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Abstract. Vast amount of data in various forms have been accumulated through 
many years of functional genomic research throughout the world. It is a 
challenge to discover and disseminate knowledge hidden in these data. Many 
computational methods have been developed to solve this problem. Taking 
analysis of the microarray data as an example, we spent the past decade 
developing various data mining strategies and software tools. It appears still 
insufficient to cover all sources of data. In this paper, we summarize our 
experiences in mining microarray data by using two plant species, Brassica 

napus and Arabidopsis thaliana, as examples. We present several success 
stories and also a few lessons learnt. The domain problems that we dealt with 
were the transcriptional regulation in seed development and during defense 
responses against pathogen infection. 

Keywords: Integrative data mining, microarray, transcription regulation, seed 
development, plant defense. 

1   Introduction 

Knowledge discovery from various sources, such as biological experiments and 
clinical or field trial information, is a complex and challenging task. This requires an 
in-depth understanding of the domain and development of appropriate strategies for 
data preprocessing and subsequent analysis. High throughput determination of gene 
expression profiles has been prevalent in the past decades, particularly with the advent 
of microarray technology. This has motivated researchers to utilize tools, techniques, 
and algorithms developed through many years of data mining and knowledge 
discovery research, to search for useful patterns in the gene expression data. This is 
exemplified by the abundance of computerized data analysis tools that have become 
available to perform clustering, pattern recognition, and motif identification in gene’s 
promoters. One of the greatest challenges is to understand how the expression pattern 
of thousands of genes in a living organism is regulated and related to one another. 
Two examples of these are: (i) the discovery of relationships between genes and their 



expression profiles over a time-series, such as genes’ progressive responses to drug 
treatment over time or stages during embryonic development, and (ii) genes’ 
responses at one discrete time point to various treatments, to knock-out or knock-
down of certain transcription factors.  

Generally, no single data analysis method is able to be successfully applied to all 
different datasets. Often, data mining researchers have to select methods or develop a 
new algorithm based on a particular dataset. Microarray gene expression data is 
subject to multiple sources of noise [1]. To cope with such instability in the data, 
many normalization techniques have been developed, but these techniques can only 
ease rather than solve the problems completely. As a consequence, the confidence in 
knowledge derived from the data by a single analysis tool is dependent on the extent 
of noise and bias. One of the important questions in data mining is how to understand 
the scope and minimize the impact of such noise and bias within the data.  

Our research team is currently working on knowledge discovery from plant 
genomes, specifically Brassica napus, the canola oil producer, and Arabidopsis 

thaliana, a small model plant, with regard to seed development and defense 
mechanism against pathogen infection, respectively. The data were produced by using 
various microarray platforms. Thus the data have various degrees of complexity. We 
have used several integrative approaches to mine these data. This paper is to present 
some successful stories and lessons learnt from our data mining investigations. 

Both Brassica napus and Arabidopsis thaliana belong to the Brassicaceae family. 
Brassica napus (rapeseed) currently contributes over $11B in economic activity with 
the canola industry being responsible for over 214,000 jobs in Canada. Canola oil has 
high content of healthy fatty acids, such as oleic acid, linoleic acid, and �-linolenic 
acid [2], and contains only a trace amount of erucic acid, which may adversely affect 
heart tissue [3]. Therefore, canola oil is prized as healthy oil by consumers. Our 
research problem is to identify genes with the potential to improve key aspects of 
Brassica oilseed and canola productivity by increasing total oil production, seed yield 
and seedling vigour. Our role in this research is to help biologists at Plant 
Biotechnology Institute, NRC to identify these genes and their behaviors under 
various conditions, at various seed developmental stages and in different tissues.  

Our research problem in A. thaliana is to identity genes responsible to pathogen 
infection and alteration of their expression profiles during systemic acquired 
resistance (SAR).  Our role is to discover the transcriptional regulatory relationship 
between these genes and their upstream regulators through knock-out of certain 
transcription factors that are key regulators with regard to plant’s SAR.  

In the following sections, we present the two biological problems as examples of 
our current research. We first describe the problems and our solutions. Then, we 
present result highlighting the benefit of integrative approaches. This is followed by a 
discussion and a conclusion. 



