(�)(� − I). (38)

Here L = ∇uT is the transpose of velocity gradient tensor, ˇ is the
CCR coefficient analogous to the coefficient introduced by Marrucci
in his original CCR paper [24], ı a negative power which can be
obtained by fitting to the full theory, � is the polymeric stress con-
tribution, G is the plateau modulus, ks(�) is the nonlinear spring
coefficient accounting for the finite extensibility of polymer chains,
equals unity for linear springs and becomes much greater than

unity as the spring becomes nearly fully stretched, � =

√

tr�/3 is
the chain stretch ratio, � = 1 is its equilibrium value in the absence
of flow, and � = I is the equilibrium value of the conformation
tensor in the absence of flow.

The nonlinear spring coefficient, ks(�), is approximated by the
normalized Padé inverse Langevin function [25], i.e.,

ks(�) =
(3 − �2/�2

max)(1 − 1/�2
max)

(1 − �2/�2
max)(3 − 1/�2

max)
, (39)

where �max is the maximum stretch ratio.
Let R be the end-to-end vector of the subchain. The entropic

force in each subchain is given by

F(R) =
3kBT

Neb2
ks(�)R =

3kBT

a2
ks(�)R, (40)

whose magnitude can be written as

F(R) =
3kBT

N
1/2
e b

ks(�)� =
3kBT

a
ks(�)�. (41)

Notice that, the dynamics of the detachment/re-attachment
processes enters in the constitutive equation, Eq. (36), through

the effective reptation time, �d,eff, and the effective Rouse relax-
ation time, �R,eff, while the rate of breaking of monomer-particle
bonds, 1/�g, in Eqs. (5) and (34) is coupled to the chain configuration
through Eq. (41).

5. Numerical results

5.1. Step shear strain

To get insight into the dynamics of nanocomposite systems,
we analyse the stress relaxation following a step shear strain,
 = 0H(t), where H(t) is the Heaviside unit step function. For small
shear strain, 0, the relaxation modulus is found to be indepen-
dent of 0 and the shear stress, �xy, is linear in strain. The response
of this flow defines the relaxation modulus, G(t) = �xy(t)/0. This
relaxation modulus can be Fourier transformed in the linear
regime, to yield frequency-dependent elastic modulus, G′(ω) =

ω
∫ ∞

0
sin(ωt)G(t)dt and loss modulus, G′′(ω) = ω

∫ ∞

0
cos(ωt)G(t)dt,

over a wide frequency range.
A standard polyethylene oxide (PEO) with a molecular weight

Mw = 189, 000 g/mol and various PEO/silica nanocomposites are
first analysed. These polymer systems are similar to those inves-
tigated in the experiments by Zhang and Archer [14]. The model
parameters are summarized in Table 1. Some of the parameters,
i.e., N, b, and G were calculated from molecular parameters of the
neat PEO as given by Fetters et al. [26], while the nanoparticle char-
acteristics are those given by Zhang and Archer [14] and Kawaguchi
et al. [27]. The activation length, ˛, is assumed to be on the order
of a Kuhn segment. The reptation time, �d, of the neat PEO was
estimated from the data given by Zhang and Archer, while ˇ = 1
and ı = −0.5 are the optimal values to fit both transient and steady
state predictions of the neat polymer system [12]. Although the
model includes the Rouse time, the linear viscoelastic response of
the model does not extend up to frequencies where the dominating
dynamics is Rouse-like. In what follows, we examine the effects of
the nanoparticle volume fraction, �f, the monomer-particle ener-
getic interaction parameter, ε, and the initial fraction of attached
monomers, �ad(t = 0). For the sake of brevity, we only focus on
the elastic properties of various mixtures and will not discuss the
results for the loss modulus, G′′(ω).

The linear viscoelastic properties are presented in Fig. 1 for
ε = 25, �ad(t = 0) = 0, �reatt/�g,eq = 10−2, and various particle vol-
ume fractions �f. At frequencies higher than 10 s−1, the storage
moduli, G′(ω), of the neat polymer and the nanocomposite sys-
tems are essentially the same and exhibit a solid-like behavior.
At low frequency, the terminal behaviors of the neat polymer
and nanocomposite systems are very different. The neat polymer
exhibits a liquid-like behavior with the typical slope, equal to 2.
In the long time region (low frequency), it is observed that the
relaxation is slowed down by the presence of nanoparticles. The
rate of slowing down increases monotonically with increase of the
particle volume fraction. The storage moduli of the nanocompos-
ite systems at various nanoparticle volume fractions are several
times higher than that of the neat polymer. With increasing the

Table 1

Typical PEO/silica nanocomposite polymer system used in this study.

