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Abstract 

Mineral flotation is a process whereby particulates containing mineral bearing constituents preferentially adhere to gas 
bubbles in a liquid medium. This is a way to separate and upgrade ores or other mineral matter. In order to simulate this 
unit operation hydrodynamically, a three-phase system for the liquid phase and dispersed solids and bubbles must be employed. 
Additional simulation features are the cell geometry, the boundary conditions, drag terms, variable viscous effects, and the 
treatment of the adhesion of particles to bubbles. This paper, the first of a series of two, details the formulation of the 
governing equations, the numerical implementation and shows some results for a two-dimensional, incompressible case. The 
formulation and implementation are sufficiently general and this simulation was applied to the flotation of coal-oil agglomerates 
as detailed in Part II of this series. 

Keywords: Flotation; Three-phase flow; Turbulence; Finite-volume method; Interphase mass transfer 

1. Introduct ion  

Mineral flotation is a unit operation where large 

tanks or cells containing particle-bearing slurries are 

subjected to turbulent  mixing with gaseous bubble 

streams to provide sufficient contacting between the 

dispersed phases. Fundamentally, mineral flotation in- 

volves the collision and subsequent at tachment of  a 

particle with a bubble in an aqueous medium. Often, 

this operation involves selective adhesion of  a mineral 

bearing particle rather  than a gangue particle, so in 

effect the mineral content is recovered in an enriched 

state. This event is highly influenced by the overall 

hydrodynamics of all three phases in a flotation cell. 

In addition to the surface chemical factors which es- 

sentially influence the particle-bubble attachment,  hydro- 

dynamics simultaneously assist in determining such an 

interaction, potentially giving rise to a collision, at- 

tachment and successful flotation. 

Of  interest in this study are how the prevailing 

hydrodynamics in this three-phase system produce the 

sum of interactions which define the efficiency of the 

unit operation. Since the flow phenomena involved can 

be complex, resolving the hydrodynamic forces would 
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provide a basis for decoupling the surface chemical 

contribution to the kinetics of mineral flotation. 

There  has been considerable research in the past 

on the role of hydrodynamics in the elementary 

bubble-particle collision in flotation, as well as to 

characterize the macroscopic behaviour of  a flotation 

cell. Early work based on the initial model by Sutherland 

[1] focused on how a particle following a fluid streamline 

around a bubble in a potential flow regime could contact 

the bubble. Later  research by Flint and Howarth [2], 

Derjaguin et al. [3], Schulze and Gottschalk [4], Weber  

[5], Weber  and Paddock [6] and Dobby and Finch [7] 

developed hydrodynamic collision models where inertial 

effects from the particle and flow regimes in an in- 

termediate range between Stokes and potential flow 

were considered. Thus, the understanding of how one 

bubble interacts with one particle had been refined. 

The other  principal method to model flotation, has 

been to apply some basic hydrodynamic-related treat- 

ment to simulate the entire unit operation of a flotation 

cell. Several papers on this topic have been summarized 

in a review by Mavros [8]. Typically some mixing pattern 

was assumed and applied to a residence time distribution 

for kinetic models scaled up from bubble-particle in- 

teraction analyses. A comparatively in-depth study by 

Dobby and Finch for column flotation systems [9,10], 
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made use of experimental residence time measurements 

to model the unit under a modified plug flow regime, 

without any mechanically introduced turbulence. The 

particulate concentration was' determined in the axial 

dimension only via regular differential equations using 

an axial dispersion coefficient to account for some 

turbulent action. 

The computational fluid dynamics (CFD) approach 

for the present work was adopted as a means to enable 

flotation to be modeled in an integrated sense. This 

work is part of an on-going project on the recovery 

and beneficiation of waste coal fines by oil agglomeration 

[11]. Part II of this series [12] describes in detail the 

surface chemical aspects of the project. The objective 

of this paper (Part I) is to detail the formulations for 

simulating the steady-state motion of the liquid, gas 

and solid phases in a continuous float cell, such that 

the contacting patterns can be resolved. That is, to 

provide a mechanistically based model of flotation, the 

necessary steps of collision and adhesion must be ac- 

counted for. By determining a three-phase flow field 

solution, a turbulence based collision model based on 

local relative velocities and dispersed phase concen- 

trations can be used to illuminate how the particulate 

surface properties lead to successful bubble-particle 

adhesion. Part II in this series will then apply this 

simulation to flotation recovery data for coal-oil ag- 

glomerates in order to demonstrate the surface chemical 

influence on bubble-particle adhesion in flotation. With 

a resolved flow field, the influence of the particulate 

surface properties can be decoupled from the hydro- 

dynamics of the system, which in previous studies, had 

to be considered simultaneously. 

2. Mathematical  model 

The general partial differential equations which gov- 

ern fluid transport were employed in this simulation. 

Modification of these equations from their basic forms 

was required to incorporate an interdependent multi- 

phase system. 

2.1. System variables 

The system to be simulated in this project required 

the resolution of twelve different field variables. Since 

the simulation was modeled as incompressible and in 

two-dimensions, the field variables were the two di- 
rectional components of the liquid, gas and solid phase 

velocities, the pressure, two turbulence parameters, the 

gas and solid phase volume fractions and the extent 

of particle adhesion onto the bubbles of the gas phase. 
The present model allows for the distinct flow paths 

and local velocities of each of the three phases. The 

flow field solution produces a two-dimensional velocity 

vector field and a scalar field of all other variables. 

Each phase is treated as a continuum and they share 

the domain according to the local volume fractions. 

The dimensions of the interfaces between the liquid 

and dispersed phases are prescribed by the volume 

fraction of each dispersed phase subdivided into par- 

ticles or bubbles of each input diameter. The interfacial 

area thus determined reflects the multi-phase nature 

of the model. 

2.2. Governing equations 

The finite-volume formulation used in this work 

employed the basic mass and momentum transport 

equations with the turbulence features worked into 

them expressed as statistical averages of the random 

fluctuations. The turbulence in the flows is accounted 

for by the turbulent variables k and E, from the two- 

equation model developed by Launder and Spalding 

[13]. The problem is fully defined with the specification 

of boundary conditions. 

