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We present a theory of highly excited interacting carriers confined in a semiconductor nanostructure,

incorporating Auger coupling between excited states with different number of excitations. The Coulomb matrix

elements connecting exciton, biexciton, and triexciton complexes are derived and an intuitive picture of breaking

neutral multiexction complexes into positively and negatively charged multiexciton complexes is given. The

general approach is illustrated by analyzing the coupling of biexciton and exciton in CdSe spherical nanocrystals.

The electron and hole states are computed using an atomistic sp3d5s∗ tight binding Hamiltonian including an

effective crystal field splitting and surface passivation. For each number of electron-hole pairs the many-body

spectrum is computed in the configuration-interaction approach. The low-energy correlated biexciton levels are

broken into charged complexes: a hole and a negatively charged trion and an electron and a positively charged

trion. Out of a highly excited exciton spectrum a subspace coupled to biexciton levels via Auger processes is

identified. The interaction between correlated biexciton and exciton states is treated using exact diagonalization

techniques. This allows to extract the spectral function of the biexciton and relate its width and amplitude to the

characteristic amplitude and time scale of the coherent time evolution of the coupled system. It is shown that

this process can be described by the Fermi’s golden rule only if a fast relaxation of the excitonic subsystem is

accounted for.

DOI: 10.1103/PhysRevB.84.155327 PACS number(s): 78.67.Hc, 71.35.−y, 78.67.Bf

I. INTRODUCTION

There is currently renewed interest in the understanding

of multiexciton complexes in highly excited semiconductor

nanostructures and their interaction with light. Two exam-

ples are the biexciton-exciton cascade for the generation of

entangled photon pairs in self-assembled quantum dots1–5

and enhancing the efficiency of photovoltaic cells by gen-

eration of multiexciton complexes (MEG) from a single,

high-energy photon absorbed in semiconductor nanocrystals

(NCs).6–12 While much progress has been achieved in the

understanding of multiexciton complexes in self-assembled

quantum dots13–15 and nanocrystals,16–32 the mixing and decay

of complexes with different numbers of excitons are much less

understood.

These processes are important for the understanding of

decoherence in entangled photon pairs and energy-to-charge

conversion. Nozik6 has put forward a proposal of convert-

ing the energy of the high-energy exciton generated by a

high-energy photon into several low-energy electron-hole

pairs rather than allowing this energy to be dissipated. The

theoretical threshold photon energy, at which the excited

exciton is expected to convert into a biexciton, depends on the

nanocrystal size, but is typically about twice the semiconductor

band gap 2Eg . Such a carrier multiplication process has

been demonstrated in PbSe, PbS, PbTe, CdSe, InAs, and Si

NCs,33,34 with efficiency reaching 700% (seven electron-hole

pairs out of one photon).35 However, a careful analysis of these

experiments revised these efficiencies to lower values.10,23,36

Coherent coupling of the biexciton to a highly excited

exciton can lead to coherent conversion from the biexciton to

exciton and vice versa. However, phonon-assisted relaxation

in the exciton subsystem was suggested to destroy coherence

and leads to a finite biexciton lifetime.37 The exact theoretical

estimation of this lifetime is challenging, as even a realistic

computation of single-particle states in NCs is difficult: for

example, for a CdSe NC with diameter of 2.5 nm with

304 atoms, in the energy range of 3Eg there are approximately

1.58 · 105 exciton and 6.2 · 109 bi-exciton states. As an

approximation, one typically starts with the computation of NC

single-particle states using the k · p,24,25 tight-binding,26–29

or empirical pseudopotential methods.30–32 Next, one builds

the electron-hole pair configurations to be coupled [e.g., the

exciton (X) and biexciton (XX) of similar energy] and neglects

all Coulomb coupling (correlations) within each subsystem.

Finally, one computes the Coulomb coupling matrix element

between the chosen X and XX configurations and computes

the lifetime of the XX state using Fermi’s golden rule.7,9,38–41

As typically there are many X states close in energy to the

XX state, one utilizes a quasiresonant approach, scaling the

XX-X transition rate by the density of X states and/or using a

“resonance window”.7,9,40–42

A more advanced approach was presented recently by

Witzel et al.43 In this work, a time-dependent evolution of a

single-photon excitation coupled coherently with multiexciton

states, considered in the k · p approach, is simulated. The

decay of each multiexciton state is accounted for in the

relaxation-time approximation. It is shown that the relaxation

times of different multiexciton complexes, and in particular

that of X, play a crucial role in the efficiency of MEG.

The engineering of materials and nanostructures directed

at optimization of the MEG gain requires therefore a com-

prehensive, microscopic theory of (i) coupling of multiexciton

states with a different number of excitations, and (ii) relaxation

processes of these multiexciton states. In this work we

focus on the former, as the latter requires an additional

realistic simulation of the phonon modes in the NC and

a treatment of the carrier-phonon coupling.44,45 We provide

a detailed derivation of the Coulomb matrix element cou-

pling the multielectron-hole configurations differing by one
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electron-hole pair.46 Further, we express the states of the

system in the basis of configurations with a different number

of excitations. The form of this expansion is obtained by

exact diagonalization of the Hamiltonian accounting for

all Coulomb interactions of quasiparticles. From such an

eigenstate we extract the spectral function of the state with

the larger number of pair excitations, assuming that it is

“immersed” in a dense spectrum of the states with fewer pairs.