Parameters Values

PEO (Mw = 189,000 g/mol)

N 1570

b (nm) 0.581

df (nm) 12

nas (1/nm2) 2

�a 0.2

�d (s) 0.2

�R (s) 1.59 × 10−3

G (Pa) 18 × 105
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Fig. 1. Frequency dependence of storage modulus, G′(ω), for the neat polymer sys-

tem and the nanocomposite systems. Effect of the particle volume fraction, �f , at

fixed monomer–particle energetic interaction parameter, ε = 25.

particle volume fraction, the storage modulus, G′(ω), exhibits a sec-
ond low-frequency plateau (solid-like behavior), whose height is
lower than the high-frequency plateau. The width of the second
plateau region increases with increasing the particle volume frac-
tion, while the transition point depends essentially on the dynamics
of detachment/re-attachment of monomers from/to the nanopar-
ticle surfaces and to the initial value of the fraction of adsorbed
monomers per chain, �ad(t = 0). Since the effective reptation time
scales with, N, as �d,eff ∼�d[�ad(t)N + 1]2, the liquid-like behaviors
are exhibited only at very low-frequency region (long time region),
for nanocomposite systems studied here. This behavior has been
demonstrated in the experiments of Zhang and Archer [14], and
will be further discussed in the section on experimental validation
of the model.

The effect of the monomer-particle energetic interaction param-
eter, ε, at fixed particle volume fraction, equal to 2% and �ad(t =

0) = �ad,eq, is analysed in Fig. 2. As the energetic parameter, ε,
increases, the width of the plateau region (solid-like behavior)
increases. This behavior clearly demonstrates that, the rheologi-
cal properties of nanocomposite systems depend critically on the
adsorption of monomers to the surface of nanoparticles. This obser-
vation is supported by previous findings [2,14], which show that

Fig. 2. Frequency dependence of storage modulus, G′(ω), for the neat polymer sys-

tem and the nanocomposite systems. Effect of the monomer–particle energetic

interaction parameter, ε, at fixed particle volume fraction, equal to 2%.

Fig. 3. Frequency dependence of storage modulus, G′(ω), for the neat polymer

system and the nanocomposite systems. Effect of the initial fraction of attached

monomers �ad(t = 0), at fixed particle volume fraction, equal to 2% and fixed

monomer–particle energetic interaction parameter, ε = 25.

nanocomposites properties depend strongly on surface properties
of nanoparticles.

The effect of the initial fraction of attached monomers, �ad(t =

0), at fixed particle volume fraction, equal to 2% and fixed
monomer-particle energetic interaction parameter, ε = 25, is anal-
ysed in Fig. 3. It is seen that the low-frequency plateau region
increases with increasing the initial fraction of attached monomers.
When the initial fraction of attached monomers per chain is close to
zero, the overall relaxation time depends strongly on the dynamics
of detachment/re-attachment, while a constant rate of relaxation
is exhibited for the initial fraction of attached monomers per chain
close to the equilibrium value, i.e., �ad(t = 0) = �ad,eq.

5.2. Steady shear flow

We examine in this section the material functions for a steady
shear flow described by a velocity field, u = ̇y, where ̇ is the
steady shear rate. As in the preceding investigation, the model
parameters are summarized in Table 1. In Fig. 4, we show the
shear rate dependence of the viscosity for the neat polymer and
the nanocomposite systems at ε = 20, �reatt/�g,eq = 0.1 and vari-

Fig. 4. Shear rate dependence of the steady shear viscosity, �, for the neat polymer

system and the nanocomposite systems. Effect of the particle volume fraction, �f ,

at fixed monomer–particle energetic interaction parameter, ε = 20, and fixed ratio,