2.2.1. Transport equations 
The instantaneous properties of a flow are given by 

the mass and momentum conservation equations [14]. 

The variables, u, p and P are respectively velocity, 

density and pressure. For brevity, the Einsteinian indicial 

notation is used, subscripts i, j and k referring to the 

spatial directions. 

ap 
Mass: ~ + (pu)j.j=0 (1) 

Momentum: a(pu)i + [(pu)jul].j = - P i  + ~ij j (2) 
~t " ' 

Above, ~-~j is the shear stress tensor given by: 

2 
7"ij = ].Z(Ui, j "t- Uj, i)  - -  3 ~'£Uk. k~ij  ( 3 )  

Here, /x is the laminar viscosity of the fluid. 

2.3. Turbulence model 

Via dimensional analysis, two parameters are required 
to evaluate /z,. The k - E  model [15] has proven to be 

a suitable method to model turbulent flows. The pa- 

rameters have a physical significance, and transport 

equations may be obtained for them in a straightforward 
manner. For high Reynolds number flows, the parameter 

e is defined as, 

P 

Here, u; is the mean velocity fluctuation and e defines 
the dissipation rate of the turbulent kinetic energy. 
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From dimensional analysis, the relation between the 

turbulent viscosity/xt and the two turbulence parameters 

is, 

C~,(p)k 2 
,u,, = (4) 

E 

In Eq. (4), C~, is found empirically, and for high Reynolds 

numbers, has a value of about 0.09. From these expres- 

sions, equations entirely analogous to Eqs. (1) and (2) 

can be written [16]. These equations rely on a 'density- 

weighted ensemble-averaged' (DWEA) form for the 

field variables. That is, the field terms will be treated 

with a mean value, but a non-zero time-average for 

turbulent effects is included. 

2.3.1. Turbulent kinetic energy transport equation 

The variable k is solved for in the flow domain with 

its behaviour defined by a transport equation. The 

DWEA turbulence energy transport equation was de- 

rived by Watkins [17] by manipulating the momentum 

equation and making use of the relations between the 

fluctuating and mean flow variables. The form of the 

equation that is used in this work is, 

i)((P)k+((p)t~ik-l(I.~+Izt)k.j ) 
at ~r k , J 

2 
= ]J,t(/,~i(/,~i, j "~-/,~j, i)). i -  ~ (/~j[~/,t/~i, i"[- ( p ) k ] ) , j -  (p)E 

(5) 

The notations (p) and fi~ refer to, respectively, an 

averaged value and a density-weighted ensemble-av- 

eraged value. In Eq. (5), irk is an empirical constant 

of value 1.0. 

2.3.2. Turbulence energy dissipation rate equation 

The ensemble-averaged energy dissipation equa- 

tion is given below, in terms of DWEA variables, as 

this form [17,18] is considered the most correct, 

of the available relevant formulations. It is written 

as, 

i ) ( (p ) , )  _b ( (p)/~j ,  _ L (1~ .k_/./,t),..i ) 
bt o-, J 

e{c [ t x ( t~ ( t i , . i+d j  )) 
k 1 t i , i  , j  

~ (/~j(l"/'t/'~i, i "~- (P)k)),i]-C2(p)e] 
+C3(p)a~j.j (6) 

The model constants, cr,, C1, Cz and C3 are given in 

Table 1. 

Table 1 
Turbulence model constants 

Constant C~, CI (?2 K E ~r k o-, Ca 

Value 0.09 1.44 1.92 0.4187 9.793 1.0 ~ 1.0 

(C2 - C l ) C ~  5 

Table 2 
Interphase drag terms for the momentum equations 

Phases Drag term 

9~G/.t,L . liquid-gas FLGi= T ['UGi--UlA) 

liquid-solid FLsi =B(uu--Usi) 

2.4. Three-phase model 

2.4.1. Gas-phase equations 

Continuity: (aopouoi).i=O (7) 

Momentum: aG(pGUGiU~i-- p.GeffUGi.j).j 

= -- otGP, i + otGPGgi +FGLi + ao3ri(pc, UG, P-ceff) 

(8) 

Above, aG is the gas-phase volume fraction, and the 

term FGL is the interphase drag term for the gas phase 

in relation to the liquid phase [19,20]. The terms 

indicated by 9-~(pc, uG,/zG~fr) arise from the curvature 

of the coordinate system selected. For this work, a 

Cartesian system was used, and these terms drop out. 

The interphase drag terms are summarized in Table 

2. The effective viscosity term, /zceer is the sum of 

laminar and turbulent contributions to the viscosity. In 

this simulation,/zG, is not considered as the turbulence 

is restricted to the main transporting phase, which is 

the liquid. 

Based on assumptions made by Lai and Salcudean 

[19], the gas-phase momentum equations may be sim- 

plified. The gas phase is assumed to be dispersed in 

the liquid phase. Further, in typical mineral flotation 

applications, the presence of chemical frothers and 

conditioners causes the bubbles to act as rigid spheres 

[5]. The gas bubbles are also modeled as incompressible 

which is a simplifying assumption; in this way, a constant 

system volume may be obtained. Further, inherent 

instabilities such as oscillations at the free surface of 

the vessel are neglected. The bubbles are treated as 
having a constant given diameter which therefore does 

not allow for coalescence. Naturally, bubble coalescence 
is a very real phenomena, but incorporating it into this 

model would introduce a great deal of complexity to 
a system which is a first step in flotation modeling by 

the solution of field equations. Coalescence would serve 

to increase the mean bubble size and reduce the number 
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density of bubbles thereby contributing to a lesser 
flotation recovery. 

Despite these shortcomings, the simulation can dem- 

onstrate the basic physical behaviour of the system. In 

any case, simplifications of the physical geometry of 
the flotation unit used in the simulation are made, 

such that an overly complex and completely physically 

correct treatment of the gas-phase behaviour would be 

superfluous. 

If the action of the liquid phase is assumed to be 
primarily responsible for the gas-phase transport, then 
only the pressure, drag and buoyancy terms are retained. 

