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ABSTRACT. The attenuation of an acoustic wavefront in metals comes from scattering caused by 

grain anisotropy and random grain orientation and from absorption caused by mechanisms such as 

dislocation and magnetic domain motion. In this paper laser ultrasonics, with its non-contact and 

broadband characteristics, is used for measuring and separating these two attenuation contributions as 

a function of frequency. Results obtained from the well-known pulse-echo method and reverberation 

technique are presented first. Then, a more recent approach using a time-frequency analysis with zero-

group velocity (ZGV) resonances is considered. It is shown that the attenuation with scattering and 

absorption components is obtained by fitting the temporal decay of the resonances of the coherent 

field, and that only the absorption component is obtained from the temporal decay of the diffuse field 

between resonances. 
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INTRODUCTION 

 

The attenuation of a coherent wavefront in polycrystalline metals is due to 

diffraction, absorption, and scattering. Diffraction can be controlled by choosing well-

suited source and detection dimensions, or minimized if the plane-wave assumption or 

near-field is achievable. Absorption phenomena are diverse and include dislocation 

motion, magnetic domain motion. Scattering depends upon frequency, wave polarization, 

and the size, anisotropy and orientation distribution of grains. With the diffraction effect 

removed, the attenuation contributions are described approximately by frequency power 

laws as: 

( ) ( ) ( )att abs sca

p q
abs scaC C

α ω = α ω + α ω

= ω + ω
, (1) 

where ω = 2πf , f is frequency, the exponent p is between 0.1 and 2 [1] and the exponent q 

is typically between 2.5 and 4 [2]. Also, it is found that the ratio between coefficients Cabs 

and Csca is temperature dependent [3]. Because of these components, the displacement 

field in a metal can be seen as the combination of a coherent field and a scattered field: 

( ) ( ) ( ) ( ) ( )abs sca abst t
coh scau x,t u x,t e u x,t e

− α +α − α= +  (2) 

 

 



The coherent field is attenuated by absorption and scattering. The scattered field arises 

from the scattered coherent field and is only attenuated by absorption. After enough 

scattering events, the scattered field becomes diffuse, and thus only affected by absorption. 

 The separate measurements of the scattering and absorption components are very 

useful for materials characterization. Several techniques have this purpose and some of 

them are reviewed in this paper. It is noticed first that the scattered field displacement is 

measured only if the size of the detection area is smaller than the spatial coherence length 

in the ultrasonic frequency range considered. Accordingly, the coherent field is often 

measured with large area detection to average out the diffuse field, while the diffuse field is 

usually measured with small probes. Another way to separate the two contributions is by 

choosing an appropriate time window in the signal: the coherent field is more important at 

the early stage and the scattered field is predominant at longer time. The pulse-echo 

technique [4, 5] is used at early times and is described first. Then, the reverberation 

technique [6-7] used at longer times will be discussed. The purpose of this paper is to 

clarify what happens at intermediate times, when coherent and scattered fields are detected 

simultaneously, in particular with diffusion of the scattered field in an unbounded plate 

[8, 9] or with the presence of zero group velocity (ZGV) resonance modes [10]. The laser-

ultrasonic technique with its non-contact and broadband characteristics is used for 

measuring the two contributions as a function of the frequency. All the experiments are 

performed in carbon-manganese 1008 steel. This allows comparing the results from the 

different techniques.  

 

CLASSICAL APPROACHES  

 

Pulse-Echo Technique 

 

The pulse-echo technique [4, 5] is based on the analysis of propagation of a broadband 

pulse generated on a plate with parallel faces. After being reflected by the back surface, the 

reflected pulse shows the effect of attenuation over a distance 2e, where e is the sample 

thickness. The echoes resulting from the back and forth propagation of the pulse are 

windowed in time and their spectra should show a good signal-to-noise ratio (SNR). The 

ratio of the spectra of two consecutives echoes leads to the attenuation according to the 

relation: 

( ) ( )1020log

2
att

A / B D

e

−
α ω = , (3) 

where A and B are the amplitude spectra of the first and second echoes, respectively. D is a 

correction factor for diffraction and is negligible when propagation is in the near-field. 