�reatt/�g,eq = 0.1.
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ous particle volume fractions �f. While the neat polymer exhibits
a Newtonian behavior up to ̇ = 1, the nanocomposite systems
exhibit the shear thinning behavior at low shear rates. Even at
very low particle volume fractions, �f, the zero-shear viscosities
of the nanocomposite systems are dramatically increased, due to
a larger flow stress experienced by polymer chains. This behavior
can be explained by the flow restrictions arising from the presence
of nanoparticles that decreases the effective curvilinear diffusion
coefficient, and leads to a reduction of the average mobility of poly-
mer chains. At high shear rates, as the detachment of monomers
is intensified by the macroscopic flow, the neat polymer domi-
nates the shear thinning behavior, suggesting that the presence of
nanoparticles contributes negligible to the viscosity in strong flows.
A more careful scrutiny of Fig. 4 reveals that, at very high shear
rates regime, the slope of the shear thinning of nanocomposite sys-
tems is dominated both by the detachment of monomers from the
nanoparticle surfaces and the degree of chain stretching, as the
effective reptation time and the effective Rouse relaxation time
strongly depend on the degree of attachment of chains to attractive
sites, �ad, and on the nanoparticle loadings. Therefore, the relax-
ation dynamics of the filled system is slowed down, leading to early
orientation and stretching of sub-chains compared to the neat sys-
tem. Furthermore, at low shear rates, because polymer chains are
trapped by more than one nanoparticle, orientation of sub-chains in
the flow direction is enhanced with increasing nanoparticle volume
fraction, �f. This is reflected by the early shear thinning exhib-
ited by these mixtures. In addition, the shear rate at which the
non-Newtonian behavior is initiated decreases with increasing the
particle volume fractions, �f. At high shear rates, the detachment
process makes the steady shear viscosity decrease, approaching
that of the neat polymer with a slope which depends on the
particle volume fraction. The steady shear viscosities of the neat
polymer and those of the nanocomposite systems tend to merge,
demonstrating that at these high shear rates the neat polymer dom-
inates the shear thinning behavior. These results are supported by
recent experimental data of Zhang and Archer [15], who investi-
gated the rheological behavior of semidilute aqueous dispersions
of polyethylene oxide containing nanosized silica particles.

In Fig. 5 we show the steady shear stress as a function of shear
rate, for the neat polymer and the nanocomposite systems at differ-
ent levels of nanoparticle loading. The model predicts a monotone
increase of the steady shear stress with increasing particle volume
fraction, also seen in the experiments of Havet and Isayev [28]. In

Fig. 5. Shear rate dependence of the steady shear stress, �xy , for the neat polymer

system and the nanocomposite systems. Effect of the particle volume fraction, �f ,

at fixed monomer–particle energetic interaction parameter, ε = 20, and fixed ratio,

�reatt/�g,eq = 0.1.

Fig. 6. Shear rate dependence of the steady shear viscosity, �, for the neat poly-

mer system and the nanocomposite systems. Effect of the ratio, �reatt/�g,eq , at fixed

monomer–particle energetic interaction parameter, ε = 20, and fixed particle volume

fraction, equal to 2%.

the low shear rate range, the plateau region for the two nanocom-
posite systems with the highest nanoparticle loading is mainly
dominated by the orientation of sub-chains, indicative of the exis-
tence of the yield stress for these filled systems. As mentioned
above, at low shear rates, the overall relaxation time of the poly-
mer chain increases with increasing nanoparticle volume fraction,
as a polymer chain may attach simultaneously to more nanopar-
ticles. This, in turn, is reflected in the enhancement of orientation
of chain segments in the flow direction, at low shear rates, as also
highlighted in Fig. 4. As mentioned above, both the effective rep-
tation time and the effective Rouse relaxation time increase with
the nanoparticle loadings and the monomer-particle interactions,
leading to early orientation and stretching of sub-chains.

In Fig. 6, we analyse the effect of the ratio, �reatt/�g,eq, on the
steady shear viscosity at fixed nanoparticle volume fraction equal
to 2%, and fixed energetic interaction parameter equal to 20. The
zero-shear viscosities exhibit a monotonic increase with increasing
the ratio, �reatt/�g,eq. By increasing the shear rate, the viscosities of
all filled systems exhibit the shear thinning behaviors.

In Fig. 7 we examine the dynamics of detachment/re-
attachment of monomers from/to nanoparticle surfaces. The steady

Fig. 7. Shear rate dependence of the fraction of adsorbed monomers per chain,

�ad/�ad,eq for the model nanocomposite system, at fixed ratio, �reatt/�g,eq = 0.1, fixed

monomer-particle energetic interaction parameter, ε = 20, and fixed particle volume

fraction, equal to 2%.
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state fraction of attached monomers per chain, nad/nad,eq, exhibits
a plateau at low strain rates, with the value of nad/nad,eq, close to
unity, reflecting that the detachment process is only marginal in
this flow range. For fast flows, the detachment process is intensi-
fied by the tensile force in the strand. Therefore, trapped monomers
are relaxed, and nad/nad,eq, exhibits an exponential reduction, sug-
gesting that, in rapidly changing flows, on average, the behavior is
mainly dominated by that of the neat system.