To make contact with the language of the state lifetime, used

in experiments, we relate the amplitude and the characteristic

width of this spectral function to the amplitude and time

constants of the coherent time evolution of the system.

We illustrate this framework on the mixing of X and XX in

a spherical CdSe nanocrystal. The current work is built upon

our recent calculation of the electronic and optical properties of

low-energy X and XX states in the CdSe NC.47 We utilize the

QNANO computational platform48 to carry out atomistic tight-

binding computation of the single-particle states in the NC

with a diameter of 3.8 nm. These states are used to construct

the correlated ground state of the XX as well as the excited

states X∗ with energies close to that of the XX. From the exact

diagonalization of the XX interacting with X∗ in this energy

range we extract the spectral function of the XX ground state

and discuss its properties in connection with the coherent time

evolution of the coupled system without relaxation. For the NC

studied we find that the XX-X∗ coupling is weak, resulting in

quantum beats between the XX and X∗ states. We demonstrate

that contact with the description of the XX population in terms

of lifetime can be established only if the very fast decay of the

X∗ states due to phonons is assumed.

The paper is organized as follows. In Sec. II we present

a framework theoretical approach to the system in which the

multiexciton states differing in the number of excitations are

coupled. We establish the general form of the Hamiltonian for

the system, and, on an example of the X-XX-XXX system,

demonstrate the derivation of the coupling Coulomb matrix

elements. We write the eigenstates of the coupled system,

define the spectral function of the system of n electron-hole

pairs immersed in the spectrum of n − 1 and n + 1-pair

excitations, and relate this function to the time evolution of

the system. We illustrate these concepts in detail in Sec. III on

the example of the coupled X-XX system confined in a single

CdSe nanocrystal. In Sec. IV we present the conclusions and

outlook.

II. MODEL

In this section we present a general derivation of the

Coulomb matrix elements which couple the multiexciton

configurations differing in the number of electron-hole pairs.

We demonstrate how to include these elements in the exact

diagonalization study of the mixed system and how to extract

physically relevant quantities from that calculation.

A. Derivation of the coupling Coulomb elements

We start the derivation by writing the all-electron Hamil-

tonian for the semiconductor nanostructure. If by c+
i (ci) we

denote the creation (annihilation) operator of an electron on

state |i〉, we have

Ĥ =
∑

i

Ẽic
+
i ci +

1

2

∑

ijkl

〈ij |Vee|kl〉c+
i c+

j ckcl, (1)

where Ẽi are the single-particle energies of the nanostructure,

while 〈ij |Vee|kl〉 are the Coulomb scattering matrix elements

computed for the single-particle states. Since in the typical

NCs we deal with ∼103 atoms, or ∼104 electrons, we

cannot treat the above Hamiltonian directly and introduce

the language of quasiparticles. To this end, we divide the

basis of single-particle states into two sets: the valence states,

henceforth enumerated by Greek indices, and the conduction

states, enumerated with Latin indices. As a result, the first

term of the above Hamiltonian will split into two, while the

Coulomb operator will result in the appearance of 24 = 16

terms. Among these terms there are those which describe the

interaction of carriers on conduction states only, as well as

that of carriers on valence states only. Further, we find terms

describing the interaction between the conduction and valence

carriers, consisting of the direct and exchange component.

Next, we have terms which describe all possibilities of the

Coulomb scattering with the transfer of one carrier from the

valence to the conduction band or the other way around.

All of them consist of the “direct”-like and “exchange”-like

component. Finally, there are terms describing the Coulomb

scattering with the transfer of two carriers, from the valence

to conduction band and the other way around. Due to

the two-body character of Coulomb interactions, the above

Hamiltonian exhausts all possibilities of Coulomb scattering

in the system. We shall write all these terms explicitly

below.

To complete the transition into the language of quasipar-

ticles, we define the “vacuum” reference state of our system,

in which all valence orbitals are occupied, and all conduction

orbitals are empty

|0〉 =
∏

α

c+
α |vac〉, (2)

where |vac〉 denotes the true zero-electron state. The energy

of the state |0〉, E0, is treated as the reference level. In what

follows, we will consider the charge-neutral electron-hole

excitations from that state, which can be written as

|i,j,k, . . . ,α,β,γ, . . .〉 = c+
i c+

j c+
k . . . h+

α h+
β h+

γ . . . |0〉. (3)

Here the hole creation (annihilation) operators are defined

as h+
α = cα (hα = c+

α ), respectively. As is evident from the

discussion opening this section, the Hamiltonian (1) describes

direct coupling of a configuration with n electron-hole pairs

and configurations with n − 2, n − 1, n, n + 1, and n + 2

pairs. However, we need to translate it into the language

of quasiparticle operators. By replacing the valence oper-

ators with the hole operators and rearranging terms, we

obtain

ĤQP = ĤCONS + ĤNONCONS, (4)