In this way, the gas velocities may be explicitly 
determined from the gas velocity term in the drag 

expression. The resulting momentum equation becomes, 

0=  --aoP~+aGpGgi+FGL~+aGSr~(pG, UG, /ZG.,,) (9) 

2.4.2. Liquid-phase equations 

Continuity: (aLPLUL~). i = 0 (10) 

Momentum: aL(pL ULjUL~ -- /ZL~ffUL~. j). i 

= --aLP'.~+FLGI+FLsi+aLSrI(PL, UL, /ZLaf) (11) 

Above, aL is the liquid-phase volume fraction. In Eq. 

(11), the term aLPLg~ is omitted since the equation 
makes use of a corrected pressure P ' ,  where, 

P ~ i - - P ,  i + pl_gi  

Hence, it can be seen that using P' instead of P takes 
care of this term. The interphase friction terms are 

the same ones as given in Table 2. It should be noted 

that in general, when a phase 1 interacts with a phase 

2 in a j-direction, it can be said, 

F12  j = - F 2 1  j 

Hence, with respect to equations for other phases, the 

signs are reversed on the interphase drag terms when 
inserted into the liquid-momentum equation. 

2.4.3. Solid-phase equations 

Continuity: (aspsUs,), ~= 0 (12) 

Momentum: as(psUsjUs~).j 

= -otsPi+asPsg~+FsLi+asSrsi(Ps, Us) (13) 

Above, as  is the solid-phase volume fraction. For  the 
solid phase, the viscous terms will be of a negligible 
magnitude in comparison with the inertial terms, and 
are thus dropped from Eq. (13). 

2.4. 4. Interphase drag 
Based on results from Soo [21] and Lai and Salcudean 

[19], the liquid-gas and liquid-solid interphase drag 
terms are given in Table 2. Also in Table 2 we have 
the coefficient B for the liquid-solid interphase drag 

coefficient. This term is based on derivations by Ergun 

[22], Wen and Yu [23] and Lyczkowski and Wang [20]. 

We use s ¢ and ~s to refer to normalized (gas phase 
excluded) liquid and solid volume fractions. This ap- 

proximation is made as it is assumed that the liquid 

phase is responsible for transporting the dispersed 
phases, and that gas-solid and solid-solid interactions 

are neglected. 

O~ L 

O~ L --1- O~ S 

Also, 

a s  
~ s - -  - -  

Ot~L + Ot~ S 

As shown in [20], two cases are considered for B. We 

have, 

PLluL,--UsII s for ~:s>0.2 (14) B = 150 ~ + 1.75 2rp 

In dense slurries, the flow field disturbances around 

spheres begin to overlap and hence a separate expression 
is needed for such a case. For more dilute liquid-solid 

systems, a different regime exists and is modeled [20,23] 

a s ,  

B=0.75CD U26  slu '-u 'I  for ~s<0.2 (15) 
2rp 

Rowe [24] related the drag coefficient to the Reynolds 
number by, 

t 24 
CD = Re~ (1 + 0.15Re~ °687) for Res < 1000 

0.44 for Res >~ 1000 

where, 

R e  s 
2~pL(UL-- US)rp 

I~L 

2.4.5. Multi-phase mass balance 

Throughout the flow domain, a check must be made 

on the sum of the volume fractions of the various 
phases. At all locations, the following condition must 

be satisfied, 

EaM = 1 (16) 
M 

Continuity of phases 
In this simulation, there are three phases considered, 

water, bubbles of varying particle loading, and particles. 
Each phase is subject to a momentum balance which 
is employed for the calculation of its respective velocities, 
which in turn must be used to determine local volume 
fractions to ensure proper continuity for each phase, 
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and taken all together, to conserve an overall, multi- 

phase mass balance. 

Liquid phase 
As described by Lai [16], the main transport phase 

velocities are determined by solution of the momentum 

equation, and then the conservation of mass is ensured 

by coupling the velocity determination with a pressure 

correction, which diminishes with convergence. The 

volume fraction for the liquid phase is not explicitly 

calculated, rather it is simply calculated as the remaining 

volume fraction, once gas and solid phase volume 

fractions have been calculated. That is, the liquid volume 

fraction, aL is calculated as, 

aL = 1 - a c -  as (17) 

If at any point in the numerical computation of the 

phase volume fractions, the local sum of them exceeds 

unity, then they are all simultaneously normalized fol- 

lowing, 

O/i 
ai = 3 (18) 

~ a j  
j - 1  

Gas phase 
A local flux balance at all nodes in the grid is employed 

to determine the gas phase volume fraction at all points 

in the flow domain. This is based on an upwind scheme 

presented by Spalding [25]. 

We can express the flux Gi, for the ith phase, as 

G=p./lul, where A is the area of the face through 

which this flux takes place. A local flux balance for 

any phase can be written as, 

E aiGi = ~otiGi+R i (19) 
CUT IN 

The term R~ refers to a mass generation or consumption 

in a finite-volume cell. The adhesion of particles to 

bubbles represents a mass transfer from the solid to 

gas phase. The derivation of this term is discussed in 

section 2.4.7. Any outgoing flux from a cell will represent 

the volume fraction oqtp J in that cell. The incoming 

fluxes will contain the volume fractions in the respective 

neighbouring cells. We can rewrite Eq. (19) in view of 

the upwind differencing scheme as, 

a~tP I ~ Gi = ZoqG,+R~ (20) 
OUT IN 

Now, we have a finite volume expression for o~ijpl , which 
is the unknown volume fraction at the point P, or cell 
where this flux balance is applied. 

' ~ a i  G i  -I-- R i 
IN 

°t'IPl- ~ Gi 
CUT 

Substituting the above result into Eq. (16) gives, 

~aGGG+RG ~ a L G L  
IN IN 

+ - -  + a s = l  (21) 
Eco EeL 

OUT OUT 

Rearranging gives, 

~ GL'(~aGG~+Rc)+ ~ Go'~_~CtLGL 
OUT OUT IN 

Now, substituting (F.IN~aGG+RG)/aGtp I for ~ouTGc 
on the right hand side of the above expression, then 

rearranging gives, 

(22) 

Eq. (22) may be used in the finite volume scheme for 

solving the gas phase volume fraction, in an iterative 

fashion, using current values of aL and as to update 

aGtPl- Upon inspection, it may be seen that Eq. (22) 
is inherently stable, as it has been constructed to 

calculate values of aG~Pl which are between 0 and 1. 