The dependence of the steady shear viscosity on the energetic
interaction parameter, ε, at fixed particle volume fraction, equal to
2% and fixed ratio, �reatt/�g,eq = 0.1, is shown in Fig. 8. The results
are markedly similar to the behavior seen in nanocomposite sys-
tems at various particle volume fractions. The enhancement of the
zero-shear rate viscosity is solely due to the increase of the ener-
getic parameter, i.e., monomer-nanoparticle surface interactions,
since particle–particle interactions are not included in the model.
At low ε, adsorption of monomers to the nanoparticle surfaces is
insignificant and thus the effective curvilinear diffusion coefficient
is only marginally affected. In such a situation, the shear viscos-
ity is insensitive to the presence of nanoparticles, and the steady
shear viscosity of the neat polymer is recovered. As we increase
the value of the energetic interaction parameter, ε, the nanocom-
posite systems exhibit a strong shear thinning behavior at very
low shear rates, as a result of a decrease of the effective curvilin-
ear diffusion coefficient, i.e., an increase of the effective reptation
time. These surface interactions act to reduce the overall mobil-
ity of polymer chains. The degree of slowing increases with the
strength of the interaction, as reflected by the early shear thinning
exhibited by these mixtures in Fig. 8. This strongly suggests that
the energetic polymer–particle interaction is a key parameter for
the observed non-Newtonian behavior and the large enhancement
seen in the zero-shear viscosities, at relatively low particle volume
fractions. Hence, even at very low shear rates, significant orienta-
tion of tube segments in the flow direction occurs, that is reflected
in the premature shear thinning behavior exhibited. Therefore par-
ticle orientation, as such, has nothing to do with the observed
non-Newtonian behavior, as only isotropic spherical nanoparticles
are considered.

The present analysis, based on a typical polymer filled with
nanoscale rigid particles, provides a plausible explanation for some
rheological behavior reported previously [15,28], namely, slower
relaxation of polymer chains with the addition of the nanoparticles,
low-frequency plateau (solid-like behavior), enhancement of shear

Fig. 8. Shear rate dependence of the steady shear viscosity, �, for the nanocomposite

systems. Effect of the monomer–particle energetic interaction parameter, ε, at fixed

particle volume fraction, equal to 2%, and fixed ratio, �reatt/�g,eq = 0.1.

viscosity at low shear rates, and the independence of the steady
shear stress on the shear rate at low shear rates, i.e., the existence
of a yield stress. The current model also reproduces the dynamics
of detachment/re-attachment of monomers from/to nanoparticle
surfaces, and provides a physical explanation of the observed rhe-
ological behaviors in strong flows. It is clear that there is no unique
route to the huge alteration seen in rheological properties, and
that the detailed behavior of real nanocomposites depends also on
the shape of the nanoparticles, the level of dispersion, the surface
treatment, etc.

Finally, it is fair to recall that the present model is based on
a restrictive approximation for the internal chain scale structure,
i.e., bridges, loops and tails are assumed to be monodisperse. In
the general case these components are polydisperse. It would be
necessary to extend our model so as to remove this simplification
by using a multi-mode model.

5.3. Start-up of steady shear flow

The flow is described by a velocity field, u = ̇(t)y, where ̇(t) is
a time dependent shear rate represented by a step function ̇(t) =

̇0H(t). The model parameters are summarized in Table 1. In Fig. 9
we show the evolution of the shear viscosity, �+(t), for ̇0 = 0.1 s−1,
�ad(t = 0) = �ad,eq, at a fixed energetic polymer–particle interac-
tion parameter, ε = 20, a fixed ratio, �reatt/�g,eq = 0.1, and various
particle volume fractions. As we increase the nanoparticle vol-
ume fraction, �f, the transient shear viscosities exhibit overshoots
whose magnitudes increase with nanoparticle loading and then
decrease to the steady state. The analogous diagram of the tran-
sient first normal stress differences, N+

1 (t), is shown in Fig. 10. These
results predict no overshoot and large steady state values of the
first normal stress differences as �f increases. The dependence of
shear viscosity, �+(t), on the energetic interaction parameter ε, for
̇0 = 0.1 s−1, �ad(t = 0) = �ad,eq, at a fixed particle volume fraction,
equal to 3%, and a fixed ratio, �reatt/�g,eq = 0.1, is shown in Fig. 11.
As ε is increased, an overshoot is exhibited, similar to the effect of
nanoparticle loading.