2   The biological problems and solutions 

2.1   Endosperm of Brassica napus  

 
This problem was to identify highly expressed genes and understand the mechanism 
behind the changes of gene expression in the endosperm during embryogenesis of B. 

napus seeds. The stages of embryogenesis considered in this study were defined 
according to the shapes of the imbedded embryos: globular, heart, and cotyledon. The 
microarray experiment was done in dual channel array representing two different 
developmental stages, i.e. heart vs. globular, cotyledon vs. globular, or cotyledon vs. 
heart. The experiment was performed with two biological replicates; each had four 
technical repeats with dye swaps. Paralleled with the microarray data, there were also 
EST (expressed sequence tag) data. Details are available in [4]. 

Our approach was first to identify a group of significantly and differentially 
expressed genes. In this step, it is critical to refer to the domain questions so that not 
to exclude genes which are necessary in answering the questions and also not to 
introduce much noise in subsequent data analysis steps. There are two aspects in the 
domain question: 1) to find significantly expressed genes a) in some stages but not 
necessarily in other stages, and b) across all stages; 2) to group differentially 
expressed genes based on their patterns of variations [5]. In this study, our main point 
was to highlight the importance of considering both ratio data and intensity data from 
each channel at the same time.  

2.2   Defense response in Arabidopsis thaliana 

This problem was to identify the effect of key transcription regulators in plant 
defense responses against pathogen infection, using data generated by microarray. 
The microarray analysis addressed two key variables: the effect of salicylic acid (SA), 
a key elicitor of pathogen-induced SAR in plants, and the effect of mutating the 
NPR1(Non-expresser of Pathogenesis Related gene 1) gene and TGA family genes. 
The establishment of SAR, an inducible defense response that leads to broad spectrum 
of systemic resistance, requires an endogenous increase in SA levels [6]. However, 
the exogenous application of low concentrations of SA, as used in this study, can also 
trigger a SAR response. In Arabidopsis, the NPR1 gene is essential for SA-mediated 
SAR [7]. Currently there is no evidence to suggest that NPR1 binds DNA directly to 
regulate transcription, but indirectly regulates the expression of genes involved in 
SAR through its interaction with TGA family of bZIP transcription factors [8-12]. 
Seven (TGA1-TGA7) of the ten TGA factors in Arabidopsis have been characterized 
to interact with NPR1 [13-15]. These seven TGAs can be divided into three groups 
based on sequence homology [16]. Group I consists of TGA1 and TGA4; Group II 
TGA2, TGA5 and TGA6; and group III TGA3 and TGA7. In this research, we used 
four genotypes: Columbia wild type plant and three sets of mutants (npr1, knock off 
of group I TGA factors, tga1 tga4, and knock off of group II TGA factors, tga2 tga5 



tga6). Small amount of SA was sprayed to each plant to mimic pathogen infection 
that induced a series changes in expression of genes involved in SAR. Samples were 
taken 0, 1, and 8 hours after the plants subjected to SA application. 

This research was performed in two phases. The first phase consists of five 
biological experiments and SA was applied on two genotypes, wild type and the 
mutant npr1. We used an approach that consists of several iterations of integration of 
three components: (i) clustering (unsupervised learning), (ii) pattern recognition 
(supervised learning), and (iii) identification of transcription factor binding sites. 
Briefly, a group of informative genes were identified from the entire dataset through 
pattern recognition and compared to interesting clusters generated by K-Means.  
Interesting motifs in the upstream promoter region were identified for each gene and 
compared with other genes in the same cluster. A combination of results of 
informative genes, gene expression profiles and motif information constituted a 
representative gene for each interesting cluster.  These representative genes were used 
as seeds for subsequent re-clustering of the data through K-Means to determine more 
refined clusters [17]. 