Solid phase 
In a fashion analogous to the previous development 

for the gas phase, the mass balance for the solid phase 
was derived. 

2.4.6. Turbulent collision model 
Successful mineral flotation depends on having suit- 

able hydrodynamic conditions, or mixing to bring the 

bubbles and particles into contact with one another, 

as well as the necessary particulate surface properties 

to create a lasting adhesion between these particles 
and bubbles. 

With a statistical approach to the collection of par- 

ticles by bubbles, the micro-kinetics of a flotation system 

may be expressed. This must be done in view of the 
prevailing hydrodynamics of the system [26], which can 
be either laminar or turbulent. 

Based on Abrahamson's model [27] for parti- 
cle-particle collisions in a turbulent fluid, Bischofberger 

and Schubert [28] derived the following expression for 

the number of collisions per unit volume per unit time 
ZpB, in a turbulent flotation system. 
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2 2 0.5 ZpB = r,,npnBdea(VpB + g~B) (23) 

Here, np and nB are respectively the number concen- 

tration of particles and bubbles. The term dpB is defined 

as, 

dpB =rp + rB 

The terms Vp and vB are given by, 

( E4/9 • d7/9~ [ Ap~ 2/3 

vi=0"4~ ~ ]kP--LLJ 

Above, Ap= IPi-PLI, and VL is the kinematic viscosity 

of the liquid phase. 

The term r ,  represents the adhesional probability 

part of the collision expression. The mechanistic basis 

of r~ is related to the surface properties of the solid 

particles and is discussed in Part II of this series [12]. 

There are a number of limitations which apply to the 

use of Eq. (23). 

This equation was derived from the Smoluchowski 

equation which predicted the collision rate of two 

particles under shear flow conditions. The equation is 

used here only insofar as it provides a basic trend for 

the collision rate occurring at the each node in the 

cell. It does not explicitly account for the various physico- 

chemical processes associated with the collisions such 

as film-thinning and surface deformation and bounce. 

The turbulence mixing length l, of the system is defined 

as, l = 0.025D~. With a 20 cm slurry inlet we have l = 

0.005 m, and the bubble diameter is 0.002 m, thereby 

satisfying the requirement that l>dB for Eq. (23) to 

be valid. The Bischofberger and Schubert model was 

selected for this simulation since it can be conveniently 

applied to a population of particles and bubbles, making 

direct use of the simulation variables which have been 

calculated throughout the domain. The flotation col- 

lision model is applied to the simulation in a fashion 

analogous to how a drop collision and coalescence 

model was used for studying liquid sprays [29,30]. In 

the numerical simulation, the dispersed phases were 

modeled with their average diameters, so the collision 

rates from Eq. (23) were used directly. Naturally, it is 

a simplification to use mean diameters rather than to 

perform the simulation accounting for the bubble and 
agglomerate size distributions, but for the purposes of 
demonstrating the influence of the agglomerate surface 

properties under prevailing hydrodynamics on observed 

flotation trends, the present treatment is sufficient. Eq. 

(23) was found to give plausible results and equally 
importantly, provided a means to decouple the colli- 

sional and attachment probabilities involved in flotation. 

An improved or more sophisticated collision model 
could be very easily substituted into this simulation, 

and the resulting functional relationships could be 

resolved in the same manner as done in this work. 

2.4. 7. Interphase mass transfer 

The conservation of the mass of a phase is governed 

by the transport Eq. (24). For this work, it is written 

in terms of the solid phase, as this is used as the 

reference phase where material is lost through mass 

transfer to the gas phase. Below fos is the density 

fraction of the species in the particulate phase which 

is participating in the mass transfer [31]. By definition, 

fps = 1 at the start of any iteration, as the entire par- 

ticulate phase is considered to be coal--oil agglomerates 

which are involved in the mass transfer. 

- -  + (f~suj +Jsj).j =Rs (24) 
at 

Above, Jsj is the diffusion flux vector for the solid 

phase, and Rs is the rate of consumption of the solid 

phase, in units of kg/s. The term Jsj refers to molecular 

diffusion, and can be neglected for this system which 

models large dispersed bodies. Since a steady-state 

system is being simulated, the time derivative term may 

also be dropped. Thus Eq. (24) simplifies to, 

Rs =fpsuj.~ (25) 

The rate term Rs is calculated using the rate of 

collision term zpB from Eq. (23), which gives a value 
in units of [collisions s -1 m-3]. Thus, 

Rs = r~( NemMAx -- Nem)ZKB VCELL mS (26) 

There are a number of additional factors in the above 

expression for Rs. The term, 

(Np~MA×-Np~) 

expresses the fraction of the bubble surface which is 

still available to contact a particle. VCELL is the volume 
of the local cell where this collision rate is applied, 

and ms is the mass of one solid particle. 

Solution of Eq. (25) will produce an array of updated 

solid phase density fractions f~s, with values between 

0 and 1, which represents the fraction of the solid 

phase remaining after some of it has transferred into 

the gas phase under the prevailing transport conditions. 

We set, 

R, =fk~ 

where Ri is the mass generation or consumption term 
for the ith phase, used in the equations in section 2.4.5 

which determine the local volume fractions of the 
dispersed phases accounting for the transport conditions 

with simultaneous mass transfer. 

Effective mass transfer 

The problem being modeled in this work involves 
transfer of mass from the solid phase to the gas phase. 

This requires that the effective bubble diameter must 
increase as mass is transferred. An average bubble size 
can be computed for each cell in the flow field. To 
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do this, we employ the method of Spalding [25] known 

as the shadow solution. 

The shadow volume fraction &c, is the volume fraction 

the gas phase would have possessed, at each node, if 
the interphase mass transfer had not taken place. That 

is, Eq. (19) is employed without the Ri term. However, 

since these equations represent a continuum where the 
outgoing fluxes must balance those coming in, Eq. (22) 

is modified to the form below for determining the 

shadow volume fraction. 