5.4. Experimental validation

We here perform a quantitative comparison with the experi-
mental data reported by Zhang and Archer [14,15], for the neat
PEO and various PEO/silica nanocomposites. The model parame-

Fig. 9. Transient shear viscosity, �+(t), during start-up of steady shear for the neat

polymer system and the nanocomposite systems, for ̇0 = 0.1 s−1 . Effect of the parti-

cle volume fraction �f , at fixed monomer–particle energetic interaction parameter,

ε = 20, fixed ratio, �reatt/�g,eq = 0.1, and �ad(t = 0) = �ad,eq .
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Fig. 10. Transient first normal stress difference, N+

1
(t), during start-up of steady

shear for the neat polymer system and the nanocomposite systems, for ̇0 = 0.1 s−1 .

Effect of the particle volume fraction �f , at fixed monomer–particle energetic inter-

action parameter, ε = 20, fixed ratio, �reatt/�g,eq = 0.1, and �ad(t = 0) = �ad,eq .

Fig. 11. Transient shear viscosity, �+(t), during start-up of steady shear for the

neat polymer system and the nanocomposite systems, for ̇0 = 0.1 s−1 . Effect of

the monomer–particle energetic interaction parameter, ε, at fixed particle volume

fraction, equal to 3%, fixed ratio, �reatt/�g,eq = 0.1, and �ad(t = 0) = �ad,eq .

ters are summarized in Table 2. Some of the parameters, i.e., N and
b, were calculated from molecular parameters of the neat PEO as
given by Fetters et al. [26], while the nanoparticle characteristics
are those given by Zhang and Archer [14] and Kawaguchi et al. [27].
The energy parameter, ε, can be determined by fitting the dynamic
rheological behaviors of the neat PEO and PEO/silica nanocompos-
ites at various temperatures. Simple calculations show that if the
nanoparticles of diameter of about 12 nm are homogeneously dis-
tributed on a cubic lattice in a polymer host with a random coil
diameter, 2Rg = 20 nm (PEO/silica nanocomposite P189-S4), at par-

Table 2

PEO/silica nanocomposites data: P189 and P700 (Zhang and Archer [14,15]).

Parameters Values

PEO P189

(Mw = 189,000 g/mol)

PEO P700

(Mw = 700,000 g/mol)

N 1570 5821

b (nm) 0.581 0.581

df (nm) 12 12

�a 0.2 0.15

ε 25 21

�d (s) 0.2 3 × 10−4

Fig. 12. Frequency dependence of storage modulus, G′(ω), for the neat PEO P189

and the PEO/silica nanocomposites P189-S4 (�f = 4%). Comparison of numerical

predictions and experimental data of Zhang and Archer [14].

ticle volume fraction of about 4%, then the average wall-to-wall
distance between nanoparticles, dw, is about 18 nm. This implies
that for the filled systems analysed here and by Zhang and Archer,
any polymer chain may simultaneously attach to more than one
nanoparticle in equilibrium configuration, resulting in a bridging
network.

In Fig. 12, we show a comparison of the model predictions and
the experimental data for the storage modulus as a function of
frequency, for the neat PEO P189 and the PEO/silica nanocompos-
ite P189-S4 (�f = 4%) [14]. We first note that the low-frequency
storage modulus is highly sensitive to the particle volume frac-
tion. Even at very low nanoparticle volume fraction, the storage
modulus of the nanocomposite system is several times higher than
that of the neat polymer, and exhibits a clear second low-frequency
plateau (solid-like behavior), whose height is lower than the high-
frequency plateau. This behavior is a result of the coupled effects
of monomer–nanoparticle energetic interactions, nanoparticle vol-
ume fraction, and nanoparticle diameter. The deviation from the
limiting slope (≈2) at low frequency, for the neat polymer, is due to
polydispersity, while the high-frequency range is independent of
this, and the high-frequency plateau modulus is unaffected. These
results show that the present model is able to correctly reproduce
the linear viscoelastic behaviors of such complex mixtures.