Using a large detection spot also allows removing the scattered field and, consequently, 

improves the SNR. Another way to overcome the diffraction correction is by using a single 

echo from the test sample and a reference echo from a sample of comparable thickness with 

negligible or known attenuation in the same measurement conditions [1]. 

In the experiment, the acoustic generation was realized by a Q-switched Nd:YAG laser 

operating at a wavelength of 1064 nm, with a pulse duration of 8 ns, and a pulse energy of 

about 1.5 J in the ablation regime. The spot diameter was about 1 cm. The measurement 

was made in transmission using a 100 mJ long-pulse (~1 ms) Nd:YAG laser operating at a 

wavelength of 1064 nm. The laser spot diameter was about 4 mm. The reflected light was 

then collected and demodulated with a 0.5 m confocal Fabry-Perot interferometer operating 

in the reflection configuration. Finally, the signal was normalized by the temporal profile of 

the detection laser pulse. 

 

 

 



Reverberation Technique 

 

Several methods have been proposed for only measuring the absorption in scattering 

media among which there is the reverberation technique [6]. In this technique a broadband 

acoustic pulse is generated on a small and physically isolated sample. Rapidly, the acoustic 

field fills the sample volume and loses its coherence because of grain scattering and 

geometrical irregularities. Soon after, the scattered field tends to be diffuse, the scattering 

has no more incidence over the local mean energy density and the temporal decay at a 

given frequency is only function of the absorption. The use of laser ultrasonics was 

introduced later to allow a non-contact and more broadband measurement [7]. 

In the present experiment, a small coupon was cut from a 2 mm thick 1008 steel plate 

in the shape of an irregular polygon (more than 8 edges) with an approximate surface of 

4 cm
2
. In order to have a good SNR over a large frequency bandwidth, two experimental 

setups were used. The first one is well suited for frequencies below 15 MHz. It is the same 

setup as in the pulse-echo technique, but the generation pulse energy is 1 J over a round 

spot of 4 mm diameter, and the detection spot diameter is 20 µm with an energy adjusted to 

be just below the ablation threshold. The second setup is better suited for frequencies 

between 15 and 40 MHz. The acoustic generation was realized by a Nd:YAG operating at a 

wavelength of 355 nm, with a pulse duration of 35 ps, a pulse energy of 7 mJ, and focused 

onto a round spot of 2 mm diameter. The generation is in the thermoelastic regime and 

temporal averaging of 400 signals was required. The detection was the same as for the 

other setup. Also an electronic high-pass filter (> 10 MHz) was added to eliminate the 

large-amplitude low-frequency components and increase the dynamic resolution at high 

frequencies when digitizing the signal. For both setup, several signals were recorded at 

different locations and their time-frequency representations (TFR) are averaged using 

short-time Fourier transforms. This allows averaging the scattering contributions or the 

geometrical irregularities. Figure 1 shows the signal obtained, the TFR, and the amplitude 

decay as function of time at one specific frequency (5 MHz) and fitted by the equation: 

( ) 1 2
abst

TFRu ,t c e
−αω = + c , (4) 

where c1, c2, and αabs are the fitted parameters. 

 

 

FIGURE 1. a) Signal obtained from the reverberation experiment, b) corresponding TFR (black is high 

amplitude, white is low amplitude), and c) amplitude decay at a given frequency from b) (black noisy curve) 

and fitted with Eq. 4 (dashed curve). 

 

 

 

 



FIGURE 2. Longitudinal attenuation and absorption measured as function of frequency using the different 

techniques for a 1008 steel sample. 
 

Measurement Results and Discussion 

 

The results of the two techniques are reported in Fig. 2. The pulse-echo technique 

allows measuring the total attenuation comprising the scattering and absorption 

components while the reverberation technique provides only the absorption component. 

Since longitudinal echoes were used in the pulse-echo technique, the absorption of the 

longitudinal mode should be considered for comparison with the reverberation technique. 