,o P, (  ooo) 

(27) 

The difference between ao  and &c can be attributed 

to diameter growth via mass transfer. Thus, 

d B  [ \ 113 

Above, ds0 is the diameter of the bubble in the particular 
cell at the start of the iteration. Further, it can be 

deduced that, 

Vo - Voo 
MVp m (29) 

Vs 

since the gain in gas phase volume is at the expense 
of the solid phase. The term V~ refers to the volume 

of one body (bubble or particle) from either the gas 
or solid phase. 

Finally, as will be discussed in the next section, the 

extent of solid adhesion to bubbles was constrained. 
Thus, it was assumed that the gas-phase solid loading 
and corresponding density increase were small enough 

to allow the simplified gas phase transport equation 
(Eq. 9) to still apply. 

2.4.8. Drag on a loaded bubble 
Bubble loading 

This simulation has incorporated a modified drag on 

a bubble which has particles adhering to it. Two con- 
straints were implemented to control the level of par- 
ticles adhering to a single bubble. The maximum bubble 
loading is calculated by assuming that circular projec- 
tions of the areas of the particles may occupy the 
surface of the bubble. The particles are modeled to 
pack in a two-dimensional hexagonal lattice, thereby 
covering a maximum of 90.7% of the bubble's geo- 
metrical area. The maximum number of particles per 
bubble, NpmM,,×, is thus, 

NemM,,X = 0-907(r4~2B) (30) 

A second constraint arises from considering the rel- 
ative fluxes of the gas and particulate phases in the 

float cell. Numerical instability could arise if the bubbles 

became too heavily loaded and gave outlet particulate 

fluxes greater than their inlet fluxes. Assuming all the 
inlet gas exits in the product stream (not via the liquid 

exit) then the maximum number of particles per bubble 

becomes, 

gs PG Vo 
N~/BM.x = - -  (31)  

gopsVs 

Above gi refers to the flux of the ith phase, and V~ 

refers to the volume of one dispersed body. In practice, 

if a mass-flux instability arose, NemM^x was replaced 
by N~,mM^x in the algorithm. 

Particle patches 

Particles are modeled to form concentric hexagons 
on the back side of moving bubbles as shown in Fig. 
1. These hexagons are denoted as levels, and the total 
number of particles at each level, n is, 

N I = I  

n 

N, = 1 + ~ ] 6 q -  1) (32) 
j - - 2  

Particle patch drag model 

The particle patch was then applied to a model 
developed by Pendse et al. [32], which was for drag 

force calculations of spherical collectors with deposited 

particles in various configurations. For cases with several 
particles attached, the hydrodynamic interaction among 
the attached particles must be considered. 

For our case, we make the assumption that loaded 

bubbles transported by fast-moving water will orient 

N : N i n t e r a c t i o n s  

............. N : N - 1  i n t e r a c t i o n s  

Fig. 1. Schemat ic  par t ic le  patch.  
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themselves with the particle patch at the rear of the 

bubble, in line with the velocity vector of the bubble. 

The drag effects are a function of the position of the 

particle relative to the bubble's line of motion, as well 

as the product of all the interaction terms from all the 

attached particles. 
Pendse et al. [32] give the following expression for 

a multi-particle interaction which augments the drag 

force. 

AFD.Mj=AFo.o'f(PM,.,, PM2.,, PM2.2, ...PMN.j) (33) 

Above, AFD.~ j represents the increment of the jth 

particle from the Mth level on the drag of a bubble 

carrying such a number of particles. This increment is 

normalized with respect to the drag of an unloaded 

bubble. The function f(PM,, a, PM2,,, PM2. 2, ".PM,~.i) rep- 
resents the interaction of all attached particles with 

each other. Thus, the overall change in drag for a 

loaded bubble of N levels, with j particles at this level, 

AFD[N:j], will be, 

N L 

~FD[N..jl=Fo.,, + ~ ~ AFo.~, (34) 
M = 2  i ~ l  

L = 16(M- 1) for M<N 
where, 

tJ for M=N 

The interaction term for only two particles was given 

in a derivation by Happel and Brenner [33]. The 

complete derivation of the expressions used to arrive 

at this loaded bubble drag modifier is given in [34]. 

As an example, for a bubble of 2.0 mm diameter 

and a particle of 60/zm diameter, the calculated drag 

coefficients are illustrated in Fig. 2. These calculations 

agree with the basic results of Pendse et al. [32] which 

they only calculated for cases with one and two attached 

particles. 

2.4.9. Viscosity effects 
The presence of up to three phases in variable 

concentration throughout the flow domain necessitates 

a means for specifying a basic laminar viscosity in each 

2 .0mm Bubble ,  6 0 / ~ m  P a r t i c l e s  

1.010 

1 .008  

i "G 
1.00e 

e 
c 

¢'~ 1.004 
CIt 
m 
a 

1.002 

1.00@ ~ ' ' 
2 4 e 8 

A t t a c h e d  P a r t i c l e s  

Fig. 2. D r a g  f o r c e  coef f ic ien t s  vs. b u b b l e  l oad ing .  

10 

cell. The viscosity of a slurry is known to increase with 

solids concentration. The presence of air tends to give 

a much reduced viscosity, along the lines of a weighted 

average of the slurry and air viscosities. Since the 

viscosity of air is about three orders of magnitude below 

that of water, its effect is neglected [35]. That is, 

/ ' / "TOTAL = (1 - aO)/XSLURRV 

A model was incorporated into the simulation to 

account for variations in the laminar viscosity arising 

from local conditions. The two effects considered were 

those of particle size and particle concentration. Data 

from Borghesani [36] was fitted with a multivariate 

linear response surface. The response function was 

reduced (or normalized) viscosity, which is the viscosity 

of the slurry, divided by the viscosity of the pure 

suspending liquid. Hence, this provides a local coef- 

ficient, k,,, for the laminar liquid viscosity which is used 

in the program. 
The analysis of the residuals showed an average error 

of about 8% over the entire range of the model, which 

extended from 0 to 40 v/o solids concentrations and 

particle diameters from 1 to 450/zm. A model of this 

nature was considered adequate to convey any trends 

associated with the rheological properties of the 3- 

phase system. 

