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Institute for Information Technology, National Research Council Canada

Ottawa, Ontario, Canada, K1A 0R6

Abstract

This paper describes the National Research Council of Canada’s submission to the 2011 i2b2 NLP challenge on the

detection of emotions in suicide notes. In this task, each sentence of a suicide note is annotated with zero or more

emotions, making it a multi-label sentence classification task. We employ two distinct large-margin models capable of

handling multiple labels. The first uses one classifier per emotion, and is built to simplify label balance issues and to

allow extremely fast development. This approach is very effective, scoring an F-measure of 55.22 and placing fourth

in the competition, making it the best system that does not use web-derived statistics or re-annotated training data.

Second, we present a latent sequence model, which learns to segment the sentence into a number of emotion regions.

This model is intended to gracefully handle sentences that convey multiple thoughts and emotions. Preliminary work

with the latent sequence model shows promise, resulting in comparable performance using fewer features.

Introduction

A suicide note is an important resource when attempting to assess a patient’s risk of repeated suicide attempts.1,2

Task 2 of the 2011 i2b2 NLP Challenge examines the task of automatically partitioning a note into regions of emotion,

instruction, and information, in order to facilitate downstream processing and risk assessment.

The provided corpus of emotion-annotated suicide notes is unique in many ways.3 The text is characterized by being

emotionally-charged, personal, and raw. By definition, the writing is the product of a distressed mind, often containing

spelling mistakes, asides, ramblings, and vague allusions. The text’s unedited nature makes it difficult for basic

NLP tools: optical character recognition, tokenization and sentence breaking errors abound. The provided emotion

annotation also has some interesting properties. Annotation is given at the sentence level within complete documents,

and each sentence can be assigned multiple labels. Where one would expect most of a suicide note to be rich with

emotion, more than 73% of the training sentences are annotated with no label or with only instructions or information.

This leaves very little data for the thirteen remaining labels, which include more conventional emotions such as anger,

fear and love.

We experiment with two different large-margin learning algorithms, each using a similar, knowledge-light feature

set. The first approach trains one classifier to detect each label, a strategy that has been applied successfully to other

multi-label tasks.4,5,6 The second approach attempts to segment a sentence into multiple emotive regions using a latent

sequence model. This novel method looks to maintain the strengths of an SVM classifier, while enabling the model

to gracefully handle run-on sentences. However, because so much of the data bears no emotion at all, the issue of

class balance becomes a dominating factor. This gives the advantage to the one-classifier-per-label system, which uses

well-understood binary classifiers and produces our strongest result. It scores 55.22 in micro-averaged F-measure,

finishing in fourth place. The latent sequence model scores 54.63 in post-competition analysis, and produces useful

phrase-level emotion annotations, indicating that it warrants further exploration.

Related Work

Over the last decade, there has been considerable work in sentiment analysis, especially in determining whether a

term, sentence, or passage has a positive or negative polarity.7 Work on classifying terms, sentences and documents

according to the emotions they express, such as anger, joy, sadness, fear, surprise, and disgust is relatively more recent,

and it is now starting to attract significant attention.3,8,9,10

Emotion analysis can be applied to all kinds of text, but certain domains tend to have more overt expressions of

emotions than others. Computational methods have not been applied in any significant degree to suicide notes, largely



because of a paucity of digitized data. Work from the University of Cincinnati on distinguishing genuine suicide notes

from either elicited notes or newsgroup articles is a notable exception.1,2 Neviarouskaya et al.,9 Genereux and Evans,11

and Mihalcea and Liu12 analyzed web-logs. Alm et al.,13 Francisco and Gervás,14 and Mohammad15 worked on fairy

tales. Zhe and Boucouvalas,16 Holzman and Pottenger,17 and Ma et al.18 annotated chat messages for emotions. Liu

et al.19 and Mohammad and Yang20 worked on email data. Much of this work focuses on six emotions studied by

Ekman21 — joy, sadness, anger, fear, disgust, and surprise. Joy, sadness, anger, and fear are among the fifteen used in

i2b2’s suicide notes task.

Automatic systems for analyzing emotional content of text follow many different approaches: a number of these

systems look for specific emotion denoting words,22 some determine the tendency of terms to co-occur with seed words

whose emotions are known,23 some use hand-coded rules,9 and some use machine learning.8,13 Machine learning is

also a dominant approach for general text classification.4 Tsoumakas and Katakis6 provide a good survey of machine-

learning approaches for multi-label classification problems, including text classification.