Indeed, it can be shown [11, 12] that the resonances observed in the diffuse field, such as in 

Fig. 1b at frequencies higher than 8 MHz (see magnification), can be associated to the 

longitudinal mode. The resonances emerge from the background only above 8 MHz 

because the mean free path becomes smaller than the lateral dimension of the coupon. In 

Fig. 2, the points of the absorption curve for frequencies higher than 8 MHz were obtained 

by fitting the amplitude decay on each resonance frequency, the 2 mm coupon thickness 

providing a sufficient number of longitudinal resonances. For frequencies lower than 

8 MHz, no clear resonance peak is identified so that amplitude decay results are not 

representative of purely longitudinal absorption. Also at low frequencies, the diffuse 

regime takes more time to be reached, and the amplitude decay might have been estimated 

before actually reaching the diffusion regime. Considering the logarithmic scale for the 

attenuation, it can be deduced that the absorption component dominates at frequencies 

below 20 MHz. The scattering component is predominant at higher frequencies. 

 

DIFFUSION TECHNIQUES 

 

Diffusion of the Scattered Field in a Plate 

 

The diffusion technique was proposed first by Guo et al. [8] and a laser-ultrasonic 

version has also been reported [9]. This technique is quite similar to the reverberation 

technique, but uses an unbounded plate. Consequently, the scattered field can escape in the 

lateral dimensions and it is not possible to link directly the temporal decay of the signal 

with absorption. However, it has been shown that the absorption coefficient can be deduced 

from a deeper analysis of the signal measured. Soon after the generation of a localized 

acoustic pulse, a scattered field results from the coherent field, becomes diffuse and is 

detected at a distance, r, from the generation area. The energy, E, associated to the diffuse 

field is described by a diffusion equation: 
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where Ddif is the diffusion coefficient, and has the solution: 
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where t0 is the initial time of the diffusion regime and m is the spatial dimensions of the 

energy diffusion, which is not necessarily the dimension of the problem. In a 3D plate for 

example, with a thickness shorter than the mean free path, the diffuse field fills rapidly the 

thickness and diffusion occurs only along the plate (with a point source, m=2; with a line 

source, m=1). The solution (6) assumes that the diffuse field is a point at t=t0. In the case of 

laser generation, the radial profile of the spot can be considered Gaussian. It is then 

assumed that the initial spatial distribution of the diffuse field, which results from 

scattering of the coherent acoustic pulse, will also be Gaussian, but with a larger radius 

characterized by . When convolved by this spatial distribution, the solution to equation difσ

(5) is: 
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0 02
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r
t
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e
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− − α
− + σ

−
ω ∝

− + σ −
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The coefficients  and t0 are difficult to determine but become insignificant at large 

times. By fitting the experimental results for several distances, r, with this expression, the 

absorption and the diffusion coefficient are obtained. The diffusion coefficient has been 

found to correlate with grain size [

difσ

9]. 

 

Diffusion-like Behavior of the Coherent Field at the Resonances  

 

The diffusion technique is valid only if the scattered field is more important than the 

coherent field, and assumes that the coherent field is far from the measurement point or is 

totally scattered. In a plate, however, it has been reported recently that some acoustic 

modes of the coherent field do not propagate in the sense that their group velocity is zero 

[10]. These zero group velocity (ZGV) modes correspond to the points where 0rk∂ω ∂ =  on 

the (kr,ω) dispersion curves (where kr is the horizontal component of the wave vector k). 

The vicinity of those ZGV points has a very low group velocity and the energy contained in 

a narrow frequency interval around the ZGV mode may be considered diffusive. It is thus 

useful to describe the time decay of such modes.  