The dependence of the steady shear viscosity on shear rate, for
the neat PEO P700 and various PEO/silica nanocomposites [15], is
shown in Fig. 13. Quantitative predictions of the model are impres-
sive. At low shear rates, all PEO systems exhibit a clear Newtonian
behavior, while PEO/silica nanocomposites with various particle
volume fractions exhibit non-Newtonian shear thinning behavior
with increasing shear rates. This behavior is mainly governed by
the dynamics of detachment/re-attachment of monomers from/to
nanoparticle surfaces, and suggests that, in PEO/silica nanocompos-
ites, tube segments start to orient towards the flow direction even
at low shear rates, as a result of the increase of the effective repta-
tion time, due to monomer-particle interactions. We also observe
that even at relatively low particle loading, �f = 1%, the zero-shear
rate viscosity is already enhanced by a factor of about 3. Zhang
and Archer [15] showed that the dispersion with �f = 2%, gives a
750% zero-shear rate viscosity increase compared to that of the pure
PEO solution. The Einstein equation, �(�f ) = 1 + 2.5�f , gives only
a 5% viscosity increase, suggesting that PEO/silica nanocomposites
behave far from colliding hard spheres in a continuum medium. In
addition, at 2% volume fraction and an average nanoparticle diame-
ter, df = 12 nm, the wall-to-wall distance between the nanoparticles
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Fig. 13. Shear rate dependence of the steady shear viscosity, �, for the neat PEO

P700 and the PEO/silica nanocomposites. Comparison of numerical predictions and

experimental data of Zhang and Archer [15].

is, dw = 26 nm, while the equilibrium polymer coil diameter is
2Rg = 60 nm, implying that significant level of confinement exists
in these nanocomposite systems. Furthermore, for particle loadings
investigated here, any polymer chain may simultaneously attach to
more than one nanoparticle in equilibrium configuration, resulting
in a bridging network. One would also anticipate that at very high
shear rates, the viscosities of the neat PEO solution and those of the
PEO/silica nanocomposites will merge, as the detachment process
will dominate over the re-attachment one. The present numerical
prediction results suggest that the polymer–particle interactions,
their dynamics under flow conditions, i.e., the detachment/re-
attachment processes, and the degree of confinement of polymer
chains are the key factors for the observed enhancements both of
the zero-shear rate viscosity and the elastic modulus, and also the
strong non-Newtonian shear thinning behaviors exhibited.

6. Discussion

As we have seen the single-mode model developed in this
study has predicted many aspects of the linear and nonlinear
viscoelastic data of well characterized PEO/silica nanocomposite
systems where any polymer chain simultaneously attaches to one
or more nanoparticles in equilibrium configuration, resulting in a
bridging network. For example, simple calculations show that if
the nanoparticles of diameter of about 12 nm are homogeneously
distributed on a cubic lattice in a polymer host with a random
coil diameter, 2Rg = 20 nm (PEO/silica nanocomposite P189-S4),
at particle volume fraction of about 4%, then the average wall-
to-wall distance between nanoparticles, dw, is about 18 nm, that
is, smaller than 2Rg. For such model systems, the single-mode
model developed here for a monodisperse distribution of chains
in the presence of rigid nanoparticles, has found success in pre-
dicting the experimental data. However, as emphasized in Section
2, such a representation is approximate since real nanocomposite
systems are largely polydisperse, that is, they contain chains with a
wide range of relaxation times, some are attached to nanoparticles
and others are free, affecting the overall dynamics and rheologi-
cal behavior. In addition, as mentioned in Section 2, the internal
chain scale structure of an attached chain to nanoparticle surfaces
contains bridges, loops and tails. In the general case these compo-
nents are polydisperse, i.e., they incorporate a different number of
monomers.

Summarizing, the model presented in this study strictly applies
only to model systems of linear monodisperse chains and a uni-

form distribution of non-aggregated rigid spherical nanoparticles,
in which: (i) the average wall-to-wall distance between nanopar-
ticles is on the order of the chain size; (ii) in equilibrium any chain
simultaneously attaches to one or more nanoparticles, i.e., all chains
are assumed to behave in the same way; they all have the same
reptation time, and the same Rouse relaxation time.

It would be necessary to extend our model so as to remove these
simplifications by using a multi-mode model that incorporates
attached and free chains. In what follows we shall limit ourselves
to the basic of the extended model, leaving the numerical results
and quantitative comparison to a forthcoming paper.

6.1. Diffusion of an attached chain

Having described the basic mechanism of reptation-like diffu-
sion of a polymer chain in the presence of attractive nanoparticles
in Section 2, we shall now make a generalization of that theory. A
schematic representation of the internal structure of an attached
chain is shown in Fig. 14. For simplicity, we shall assume that an
attached point may represent a junction between two successive
bridges with the probability PBB, or a junction between a bridge and
a loop with the probability PBL, or a junction between a bridge and
a tail with the probability PBT, or a junction between two successive
loops with the probability PLL, or a junction between a loop and a
tail with the probability PLT, or a junction between two successive
tails with the probability PTT. These are the probabilities associated
with the various scenarios for an attached point of an adsorbed
chain. Needless to say, the sum of these probabilities is one. We
proceed by assuming that, under equilibrium configuration, these
quantities are known or can be determined by molecular dynamics
simulations [10,29].