One classifier per label

The provided training data consists of sentences annotated with zero or more labels, making it a multi-label classifi-

cation problem. One popular framework for multi-label classification builds a separate binary classifier to detect the

presence or absence of each label.4,5 The classifiers in our One-Classifier-Per-Label (1CPL) system are linear SVMs,

each trained for one of the emotions by using as positive training material those sentences that bear the corresponding

label, and as negative training material those sentences that do not. To counter the strong bias effects in this data, we

adjust the weight of each class so that negative examples have less impact on learning.

Model

We view our training data as a set of training pairs [x̄i, Yi]
n
i=1, where x̄i is a feature vector representing an input

sentence, and Yi is the correct set of labels assigned to that sentence. Note that each sentence is labeled independently

of the other sentences in a document. There is a finite set of possible labels Y , such that ∀i : Yi ⊆ Y . In the case of

the i2b2 emotion data, Y = {abuse, anger, . . .} and |Y| = 15.

The 1CPL model builds a binary classifier for each of the |Y| labels, creating one classifier to detect the presence

or absence of abuse, and another for anger, and so on. For each emotion e ∈ Y , we construct a training set De =
[x̄i, y

e
i ]

n
i=1 such that: ye

i = +1 if e ∈ Yi and ye
i = −1 otherwise.

De is divided into positive examples De
+ and negative examples De

−
based on ye

i . For each e ∈ Y , a linear-kernel

SVM learns a weight vector w̄e by optimizing a standard (class-weighted) objective:

∀e ∈ Y : w̄e = arg min
w̄

1

2
||w̄||2 + C∗


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∑
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i
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+

l(w̄, ye
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−

l(w̄, ye
i , x̄i)



 (1)

where l(w̄, y, x̄) is the binary hinge loss. Note that we have 1 + 2|Y| hyper-parameters: C∗, plus two weights Ce
+

and Ce
−

for each label. C∗ is shared by all classifiers and controls the over-all emphasis on regularization. The label-

specific weights control for class imbalance. Even the most frequent label (instructions) is infrequent, occurring in

fewer than 18% of training sentences; therefore, a standard SVM will learn a strong bias for the negative class. Since

our goal is to achieve high F-measure, which balances precision and recall equally, we must correct for this bias. To

do so, C+ and C− are set automatically to make positive and negative classes contribute equally to the total hinge loss:

Ce
+ = 1/|De

+| and Ce
−

= 1/|De
−
|. C∗ is tuned by grid-search using 10-fold cross-validation. Given models w̄e for

each e ∈ Y and a novel sentence x̄, the retrieval of a label set Y (x̄) is straight-forward: Y (x̄) =
{

e | w̄e · x̄ > 0
}

.

We train each model using an in-house SVM that is similar to LIBLINEAR.24 Training is very fast, allowing us to

test all 15 classifiers over 10 folds in less than a minute on a single processor. Our selection criterion for both feature

design and hyper-parameter tuning is micro-averaged F-measure, as measured on the complete training set after 10-

fold cross-validation. We now describe the feature templates used in our system, grouped into thematic categories:



Base Our base feature set consists of a bias feature that is always on, along with a bag of lowercased word unigrams

and bigrams. This base vector is normalized so that ||x̄|| = 1. As other feature templates are added, they use the value

corresponding to 1 in this normalization to scale their counts.

Sentence This template summarizes the sentence in broad terms, using features like its length in tokens. This includes

features that check for the presence of manually-designed word classes, reporting whether the sentence contains any

capitalized words, only capitalized words, any anonymized names (John, Jane), any future-tense verbs, and so on.

Thesaurus We included two sources of hand-crafted word clusters. The first counts the words matching each category

from the freely available Roget’s Thesaurus.i The second uses the thesaurus to seed a much smaller manually-crafted

list of near-synonyms for the 15 competition labels (16 after happiness peacefulness is split into its component words).

For example, the hopefulness list contains “hopefulness”, “hopefully” and “hope” as well as “optimistic”, “confident”

and “faith”. A feature is generated to count matches to each near-synonym list.