In the second phase, SA was applied to all four genotypes. The knowledge 
discovery was done by using integration of an expanded version of frequent itemset 
mining approach [18] and an order preserving three-dimensional-clustering approach 
[19]. The order preserving clustering approach is a combination of order preserving 
pattern feature [20] with clustering. Before applying the expanded version of frequent 
itemset mining algorithm, the gene expression matrix was first discretized into three 
distinct values (-1, 0, 1) representing down-regulation, no significant difference, and 
up-regulation, respectively, based on a predefined threshold value, and relative to a 
baseline, which is the wild type in our study. All the interesting associations and 
association rules between the transcription factors and their target genes were then 
identified [18]. A wiring diagram was inferred to describe gene regulatory network 
during pathogen-induced SAR in A. thaliana specifying sets of genes that were 
differentially expressed as a result of one, two or all three mutant sets (npr1, tga1 
tga4, and tga2 tga5 tga6) (Fig. 1). 

NPR1TGA1 TGA4 TGA2
TGA5

TGA6

158 211

234 257229 283

630 510

524 701

726 848915 1189

up-regulate

down-regulate

 
Fig. 1. The wiring diagram of 8th hour after SA treatment on Arabidopsis thaliana. 



The order preserving 3D clustering approach discretizes a gene expression profile 
by ranking expression value at all time points based on a predefined threshold value 
disregarding up or down regulation [19]. The number of discretization values is � T 
depending on the threshold and the variability of the expression profile; where T is the 
number of time points. This approach identifies similarities and differences in terms 
of gene expression profiles between the wild type and the mutant sets. In other words, 
it identifies groups of genes that have the same sequential variation patterns unique in 
one genotype plants or others and may be the same between two, three or across all 
four genotypes [19]. 

3   Results 

3.1   Endosperm of Brassica napus  

The detailed result of this research has been recently published in [4, 5]. Here we 
highlight relationship of two key transcription factors that might shine some light in 
cascading of transcription regulation of seed development and fatty acid metabolism. 
Leafy cotyledon1 (LEC1) is a key regulator of fatty acid biosynthesis in Arabidopsis. 
In the LEC1-overexpressing transgenic plants, over 58% of known enzyme-coding 
genes involved in the plastidial fatty acid synthetic pathway are up-regulated; levels 
of major fatty acid species (e.g. oleic acid, linoleic acid, and �-linolenic acid) and 
lipids were substantially increased [21]. The function of LEC1 is partially dependent 
on WRINKLED1 (WRI1) and other two transcription factors (ABI3 and FUS3) in the 
regulation of fatty acid biosynthesis. Over-expression of WRI1 up-regulates a set of 
genes involved in fatty acid (FA) synthesis in plastids [22]. In our work, the 
expression profiles of LEC1 and WRI1 are identical based solely on the log ratio 
values (Fig. 2A), which lead us to a conclusion that the LEC1 and WRI1 are co-
regulating the FA metabolism in B napus. While looking into the expression intensity 
of the two TFs, we found that they were about one order of magnitude different from 
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Fig. 2. Gene expression of the two transcription factors, LEC1 and WRI1. 



each other (Fig. 2B). This result was consistent with the number of ESTs found for 
each TF [5]. When the expression of LEC1 was moderate at the globular stage, the 
expression of WRI1 was very low. When expression of LEC1 became more 
significant at later stages, expression of WRI1 increased significantly. This 
observation allows us to deduce that high expression of LEC1 probably enhances the 
expression of WRI1 in B napus, whether directly or indirectly through another 
transcription factor. A recent study revealed that LEC2 directly regulated WRI1 [23]. 
However, over-expression of LEC1 does not directly affect the level of LEC2 [21]. 
Therefore, we can conclude that both LEC1 and LEC2 are the upstream regulator to 
WRI1 (Fig. 3). This result is similar to what is found in Arabidopsis [21]. However, 
this cascading relationship between the two transcription factors would not be 
possibly revealed without considering the signal intensity data. 