Prada et al [10] have described the temporal decay of ZGV modes for 
 
by: 0r ≠k

 ( ) ( )0
ZGV ZGV t

r e tu ,t , J k r −αω ∝r . (8) 

Here, the temporal decay of the ZGV modes with 0rk = , corresponding to through-

thickness longitudinal mode resonances, is considered. The derivation is made supposing 

an isotropic medium and a line source (i.e. a problem with 2 dimensions) and then 

generalized to a point source (i.e. a problem with 3 dimensions). In what follows, r stands 

for the distance along the plate surface (Cartesian or radial coordinate according to the 

dimensions) and z for the distance along the thickness.  The coherent field is written as a 

plane-wave decomposition: 

( ) ( ) ( )d dr zi t k r k z
rcohu r,z,t A e k

ω − −= ω∫∫ k , (9) 

where we isolate: 

 

 



( ) ( ) ( )r zri t k k z
r zu k ,k ,t ,r,z A e

ω − −= k% . (10) 

The resonance frequency of the n
th

 harmonics is expressed as a function of the complex 

phase velocity  which takes into account the attenuation: *
Lc

( )0
*

RL
n r n att

n c
k i

e

πω = = = ω + α , (11) 

where R
nω

 
is the real part of . Then, the angular frequency around the resonance point is 

expressed in a Taylor series expansion: 
nω

( ) ( ) 20n r n rdispk Dω =ω + k . (12) 

An analytical expression of Ddisp is obtained for isotropic material by introducing Eq. (12) 

in the Rayleigh-Lamb equation and by using the limit when kx tends toward 0: 

( )
2 3

2

0 :if n odd 8

2:if n even2 tan 2

* *
L T

disp *
n n n T

c c
D , a

/e e / c a

⎛ ⎞⎧
⎜ ⎨⎜ ⎩⎝ ⎠

= + =
πω ω ω +

⎟⎟
. (13) 

By taking into account Eqs. (11), (12) in the time derivative and the Laplacian (along the 

horizontal direction only) of , it is found that the displacement around the resonance 

frequency satisfies a diffusion-like equation with complex numbers: 

u%

( )R
n att disp u

u
i u iD

t
Δ

∂ = ω −α −
∂

%
%

% , (14) 

The solution to this equation, convolved by the spatial laser distribution (source and 

detection) σ, and generalized to dimension m (the horizontal dimensions according to the 

Laplacian) is equal to: 

( ) ( )
2

12

2
exp 2

2 4

m
att disp

disp

r
t iD t t

iD t
u

−⎛ ⎞
⎜ ⎟− − α σ −
⎜ ⎟σ −⎝ ⎠

∝% . (15) 

This solution is independent of kr, so the integration over kr around a resonance 

frequency in Eq. (9) is straightforward. In order to validate this result, a theoretical 

simulation was performed of the displacement generated by a normal and suddenly applied 

force (representative of the ablation regime) on a homogeneous isotropic plate including 

viscoelasticity, but without scattering.  

Figure 3 shows the simulated signal and the corresponding TFR. The longitudinal 

resonances ( ) appear as equi-spaced horizontal lines in Fig. 3b. The resonances 

associated to the ZGV modes with 

0rk =
0rk ≠  correspond to the others horizontal lines. A 

transient displacement associated to the propagating waves (all kr) can also be observed 

before 5 µs at all frequencies. The influences of the distance r, the source-detection size σ, 

and the diffusion dimension m (m=2 for a point source and m=1 for a line source) were 

tested by fitting the simulated signal filtered around each harmonic with Eq. (15). The 

influence of Ddisp, which is function of ωn, was also tested for all harmonics. Figure 3c 

shows an example of the good agreement between the filtered signal and the fitted curve 

after the transient waves have disappeared (after 5 µs). 

The numerical simulation was performed using a Kelvin-Voigt absorption model with 

the complex stiffness tensor C
* 
= C(1+iηω), where the absorption, η, is a scalar. Therefore, 

this model assumes identical longitudinal and shear absorption values. It is shown as the 

red curve in Fig. 3d. The absorption values fitted on the resonance frequencies of the 

longitudinal mode using Eq. (15) (points) and of the ZGV modes with 
 
using Eq. (8) 

(squares) are found in good agreement with the absorption model.  

0rk ≠

 

 



 

FIGURE 3. a) Simulated signal, b) corresponding TFR, c) amplitude filtered around the resonance indicated 

in "b)" (black curve) and fitted with Eq. 15 (gray dashed curve), and d) theoretical absorption included in the 

simulations (line), absorption values fitted on the longitudinal resonance frequencies (circles) and on ZGV 

resonance modes (squares). 