3. Numerical  implementation 

The solution of the discretized differential equations 

is done via a hybrid of central and upwind differencing 

in the spatial dimensions, thereby permitting accurate 

computation over an extended range of Reynolds and 

Peclet numbers. Each finite volume equation is solved 

sequentially, in an iterative manner. All of the previous 

equations which have been expressed as transport equa- 

tions have assumed a similar format. In fact, any of 

the transport variables may be represented by a gen- 

eralized transport variable, ~b. q5 can be interpreted as 

either a time-average or a density-weighted average. 

In any case, the form of the equations are all identical. 

The different averages need not be indicated, as tur- 

bulence parameters along with the mean flow variables 

account for the entire flow field description. 
In our general form, we have, 

a(p4,) + (pu, 4,-  F,4,. ,). ,= S,  (35) 
8t 

where F6 and $6 are coefficients respectively known 

as the effective exchange coefficient and volumetric 

source rate of the variable .~b. 
The computer code developed to implement this 

finite volume formulation is quite modular in structure, 
allowing simple specifications to dictate steady or un- 
steady, laminar or turbulent, compressible or incom- 
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pressible, reacting or stable states as well as heat and 

mass transfer conditions. Grids defining the flow domain 

may be prescribed in either Cartesian or cylindrical 

coordinates. 

The formulations given above, as well as the numerical 

devices detailed below, were incorporated into a com- 

puter code known as MO-PrIASE (multiple, dispersed 

phases), which was based on previous "I~MA and "rOR- 

COM codes [16]. 

3.1. The grid system 

The flow domain is divided into control volumes, or 

for this two-dimensional case, control regions, defined 

by the coordinate-based grid lines. Fig. 3 illustrates 

this finite volume grid system. Based on the method 

of Gosman and Ideriah [37], a staggered grid is used 

to enhance numerical stability. Scalar qualities are 

determined at the grid points, and the nodes for the 

velocities (or vector quantities in general) are displaced 

in their respective directions to the mid-point of the 

scalar nodes along the grid lines. Scalar control regions 

are centered about the point P as indicated in Fig. 3, 

while the momentum control regions are centered about 

the points U and V for the respective velocity direction. 

This particular grid arrangement is well suited for 

imposing accurate boundary conditions since the mid- 

point locations for vector variables coincide with those 

of the normal velocity components, and thus prescribed 

boundary values and/or fluxes need not be modified. 

3.2. Discretization procedure 

The differential equations which govern the physics 

of the flow are integrated over the volume of the flow 

domain. The entire domain is partitioned into cells 
delimited by the grid, and the unknown quantities are 

taken to be constant within each cell, with this mean 

value assigned to the node point. 

P,V grid l ine U grid l ine 
~ / / U  cel l  boundary 

- i ! i 

-----ill .... i 
i i : 

c e .  b o u n . . r y  
P , V  c e l l  boundary 

c o n t r o l  v o l u m e  for  n o d e  m 

P,U cel l  boundary 
grid l ine 

P,U cel l  boundary 
V cel l  boundary 

rid l ine 
V cel l  boundary 

Fig. 3. T h e  f in i t e -vo lume con t ro l  reg ion  for a two-d imens iona l  Car te -  

s ian  system. 

The general transport equation (Eq. (35)), can be 

written for the generalized variable, ~b, over one cell 

volume, Vc, with a time step of &. We can thus write, 

d-- f (P4') dV+ f (Ou'4'-r*4"3ni dA= f S* (36) 
Vc A c Vc 

Above, nl is the unit outward normal from the control 

surface, Ac. The upwind differencing technique is then 

applied to this integral form of the transport equation 

to produce a system of linear equations for the field 

variables at each node in the domain. The details of 

such procedures are given explicitly in [16]. 

3.3. Equation solution algorithm 

Beginning with the initial values for all the field 

variables, the governing equations are solved in sequence 

until the convergence criteria are satisfied. These are 

referred to as the outer iterations. 

Each linear equation, which is formulated over the 

domain for each variable, is solved by an inner iteration, 

an efficient scheme for treating a large matrix. 

3.3.1. Numerical solution procedure 

The matrix which is assembled for each field variable 

equation is solved by a block iteration technique. This 

procedure sweeps across planes defined by coordinate 

index. A tri-diagonal matrix form is assembled locally 

as in the Gauss-Seidel method. This matrix can be 

solved implicitly. Details are given in [16]. The plane 

is solved grid line by grid line, and is repeated in 

alternating directions towards convergence. Since this 

is the inner iteration, full convergence is not required, 

as coupled variables are being simultaneously modified. 

The outer iterations ensure full final convergence, so 

usually no more than three inner sweeps are performed 
for each variable. 

3.3.2. Execution sequence 

As seen, the governing finite difference equations 

are coupled and non-linear, thereby requiring an it- 

erative method of solution. In each outer iteration, the 

equations are individually solved with inner iterations 

in a sequential fashion, adjusting each variable by its 

own equation, while holding others constant. The steps 

comprising the numerical algorithm are itemized below. 

(i) The fields of all variables were initialized either 
by guess or calculation. 

(ii) The liquid phase momentum equation was solved. 

(iii) The pressure equation was solved, and pressure 
corrections (to ensure mass balance) were applied to 
liquid velocity field. 

(iv) The turbulence parameters were determined. 

(v) Gas-phase momentum equation was solved, and 
gas volume fractions were calculated. 
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(vi) Solid-phase momentum equation was solved, and 

solid volume fractions and 'shadow' solid volume fraction 

were calculated. 

(vii) The extent of solids 'conversion' was calculated 

and used to update the gas and solid volume fractions 

and the gas phase solids loading and net diameter. 

(viii) Steps 2 through 7 were repeated until the 

convergence criteria were satisfied. 

3.3.3. Convergence criteria 

The residual sources of each finite volume equation 

for each variable were compared to a reference tolerance 

to assess the convergence of each equation. This ref- 

erence tolerance R,,  REF, is selected as the inlet flux 

of the dependent  variable ¢. This convergence criterion 

indicates how well the current values of  ¢ solve the 

equation in question, ra ther  than how much the values 

of ~b have changed over successive iterations. 