Now let nB and nL be the average number of bridges and loops per
chain, respectively. In equilibrium configuration, these quantities
can be estimated by

nB
∼= nad

(

PBB +
PBL

2
+

PBT

2

)

, (42)

and

nL
∼= nad

(

PLL +
PBL

2
+

PLT

2

)

. (43)

Following the mechanism of reptation outlined in Section 2,
when one attached link breaks, a chain segment consisting of 2Ns

monomers between attached ends of the chain segment undergoes
Rouse-like motion. The mean-square curvilinear segment displace-
ment along the tube varies with time as

s2(t) ∼= (2Ns)b
2
[

t

�R(2Ns)

]1/2

= Neb2
[

t

�e

]1/2

t < �R(2Ns), (44)

s2(t) ∼= (2Ns)b
2 t > �R(2Ns), (45)

where the average number of monomers, 2Ns, along the chain seg-
ments is now estimated by

2Ns(nad) ∼= 2NBPBB + (NB + NL)PBL + (NB + NT )PBT + 2NLPLL

+ (NL + NT )PLT + 2NT PTT . (46)

Fig. 14. Schematic representation of the internal structure of an attached chain.
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In Eq. (46), NB, NL and NT represent the average number of
monomers per bridge, loop and tail, respectively. This result can
then be used to determined the effective curvilinear diffusion coef-
ficient, Dc,eff, following the same procedure outlined in Section 2.

If we assume that under equilibrium configuration all compo-
nents, i.e., bridges, loops and tails, incorporate a similar number of
monomers, Ns, with the same probability, then the monodisperse
result, 2Ns(nad) = 2Ns, is recovered from Eq. (46).

On the other hand, under nonequilibrium conditions, it is not
unreasonable to assume that the probability, PBB, to find an attached
link in the chain which connects two successive bridges, follows the
same dynamics as that of �ad, Eq. (34). Thus, we have

PBB(t) = PBB,eq
nad(t) − 1

nad,eq − 1
nad(t) ≥ 1, (47)

The other probabilities also follow the same dynamics, i.e., the
probability PBL to find an attached link in the chain which connects
a bridge and a loop, or the probability PBT to find an attached link in
the chain which connects a bridge and a tail, or the probability PLL

to find an attached link in the chain which connects two successive
loops, or the probability PLT to find an attached link in the chain
which connects a loop and a tail. Conversely, the probability, PTT,
to find an attached link in the chain which connects two successive
tails is given by the constraint

PTT = 1 − (PBB + PBL + PBT + PLL + PLT ). (48)

While the average number of monomers per bridge, NB, and the
average number of monomers per loop, NL, are assumed to remain
constant during deformation, a decrease in the average number
of bridges, nB, and loops, nL, per chain due to the detachment
process of an attached chain from nanoparticles, only induces an
increase in the average number of monomers per tail, NT. Under
these conditions, the average number of monomers per tail, NT,
can be approximated by

NT
∼=

N − (nBNB + nLNL)

2
. (49)

In writing Eq. (49), it is implicitly assumed that, an attached chain
always contains two tails.

According to this model, in strong flows, as the instanta-
neous average number of attached monomers per chain, nad(t),
approaches 1, the probability to find a bridge or a loop in the
chain is nearly zero, while the probability to find a tail, PTT → 1.
In this regime, the dynamics is associated with those of tails and
free chains, only.

The present theory is essentially a phenomenological one and
involves various assumptions. Our major assumption is that, the
detachment process of an adsorbed chain induced by the flow pro-
ceeds from bridges or loops closer to chain-ends to those internal.
As a consequence, a reduction in the number of bridges and loops
per chain results in an increase in the number of monomers per
tail, NT, while the equilibrium values NB and NL remain unchanged.
We know that the real picture is more complicated because, a
more complete description would also include the location of the
attached monomers along the chain backbone, i.e., the location of
bridges and loops, as well the position of the unattached monomers
of the chain with respect to the surface of the nanoparticles. Of
course, there are various possibilities of other generalizations that
can be pursued.