Character This template returns the set of cased character 4-grams found in the sentence. These features are intended

as a surrogate for stemming and spelling correction, but they also reintroduce case to the system, which otherwise uses

only lowercased unigrams and bigrams.

Document Four document features describe the document’s length and its general upper/lower-case patterns. Docu-

ment features are identical across each sentence in a document.

Experiments

Table 1 reports the results of our 1CPL submissions to the competition in terms of micro-averaged precision, recall

and F-measure. System 1 was intended to test our pipeline and output format, and was submitted before tuning was

complete. System 2 uses all of the features listed above, with C∗ carefully tuned through cross-validation. We use the

remainder of this section to analyze System 2’s performance in greater detail.

Table 1: Test-set performance of our 1CPL systems.

Description Precision Recall F1

System 1: 1CPL Test 48.71 56.45 52.29

System 2: 1CPL Full 55.72 54.72 55.22

Ablation Table 2 shows the results of our ablation experiments. With each modification, we re-optimized C* in

10-fold cross-validation and then froze it for the corresponding test set run. First, we removed the class balance

parameters Ce
+ and Ce

−
from our base system, revealing a dramatic drop in recall. We then added each template

to the base system alone. 10-fold cross-validation on the training set indicates that three out of four templates are

helpful. However, on the test set, only the character n-grams improve upon our baseline performance. In fact, using

the n-grams alone exceeds our complete system’s performance, producing the strongest reported result that we know

of that uses no external resources (no thesauri, auxiliary corpora, web data, or manual re-annotations).

Table 2: Ablation experiments for our 1CPL model. Results exceeding the baseline are in bold.

Cross-validation Test

System Version Precision Recall F1 Precision Recall F1

Base 54.04 51.94 52.97 55.26 52.83 54.02

− Ce
+ and Ce

−
66.74 38.18 48.58 70.62 40.25 51.28

+ sentence 52.40 53.25 52.82 52.51 54.25 53.36

+ thesaurus 53.11 54.20 53.65 51.94 54.80 53.33

+ character 55.51 52.50 53.96 57.86 53.54 55.61

+ document 53.09 54.92 53.99 53.03 55.03 54.01

+ all 55.29 54.12 54.70 55.72 54.72 55.22

iRoget’s Thesaurus: www.gutenberg.org/ebooks/10681



Per-label performance Table 3 shows our performance as decomposed over each label. With the exception of

thankfulness, all of our high-performing labels correspond to high-frequency labels. Our SVM classifier excels when

given sufficient training data; furthermore, by tuning for micro-averaged F-measure during development, we neces-

sarily place emphasis on the high-frequency labels. Both thankfulness and love appear to be relatively easy for our

system to handle, likely due to these emotions having a relatively small set of short and common lexical indicators.

Table 3: Per-label performance of our best 1CPL system as measured on the test set.

Label # Right # Guessed # Gold Precision Recall F1

abuse 0 0 5 - 0.00 -

anger 1 4 26 25.00 3.85 6.67

blame 2 19 45 10.53 4.44 6.25

fear 0 1 13 0.00 0.00 0.00

forgiveness 0 0 8 - 0.00 -

guilt 51 112 117 45.54 43.59 44.54

happiness peacefulness 1 1 16 100.00 6.25 11.76

hopefulness 3 7 38 42.86 7.89 13.33

hopelessness 149 291 229 51.20 65.07 57.31

information 45 125 104 36.00 43.27 39.30

instructions 269 416 382 64.66 70.42 67.42

love 145 215 201 67.44 72.14 69.71

pride 0 0 9 - 0.00 -

sorrow 0 8 34 0.00 0.00 0.00

thankfulness 30 50 45 60.00 66.67 63.16

all labels 696 1249 1272 55.72 54.72 55.22

Label confusion We also examined those cases where both the model and the gold-standard agreed a sentence

should be labeled, but they did not agree on which labels. We found only three sources of substantial confusion in the

test set: information and instructions were confused 26 times, guilt and sorrow were confused 10 times, and guilt and

hopelessness were confused 9 times. The vast majority of our errors consisted of either assigning a label to a sentence

that should be left unlabeled, or erroneously leaving a sentence unlabeled.