Referring to Eq. 35, which is the generalized finite 

volume equation, the local residual for the ¢ equation 

for the ith iteration is defined as, 

0(p (~ )  + (pUi  (~ - -  F~ b (~, i ) , i  - -  S~b ( 3 7 )  R , =  at 

It can be seen that when the solution is obtained, R ,  

goes to zero. Convergence is considered satisfactory if 

the sum of the normalized absolute residuals has fallen 

below a specified value A, in this case selected as 10-1. 

That  is for each ¢ equation, 

E EIR,l,.Jll < XR,, ~ (38) 
i j 

3.4. Boundary conditions and simulation inputs 

For the flotation simulation the boundary conditions 

are shown in Fig. 4. The cell is modeled after a 

commercial cell made by Minpro of Mississauga, Canada 

and handles a solids throughput of 4.32 tonnes/day and 

an air rate of 1.5 m3/min. Its dimensions are given in 

Table 3. The top face of the float cell is considered 

flat and open to the atmosphere. A zero reduced 

pressure is imposed here along with the condition that 

the gas phase may exit in the vertical direction, while 

UL and Us were set to zero. 

Turbulence conditions at inlets were modeled after 

equations given in [16]. Concretely, 

I =  0.005 l = 0.025Di 

kl.5 
k = I u  2 e = 

l 

Above, I is the turbulence intensity, and l is the tur- 

bulence mixing length, given in terms of the inlet 

diameter Di. 

t 
Ovj= 0.0 uL = 0 . 0 ,  u~ = 0.0,  Ou~= 0.0 

0y 0x 

U~ , vj = 0.0 

o n  a l l  w a l l s  

v~ = 0 .05 

v s = 0.0.5 

a s = 0.10 

t 
= u G = 0 .05  

v c% = 0 .50 

Fig.  4. B o u n d a r y  c o n d i t i o n s  f o r  the  M D - P H A S E  f lo t a t ion  s imu la t i on .  

T a b l e  3 

F l o a t  cell  d i m e n s i o n s  

P a r a m e t e r  Size 

W i d t h  1.42 m 

H e i g h t  1.6 m 

S p a r g e r  w i d t h  52.7  c m  

S lu r ry  in le t  d i a m e t e r  20 c m  

W e i r  d r o p  5 - 1 5  c m  

T a b l e  4 

Phys ica l  p r o p e r t i e s  o f  the  t h r e e  p h a s e s  

P h a s e  D e n s i t y  Viscos i ty  D i a m e t e r  

L iqu id  997.1 8.94 × 10 -4  N/A a 

G a s  1.2 1.42× 10 -6 2.5 m m  

Solid 1200.0 N / A  ~ 2 0 - 6 0  /~m 

N/A not  app l i cab l e .  

There are some additional boundary treatments which 

are included in the formulation to produce more stable 

numerical behaviour. These are discussed by Lai and 

Salcudean [19]. 
The three phases in this simulation were input the 

physical properties listed in Table 4. The units are 

based in the mks system. 
The grid used for the simulation is shown in Fig. 5. 

The regions of high swirl or where streams mix have 

more grid lines to enhance the resolution. Grid sensitivity 

was not investigated in this work. The inherent error 

and limitations of this simulation (ie, simulation in 2D 

rather than 3D, with simplified geometry) render the 

results useful in the sense of how they illuminate the 

simultaneous interplay of the various flotation mech- 

anisms. The present simulation would need to be run 

in three dimensions for actual engineering design work. 
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II 
II 

Fig. 5. Finite volume grid used for flotation cell. 

I:::::::::::1 

~ - ~ ' ~ - - ~  "~ :~ I I  

• r p  t ~ t / ¢ t / t !  I / I [  

t i t  ~ t y ~ / l , ' / !  ! tlJ 

e ~  

Fig. 6. Three-phase flotation velocity and pressure fields. (dp= 43.6 
p,m and r~,=0.20.) 

4. Results 

A data set for the study of the flotation parameters 

was constructed by running the three-phase simulation 

for a combination of particle diameters and values for 

the attachment efficiency, r,, which was introduced in 

Eq. (26). This data set was then used to deduce a 

relation between the properties of the floated material 

and its recovery. The surface chemical aspect of this 

project is detailed in Part II of this paper. 

Run-time control was achieved by running all three 

phases at once, but with the frequency of iteration for 

the dispersed phases reduced until a stable basic flow 

field pattern based on liquid transport was established. 

The frequency of iteration for the dispersed phases 

was gradually increased until a ratio of 1:1 was stable, 

and convergence could be achieved. 

Figs. 6-8 show a full three-phase flotation flow field 

simulation result. This case had dp=43.6 /~m corre- 

sponding to an coal-oil agglomerate made with 2 wt.% 

oil and the attachment efficiency, ra = 0.20. The pressure 

field shown in Fig. 6 shows the dynamic pressure. 

For the example illustrated in these figures, the flux 

of solids accompanying the gas phase from the top exit 

was 0.447 kg/s, giving a flotation recovery for this case 

of 37.2%. 

For the other cases run, the graphical output is very 

similar. The same basic trends are followed. What can 

be noticed is slight streamline differences for heavier 

particles. Two cases are shown in Figs. 9 and 10. Another 

feature evident in Figs. 9 and 10 is that for the 60/.~m 

case, the streamlines travel at the top of the cell in 

the y-direction as they exit over the weir. Their greater 

settling tendency does not enable the flux in this case 

to transport them up over the weir as with the 20/~m 

particles. A stronger circulation is established in the 

top half of the cell to create a current of sufficient 

flux to carry the unfloated solids out over the weir. 

Additionally, Figs. 11 and 12 show streamlines cal- 

culated for bubble diameters of 2.5 and 1.0 mm re- 

spectively. The particle diameter in this case is 60/~m. 