3.2   Defense response in Arabidopsis thaliana 

The details of phase one work have been published in [17]. Here we provide a 
highlight of this phase. Through several iterations of clustering, we were able to 
identify and confirm 24 genes that were differentially expressed, 12 up-regulated and 
12 down-regulated, in mutant npr1 as compared to the wild type following SA 
treatment. Using the pattern recognition approach, we were able to identify 15 highly 
informative genes, the majority (8) of which were in the down-regulated cluster 
described above and highly enriched with ASF-1 motif (TGACG [24]) and W box 
(TTGAC [25]) in their promoters. The TGA factors binds to ASF-1 motif and WRKY 
transcription factors, which are dependent on NPR1 [26], bind to W box. This is 
consistent with the fact that NPR1 indirectly regulates the target genes of both TGA 
factors and WRKY factors. 

In the second phase, through the frequent itemset mining approach [18], we were 
able to identify genes that were regulated by one set of transcription factors alone, and 
those collectively regulated by two or all three sets of transcription factors. For 
example, the wiring diagram in Fig. 1 shows that 8 hours after application of SA, 158 
and  211 genes are up and down regulated, respectively, by the combined function of 
NPR1 and all five TGA factors in this study. Similarly, 76 (=234-158) and 46 (=257-
211) genes are exclusively (excluding the effect of NPR1) up and down regulated, 
respectively, by the combined function of all five TGA factors. But 320 (=915-524-
229+158) and 416 (=1189-701-283+211) genes are uniquely (excluding the effect of 
TGA factors) up and down regulated by NPR1, respectively.   

LEC1

LEC2

WRI1
WRI1-targeted 

genes

 
 
Fig. 3. Schematic transcriptional relationship between transcription factors 



Through the order preserving clustering approach [19], we were able to identify 
genes that are not affected by one or more mutations (Fig. 4) across the time series. 
For example, 4.32% genes are independent of any genotypes in this study 
(W_P_T1_T2); 12.02% genes are independent of mutation of TGA factors 
(W_T1_T2). From the difference between these two numbers, we were able to derive 
7.70% are affected by mutant npr1, i.e. regulated by NPR1.  

After integration of these two sets of analyses, we will be able to pin-point certain 
group of genes that are regulated by one transcription factor or co-regulated by more 
transcription factors at one specific time point, or across the entire time series, 
therefore infer the dynamic regulatory behavior during SAR in A. thaliana. More post 
processing of this phase of work is in progress. Additionally, we are applying the 
same integrative approach to seed developments and its association with fatty acid 
metabolism in B. napus. Preliminary results indicate this approach is promising and 
has broad application. 

4   Result integration – knowledge base 

Through many years of experimentation, vast amount of data have been accumulated 
and currently available at Plant Biotechnology Institute, NRC. Currently, we are 
developing a knowledge base named BRISKA (Brassica Seed Knowledge 
Application) [27] that integrates knowledge discovered through our many years of 
data mining processes with publically available knowledge in literature and public 
databases, such as GO [28], KEGG [29], TRASFAC [30], etc. The objective of this 
knowledge base is to support subsequent integrated reasoning in new knowledge 
discovery processes. Our ultimate goal is to build a robust virtual seed system through 
incremental learning.   

Currently, a prototype of the knowledge base has been developed. It contains 
various tools and results of analysis from both public and private sources. BRISKA 

0

5

10

15

20

25

30

35

P
e
rc
e
n
ta
g
e
 o
f 
c
o
n
s
e
rv
e
d
 g
e
n
e
s

Subsets of samples  
 
Fig. 4. Summary result of the order preserving clustering approach. W = wild type, P = 
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integrates microarray data alongside sequence-based data, such as ESTs and promoter 
sequences, and provides data analysis results generated by using various tools. For 
example, sequence similarity has been done on all sequence-based data to allow 
linkage from EST, to contigs and genes while also proposing possible orthologs for 
any gene of interest in related species. The schema used in BRISKA is based on the 
Chado [31] model and, through its ontology-driven design, supports complex 
representation of biological knowledge such as clusters of co-expressed genes, gene 
regulatory network modules, and expression plots. Public microarray experiment data 
are acquired from Gene Expression Omnibus (GEO) and has been selected by the 
relevance to our actual research interests. Genes, ESTs, and contigs are from the 
TAIR database [32] while binding site and transcription factor information are mostly 
from PlantTFDB [33]. Annotation information such as gene ontology, KEGG 
identifiers has also been added. Private data are mostly acquired from the Plant 
Biotechnology Institute and consist mainly of EST and microarray expression data. 