The 1CPL model is very fast to train, and our automatically determined class weights Ce
+ and Ce

−
address the issue

of class imbalance without introducing more hyper-parameters to be tuned. This proved to be very useful; most other

learning approaches we attempted quickly became bogged down in an extensive hyper-parameter search.

Unfortunately, 1CPL cannot reason about multiple label assignments simultaneously. No one classifier knows what

other labels will be assigned, nor does it know how many labels will be assigned. This means that we cannot model

when a sentence should be given no labels at all, nor can we model the fact that longer sentences tend to accept more

labels. Our next approach attempts to address some of these weaknesses.

Latent sequence model

On many occasions, when a sentence expresses multiple emotions, it can be segmented into different parts, each

devoted to one emotion. Take for example, the following sentence, which was tagged with {hopelessness, love}:

Dear Jane and John I love you more than life itself but I am so weak .

It is easy to see that this could be segmented into emotive regions. We represent these regions using a tag sequence,

with tags drawn from Y ∪ {O}, where O is an outside tag, which represents regions without emotion:

O love O hopelessness O
Dear Jane and John I love you more than life itself but I am so weak .



Inspired by latent subjective regions in movie reviews,25 our latent sequence model assumes that each training sentence

has a corresponding latent (or hidden) tag sequence that was omitted from the training data. Our latent sequence model

attempts to recover these hidden sequences using only the standard training data, requiring no further annotation.

By learning a tagger instead of a classifier, we hope to achieve three goals. First, we hope to learn more precisely

from sentences that have multiple labels: a love region will not contribute features to the hopelessness model. Second,

longer sentences will have more opportunities to express multiple emotions. Finally, modeling emotion sequences

within a sentence should help recover from errors in the provided sentence segmentation. We train our latent sequence

model by iteratively improving a discriminative tagger. Beginning with a weak model, we find the best tag sequence

for each training sentence that uses only and all the gold-standard labels for that sentence. We then use these tag

sequences as training data to retrain our discriminative tagger. The process iterates until performance stops improving.

Model

We view our training data as a set of training pairs [xi, Yi]
n
i=1, where xi is a tokenized input sentence, and Yi is a

gold-standard set of labels. We represent a latent tag sequence with the variable h. To bridge emotive tag sequences h
and emotion sets Y , we make use of a function set(h):

set(h) = {e | e 6= O ∧ e is used as a tag in h}

For example, for h =“O love O hopelessness O”, set(h) = {love, hopelessness}. To go from a set Y to a sequence

h, we need a model w̄ and a function tags , which finds the best sequence that uses only and all the emotions from Y :

tags(w̄, x, Y ) = arg max
h:set(h)=Y

w̄ · f̄(x, h) (2)

Here f̄ is a feature function that maps x, h pairs to feature vectors that decompose into dynamic programming, as in

perceptron tagging.26 The arg max over tag sequences can be computed using a semi-Markov tagger.27 The tagger

can be constrained to match Y by using a standard k-best list extraction algorithm to pop complete hypotheses from

the dynamic programming chart until an h satisfying set(h) = Y is found.

We now find ourselves in a circular situation. If we had a tagging model w̄, we could use Equation 2 to find tag

sequences hi for each [xi, Yi] in the training data. Meanwhile, the resulting [xi, hi] pairs could provide training data

to learn a tagging model w̄. This circularity should be familiar to anyone who has worked with the EM algorithm,28

and to address it, we will use a latent SVM,29 a discriminative, large-margin analogue to EM.

The latent SVM alternates between building training sequences and learning sequence models. Given an initial w̄, the

following two steps repeat m times (we initialize w̄ by adapting weights from the 1CPL system).

1. For each training point, transform label sets Yi into sequences hi using hi = tags(w̄, xi, Yi)

2. Train a structured SVM to predict hi from xi (we use the Pegasos primal gradient optimization algorithm30):

w̄ = arg min
w̄

λ

2
||w̄||2 +

∑

i

l(w̄, xi, hi) (3)

where λ is a regularizing hyper-parameter and l() generalizes the hinge loss to structured outputs:

l(w̄, xi, hi) = max
h

[

∆(hi, h) + w̄ · f̄(xi, h) − w̄ · f̄(xi, hi)
]

(4)

and ∆(hi, h) is a cost function that defines how incorrect h is with respect to hi. By minimizing Equation 3, we

encourage each incorrect h to score lower than the oracle hi with a margin of ∆(hi, h). Careful design of ∆ is essential

to creating an efficient latent SVM with strong performance. In our case, we define a bag() function analogous to set(),
and use that to define a weighted hamming distance over bags:

∆(hi, h) = δo|set(hi)| −
∑

e∈bag(h)∧e∈set(hi)

δo +
∑

e∈bag(h)∧e/∈(set(hi)

δc (5)



where δc and δo are hyper-parameters corresponding to costs for errors of commission and omission respectively.