The greater buoyancy force on the larger bubbles renders 

them less subject to the trajectory deviations brought 

about by the slurry motion. 

g a s  f r a c t i o n  

KeY TO CONTOUR VALUe8 
0 . 6 0 0  
0 . 4 0 0  
0 . 8 0 0  
O.JO0 
0 , 1 0 0 0  
0.0000 

p a r t i c l e  f r a c t i o n  

ElY ?0 CONTOUR VALUBI 
0 , 8 0 0  
0 , 1 | 0  
o , o s o o  
o , o 8 0 o  
O.OlO00 
0 . 0 0 0 0 0  
o , o e t o o  

b u b b l e  l o a d  

ICgY TO CONTOUR VALUES, 
0 , 0 0 0  
4 , 0 0 0  
0 , 0 0 0  
0 . 0 0 0  
1,ooo 
o . s e o  

Q 
I 
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Fig. 7. Three-phase flotation concentration and mass transfer contours. (dp=43.6 ~m and ra=0.20.) 
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Fig. 8. Three-phase  flotation turbulence contours.  (dp= 43.6 ~ m  and 

ro = 0.20.) 

Fig. 11. Bubble streamline, dB=2.5  mm.  

Fig. 9. Particle streamline, dp=20 ixm. 

Fig. 10. Particle streamline, dp=60 lzm. 

4.1. Integrated flotation model 

The CFD work carried out as part of  this project 

enabled an integrated study of mineral recovery by 

flotation to be achieved. That  is, the output from the 

unit operation was determined as a sum of all local 

mass transfer occurring throughout the domain. In this 

way, the effects which were of a specifically hydro- 

dynamic nature, such as dispersed phase diameters and 

densities, the prevailing flow patterns and local tur- 

bulence accounted for the collisions leading to possible 

Fig. 12. Bubble streamline, dB= 1.0 mm. 

subsequent mineral collection. Thus, this provided a 

means to decouple surface chemical effects which were 

responsible for the adhesion of the particles to the 

bubbles once a collision had taken place. This is fully 

discussed in Part II of this paper. 

5. Conclusions 

A two-dimensional finite volume code for three-phase 

flow was formulated and implemented to simulate the 

process of mineral flotation. This model incorporated 

a turbulent bubble-particle collision model giving rise 

to interphase mass transfer which defined the flotation 

process recovery. These effects were successfully coupled 

with the mass balance equations for each phase. Also 

included were three-phase rheological effects and a 

modified drag coefficient for the gas phase when small 

solid particles adhere to bubble surfaces. 

The novel use of a CFD flotation model provided 

an integrated simulation, allowing recovery predictions 

on fundamental material properties, and using a micro- 

flotation collision model in a macroscopic hydrodynamic 



K. Darcovich / Powder Technology 83 (1995) 211-224 223 

context where all local variables are prescribed. This 

ensured soundness of results and an adaptability to 

various behaviour regimes. The present simulation has 

been shown to be suitable for making a parametric 

study of flotation. Part II of this series makes use of 

resolved hydrodynamics to illuminate attachment phe- 

nomena for coal-oil agglomerate flotation. 

The flow model itself is in a generalized form, so 

the basic framework is in place to convert to three 

dimensions. In three dimensions, the full effects of cell 

geometries come into resolution, and as such, the cell 

configuration and the turbulence parameters would be 

highly useful for actual engineering design work. 

S~ 

t 

ui 

l) B 

l)p 

Vc 
V ~  
Vo 
V ~  

Vs 
ZpB 

Subscripts 

volumetric source rate 

time 

velocity 

bubble turbulent collision velocity 

particle turbulent collision velocity 

finite difference cell volume 

volume of local cell 

volume of one bubble 

volume of one bubble at start of iteration 

volume of one particle 

collisions per unit volume per unit time 

6. List of symbols 

A 

B 

Co 
C, 

C1, C2, C3 

dB 

dBo 

dp 

deB 

Di 

E 

3ri 
Gi 
I 
Jj~ 

k 

k ,  

1 

m s  

ni 

nB 

np 

Npm 

P 

P 

rB 

rp 

ra 

R t  

Ri  

R,b 

R,[,, Jl 
R~b, REF 

Re 

Res 

area of cell face for flux 

coefficient for liquid-solid drag 

drag coefficient 

k - E  model constant 

k--E model constants 

bubble diameter 

bubble diameter at start of iteration 

particle diameter 

rp+ra 

inlet diameter 

turbulence model wall velocity constant 

dispersed phase-liquid interphase drag term 

curvature related source terms 

flux of ith phase 

turbulence intensity 

diffusion flux vector for Jth phase 

turbulence kinetic energy 

laminar slurry viscosity coefficient 

turbulence length scale 

mass of one solid particle 

unit outward normal 

number concentration of bubbles 

number concentration of particles 

bubble loading, particles per bubble 

maximum bubble loading under mass-flux 

constraint 

pressure 

finite-volume node point 

bubble radius 
particle radius 

attachment efficiency 

rate of flotation 
mass generation or consumption of ith 

phase 
residual for ~b equation 

local nodal residual for 4) 

reference residual for 4' equation 
Reynolds number 

particle Reynolds number 

G , L , S  

i , j , k  
[p] 
t 

gas, liquid or solid phase 

tensor spatial indices 

finite volume node point 

turbulent quantity 

Superscripts 

I 

m 
mean turbulent fluctuation 

density-weighted ensemble-averaged 

shadow volume fraction quantity 

Greek letters 

Oli 

AFD, 

~kFD, 0 

E 

r~ 
/( 

A 
/z 

/d, eff 

VL 

P 
Ap 

(rk 

"r~j 

ith phase volume fraction 

increment on drag due to jth particle in 

Mth level 

overall change in drag for a loaded bubble 

of N levels, with j particles 

bubble drag increase due to one adhering 

particle 

turbulence energy dissipation 

effective exchange coefficient 

turbulence kinetic energy 

convergence coefficient 

laminar viscosity 

effective viscosity, composed of sum of lam- 

inar and turbulent contributions 

kinematic viscosity of the liquid phase 

normalized liquid and solid phase volume 

fractions 

density 

Ip,-pLI 
k - e  model constant 

k - e  model constant 

shear stress tensor 
generalized transport variable 
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