 

Measurement Results and Discussion 

 

Figure 4 presents the TFR of measured signals using an experimental setup quite 

similar to the one described with the pulse-echo technique. In the first measurement shown 

in Fig. 4a, a large detection spot of 2 mm was used to integrate and remove the scattered 

field. In the second measurement in Fig. 4b, a small detection spot of 20 µm was used to 

sense the scattered field.  

The total attenuation was estimated by fitting the time decay at various resonant 

frequencies of the Fig. 4a with Eqs. (8) and (15). In Fig. 4b, the displacement appearing 

between the resonances is only due to the scattered field, and it temporal decay is used for 

determining absorption when fitting it with Eq. (7). On the resonances, the displacement is 

due to the superposition of the coherent and scattered fields. The temporal decays of that 

resonances are nevertheless similar to those of Fig. 4a, showing that the energy of the 

coherent field is much greater than that of the diffuse field. Attenuation results of both 

experiments are presented in Fig. 2 and are consistent with the results obtained from the 

pulse-echo and reverberation techniques. The absorption was not obtained at low 

frequencies because the mean free path was larger than the plate size and reflections of the 

coherent field on the edges disturb the diffuse field. 

As a remark, the measurement precision increases by fitting only at late times where 

the influence of the source size decreases. Therefore asymptotically, the displacement of 

the diffuse field decays as 4abst m /e t
−α , the displacement of the ZGV mode with 0rk ≠  

(resp. ) decays as 0rk = ( ) 1 2abs sca t /e t
− α +α

 (resp. 
( ) 2abs sca t m /e
− α +α

t ). One notices that, in a 

plate, the dimension for the diffusion of the ZGV modes with 0rk ≠  always corresponds to 

m=1, whatever the source (line source or point source). The reason that m = 1, even with a 

point source, is that the diffusion-like behavior of the wave vector takes place only in one 

dimension, the radial direction and not along the angular direction because of the axi-

symmetry of the problem. Also with a point source, the diffusion of ZGV modes has the 

same asymptotic time dependence as the diffusion of the scattered field, i.e. t
-1/2

.  

 

 



 

FIGURE 4. Measurement results with a) a 2 mm detection spot and b) a 20 μm detection spot in an 

unbounded plate.  

 

CONCLUSIONS 

 

The scattering and absorption components of ultrasonic attenuation in 1008 steel were 

characterized as a function of frequency using laser-ultrasonics. The pulse-echo, 

reverberation, and diffusion techniques were reviewed, employed and compared. A new 

technique using the diffusion-like behavior (caused by velocity dispersion) of ZGV modes 

in a plate was presented and used to measure the total attenuation.  It also provided new 

insights into the interpretation of the diffusion technique at the longitudinal resonances. 

Also, different expressions for the temporal decay of the measured displacement with this 

technique are derived.  

 

ACKNOWLEDGEMENTS 

 

The authors would like to thank Martin Lord for his assistance in instrumentation for 

all aspects of this project.  

 

REFERENCES 

  

1. Lévesque et al., NDT&E International 39, 622-626 (2006). 

2. Stanke F. E. and Kino G. S., J. Acoust. Soc. Am 75, 665-681 (1984). 

3. Bolognini S. and Moreau A., J. Appl. Phys. 94, 3771-3780 (2003). 

4. Papadakis E.P. et al., J. Acoust. Soc. Am 53, 1336-1343 (1973). 

5. Aussel J.-D., Monchalin J.-P., J. Appl. Phys. 65, 2918-2922, (1989). 

6. Weaver R.L., Nondestructive Characterization of Materials, 2, Plenum Press, New 

York, 1987, 689–695. 

7. Moreau A. et al., J. Alloy Comp. 310, 427-431 (2000). 

8. Guo C.B. et al, Acustica 59, 112-120 (1985). 

9. Lamouche et al., US Patent, 6532821 B2 (2003). 

10. Prada C. et al., Wave Motion 45, 723-728 (2008). 

11. Weaver R.L., J. Sound and Vibration 94, 319-335 (1984). 

12. Perton M. et al., J. Acoust. Soc. Am 126, 1125-1130 (2009). 

 

 