These values adjust the model’s precision-recall trade-off, and are determined empirically using cross-validation. We

use bags as an approximation to the sets we truly care about because the bag-based cost function factors nicely into

dynamic programming, allowing us to calculate the max in Equation 4, which is necessary for Pegasos training.

The latent sequence model is substantially slower than 1CPL, but still quite manageable. We can train and test one

inner loop in about 12 minutes, meaning all 10 folds can be tested in 2 hours. The system rarely requires more than

m = 3 loops to achieve good results. However, in the context of a competition, this speed hampers rapid tuning and

feature development. Hence our submitted system is only roughly tuned and uses only straight-forward features.

We adapt the baseline and thesaurus features from 1CPL to our latent sequence model. Let xr
l denote a substring of

x, starting at position l and ending at position r, and let a tag sequence h be a sequence of emotion-tagged substrings,

such that no two substrings overlap. The we can define f̄(x, h) =
∑

(xr

l
,e)∈h f̄(xr

l , e), where:

f̄(xr
l , e) = append tag

(

e, unigrams(xr
l ) + bigrams(xr

l ) + thesaurus matches(xr
l )

)

Each region generates features for the unigrams and bigrams ending in that region, as well as any thesaurus matches.

As is standard in discriminative tagging, the current tag (drawn from Y ∪ {O}) is appended to each feature.

Experiments

Table 4: Test-set performance of our latent sequence models.

Description Precision Recall F1

System 3: Latent Sequence Test 48.15 58.18 52.69

System *: Latent Sequence Tuned 54.78 54.48 54.63

Table 4 shows the performance of two latent sequence models on the competition test set. Our official System 3 used

λ = 0.01, δc = 1/15, δo = 5/15, and m = 1, which were the best settings we could find in time for the competition.

We have also included System *, which corresponds to better parameters that were found using 10-fold cross-validation

after the competition closed. It changes λ to 0.03 and m to 2. As one can see, the latent system does not outperform

1CPL, despite our intuitions regarding the utility of latent emotive regions. However, we do feel it shows promise, as

it does not yet use all of the features of 1CPL, and the over-all system design may have room for further refinement.

We intend to continue improving its performance. It is interesting to look at some of the tagger’s outputs; here we

draw examples from the training data as tagged by cross-validation. Often, the system behaves exactly as intended:

Yi = {guilt, hopelessness}
hopelessness guilt

I cant get well so whats the use living God forgive me

The current version is also prone to over-segmentation, and does not always split lines at reasonable positions:

Yi = {guilt}
instructions guilt O
Tell him to forgive me if I ever treated him bad .

This indicates that the system could benefit from more features that help the system detect good split points. There are

also cases where our one-emotion-per-region assumption breaks down, with two emotions existing simultaneously.

Here, two emotions label one clause, and the system catches neither:

Yi = {anger, blame}
O

You think you are so wonderful .



Like the 1CPL system, the majority of our errors correspond to problems with empty sentences; either leaving emotion-

bearing sentences empty, or erroneously assigning an emotion to an empty sentence.

Conclusion

We have analyzed two machine learning approaches for multi-label text classification in the context of emotion anno-

tation for suicide notes. Our one-classifier-per-label system provides a clean solution for class imbalance, allowing us

to focus on feature design and hyper-parameter tuning. It scores 55.22 F1, placing fourth in the competition, without

the use of web-derived statistics or re-annotated training data. Beyond basic word unigrams and bigrams, its most

important features are character 4-grams.

We have also presented preliminary work on a promising alternative, which handles multiple labels by segmenting the

text into latent emotive regions. This gracefully handles run-on sentences, and produces easily-interpretable system

output. This approach needs more work to match its more mature competitors, but still scores favorably with respect

to the other systems, receiving an F1 of 54.63 in post-competition analysis.
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