An interactive web-based interface along with visualization tools have been 
developed to provide intuitive access to the knowledge base. An analysis explorer tool 
grants user access to their data, analyses results along with the protocol used to 
generate the results. For example, gene expression analysis results are provided in an 
interactive spreadsheet; gene networks analyses can be visualized via BRISKA’s 
viewer, which were built by our team as an extension of the Guess [34] application to 
provide multiple functionalities such as network search, connection-depth search, and 
network manipulation.  

5   Discussion and conclusion 

In this paper, we described several integrative approaches applied in mining 
microarray gene expression data of B. napus and A. thaliana. These methods have 
been incorporated in various software tools developed in-house or obtained from 
publically available resources. It is important first to investigate the data structure, 
their associated features and attributes, the noise content and the associated strategy to 
minimize its impact, and the domain problems to be addressed. Once this basic 
information is known, one can then look into the tools needed to address these sets of 
problems.  

In the B. napus endosperm work, we have investigated both the signal intensity and 
the differential expression between different stages of embryogenesis. The 
conventional approach of analyzing the dual channel microarray data by looking into 
only the ratio data between the channels would miss the cascading relationship 
between LEC1 and WRI1. This research also alerts us that it is important to identify 
the characteristics of data. For example, the ratio data in the dual array experiment is 
derived from two signal intensities. In this case, the signal intensities are the primary 
data, while the ratio is derived data. Two ratios of the same value do not imply that 
the primary data, from which they are derived, are the same or similar. There could be 
a big difference between two sets of primary data (Fig. 2). Yet, some ratio data in a 
specific region of their parental primary data could be misleading [5]. This fact has 
been neglected in many of the dual channel array data analysis performed earlier. 



In the first phase of Arabidopsis work, we integrated the unsupervised and 
supervised learning approaches with sequence motif search and identified a group of 
genes that were closely related with the transcription factor NPR1. Microarray data 
usually contains much noise [1]. A cross checking of results by various methods are 
necessary to ensure quality of the results. Our final results from the three sets of 
analyses support each other and increase our confidence.  In the second phase of this 
work, we used the frequent itemset mining approach to identify the effect of 
mutations on gene expression at a given time point; we used the order preserving 
clustering approach to mine the sequential ranking pattern in the expression profile. 
The former identifies the static nature and the later illustrates the functionally 
dynamics nature of the gene expression data matrix.  

Each step of knowledge discovery enriches our knowledge base, as we see in our 
Brassica Seed Knowledge Base that we are developing. The discovered knowledge 
will incrementally enhance the subsequent knowledge discovery process. For such 
reason, many bioinformatics knowledge bases, such as gene ontology [28], KEGG 
pathway [29], etc. became available. Our objective is to structure all forms of 
discovered and validated knowledge in order to provide means to augment our 
capability in subsequent knowledge discovery.  

Through worldwide genomic research effort of the past decade, large amount of 
data in various forms have been accumulated. It is a challenge to integrate 
information in many different forms (e.g. ESTs, SNPs, small RNAs, microarray, 
protein-protein interactions and metabolomics data) and from various platforms (for 
example the microarray data could be from Affymetrix, Agilent chips, or in house 
chips) and to extract knowledge from this vast information pool. Our group has 
developed various data mining strategies, algorithms and tools based on our expertise 
in data mining and machine learning in order to effectively discover new knowledge 
from this vast information pool. This knowledge will be validated through literature 
search, local and public knowledge bases search, and follow-up wet lab 
experimentation. Finally, the knowledge can be presented as gene-gene associations, 
gene-metabolites associations, metabolic pathways, gene networks and various forms 
of predictive or descriptive models. These forms of knowledge presentation will be 
facilitated and interconnected through our BRISKA knowledge base. Our ultimate 
goal is to provide biologists an integrative and interactive environment to visualize 
seed development and fatty acid metabolism of B. napus and related species and to 
further conduct experiments in perturbing/modifying genetic parameters in a virtual 
world to improve canola oil production, seed yield and seedling vigour. 
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