6.2. Multi-mode constitutive equation

To mimic the effects of polydispersity of a filled system that
incorporates attached chains to nanoparticles and free ones, a
multi-mode version of the model presented in Section 4 is used.
The polydisperse Rolie–Poly model that we present here is a trivial

extension of the monodisperse model obtained by taking the stress
to be a weight-average of the stresses obtained for each chain type
of the composite, i.e., attached and free chains. For a polymer sys-
tem filled with nanoscale rigid particles, the conformation of the
polymer chain, �i, in a flow field, u, evolves in time by an equation
of the form

�̇i = L · �i + �i · LT
+ f i(�i), (50)

where

f i(�i) = −
1

�d,i
(�i − I)

−
2

�R,i
ks,i(�i)

(

1 −

√

3

tr�i

)(

�i + ˇ

(

tr�i

3

)ı

(�i − I)

)

,

(51)

and the total stress is taken to be of the form

� =

∑

i=a,f

wiGiks,i(�i)(�i − I). (52)

Here the subscripts i = a and i = f denote components of attached and
free chains, respectively, wi is the weight fraction of chains of type
i, �d,i=a = �d,eff , and �R,i=a = �R,eff , are the reptation and the Rouse
relaxation times, respectively, of attached chains, while �d,i=f = �d,
and �R,i=f = �R, are the reptation and the Rouse relaxation times,
respectively, of free chains.

In the limit of very strong flows where, nad → 0, �d,eff = �d, and
�R,eff = �R, implying that attached chains behave like free ones, and
the underlying model, Eqs. (50)–(52), reduce to the standard single-
mode model proposed previously as a special case, Eqs. (36)–(38).

7. Conclusions

Our aim in this study was in mesoscopic rheological modeling
of nanocomposite systems. We developed a reptation-based model
that incorporates polymer–particle interactions and confinement,
to describe the dynamics and rheological behaviors of linear entan-
gled polymers filled with isotropic nanoscale particles. The model
predicted a scaling law in the form, �d,eff ∼�d(�adN + 1)2, where
�d,eff is the effective reptation time of a chain in the presence of
attractive nanoparticles, �d is its reptation time in the neat poly-
mer, �ad is the fraction of attached monomers per chain, and N

is the number of monomers per chain. Hence, the overall relax-
ation is extremely retarded by attractive nanoparticles in the limit
of strongly adsorbed chains. Also, it was found that the effective
reptation time, �d,eff, can be controlled through five main parame-
ters, i.e., the molecular weight of the polymer chain, N, the size of
the nanoparticles, df, the density of attractive site on the nanopar-
ticle surface, nas, the monomer-nanoparticle energetic interaction,
ε, and the nanoparticle volume fraction, �f.

An important additional physics that was incorporated in
this study was the nonequilibrium dynamics of detachment/re-
attachment of monomers from/to nanoparticle surfaces under flow
conditions. This approach allowed us to discuss, in a transparent
way, the role of different parameters involved, i.e., the ener-
getic interaction parameter between the polymer chain and the
nanoparticle surface, the particle volume fraction, the interparticle
distance, the geometrical characteristics (shape) of the nanoparti-
cles, the fraction of adsorbed monomers, and the molecular weight
of the polymer chain. The resulting model correctly captured the
linear dynamical properties and shear rheological behaviors of
nanocomposite systems studied. The high viscosity exhibited at low
shear rates can be explained by the flow restrictions arising from
the presence of nanoparticles that decreases the effective curvilin-
ear diffusion coefficient. Under slow shear flow conditions, these
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filled systems exhibit a strong non-Newtonian behavior and a large
enhancement in the viscosity as a certain number of monomers
in the chain are attached to nanoparticle surfaces. At high shear
rates, the neat polymer dominates the shear thinning behavior,
suggesting that addition of nanoparticles contributes negligible to
the viscosity in strong flows. These results also suggest that the
energetic polymer–particle interaction, the particle size and the
degree of confinement are the key parameters for the observed non-
Newtonian behavior and the large enhancement in the viscosity of
such filled systems. For these systems, significant orientation of
tube segments in the flow direction is predicted at low shear rates.
This behavior is reflected in the early shear thinning exhibited.
Therefore, according to the present model, particle orientation, as
such, has nothing to do with the observed non-Newtonian behavior,
since only isotropic spherical nanoparticles were considered. The
nonlinear viscoelasticity is also greatly affected by the dynamics
of detachment/re-attachment of monomers from/to nanoparticle
surfaces, as the effective reptation time and the effective Rouse
relaxation time strongly depend on the degree of attachment of
chains to attractive sites and on the nanoparticle loadings.
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