155327-2



THEORY OF HIGHLY EXCITED SEMICONDUCTOR . . . PHYSICAL REVIEW B 84, 155327 (2011)

where the part conserving the number of excitations is

ĤCONS =
∑

i

Eic
+
i ci +

1

2

∑

ijkl

〈ij |Vee|kl〉c+
i c+

j ckcl

−
∑

α

Eαh+
α hα +

1

2

∑

αβγ δ

〈δγ |Vee|βα〉h+
α h+

β hγ hδ

−
∑

iβγ l

(〈iγ |Vee|βl〉 − 〈iγ |Vee|lβ〉)c+
i h+

β hγ cl, (5)

and the part changing the number of excitations is

ĤNONCONS

=
1

2

∑

ijkδ

(〈ij |Vee|kδ〉 − 〈ij |Vee|δk〉)c+
i c+

j ckh
+
δ

+
1

2

∑

iβkl

(〈iβ|Vee|kl〉 − 〈βj |Vee|kl〉)c+
i hβckcl

+
1

2

∑

αβγ l

(〈αβ|Vee|γ l〉 − 〈αβ|Vee|lγ 〉)hαhβh+
γ cl

+
1

2

∑

αjγ δ

(〈αj |Vee|γ δ〉 − 〈jα|Vee|γ δ〉)hαc+
j h+

γ h+
δ

+
1

2

∑

ijγ δ

〈ij |Vee|γ δ〉c+
i c+

j h+
γ h+

δ

+
1

2

∑

αβkl

〈αβ|Vee|kl〉hαhβckcl . (6)

In the above Hamiltonian, the single-particle energies are

those of quasiparticles, and therefore have to be properly

dressed in self-energy and vertex correction terms. We shall not

analyze them in greater detail, as all methods of calculation

of the single-particle structure (i.e., k · p, tight-binding, or

pseudopotential approaches) at some point are fitted to the

experimental band gaps, and therefore are parametrized with

already dressed single-particle energies. Note that all Coulomb

elements are computed with the electron rather than the

quasiparticle orbitals. These orbitals are computed directly in

the single-particle methods and care must be taken to translate

the Coulomb elements into the quasiparticle language. For

example, the hole Coulomb matrix element 〈αβ|Vhh|γ δ〉 =
〈δγ |Vee|βα〉, that is, it is a complex conjugate of the electron

element, while the relation for electron-hole interactions is

even more complicated.

The form of the Hamiltonian (4) allows to appreciate the

terms changing the number of excitations in a clearer fashion:

the terms changing the number of excitations by one have three

quasielectron and one hole operators (or conversely), while the

terms changing the number of excitations by two are built of

four creation or four annihilation operators.

In semiconductor nanostructures the scattering with the

transfer of one carrier must necessarily modify the energy

of a configuration by at least one gap energy Eg , while the

transfer of two carriers introduces a modification of at least

2Eg . The largest mixing of configurations with a different

numbers of excitations will be seen for configurations close

in energy. Therefore, to obtain coupling between a low-lying

two-pair excitation, or biexciton (XX), and an exciton (X),

one has to consider highly excited exciton states (excited by

at least Eg).6 The X-XX-triexciton mixing will start at even

higher energies (of at least 3Eg), that is, both X and XX must

be highly excited. We shall describe this case here in greater

detail. Let us first write explicitly the Coulomb matrix elements

coupling the X and XX. We couple a one-electron-hole-pair

configuration |X,iα〉 = c+
i h+

α |0〉 with a two-pair configuration

|XX,jkβγ 〉 = c+
j c+

k h+
β h+

γ |0〉 and obtain46

〈XX,jkβγ |ĤQP |X,iα〉

= [(〈jk|Vee|βi〉 − 〈jk|Vee|iβ〉)δαγ

+ (〈jk|Vee|iγ 〉 − 〈jk|Vee|γ i〉)δαβ]

+ [(〈αj |Vee|γβ〉 − 〈αj |Vee|βγ 〉)δik

+ (〈αk|Vee|βγ 〉 − 〈αk|Vee|γβ〉)δij ]. (7)

In the above formula, the terms in the first square bracket apply

to the scattering event whereby the creation of an electron-hole

pair is accompanied by a scattering of the electron constituting

the exciton, while the exciton’s hole must not change its orbital.

The second square bracket contains analogous terms for the

case when the exciton’s hole is scattered, but its electron must

stay on the same orbital. This gives a selection rule for the

pair creation process: the exciton and biexciton configurations

must share at least one carrier. The process in which the hole

is shared is illustrated in the transition Figs. 1(a) and 1(b).

In Fig. 1(a) we show schematically a one-pair configuration,

in which the hole occupies the single-particle ground state,

while the electron is highly excited. In the scattering process,

the electron transfers to a lower single-particle level, while

an additional electron-hole pair is created. In Fig. 1(b) this

negatively charged trion complex X− is marked with the

rectangle, with the empty circle denoting the initial level of

the excited electron. Note that the shared hole is a spectator

quasiparticle and does not take part in this process. The

scattering event with a shared electron would conform to

similar rules, only in this case we would deal with a highly

excited hole converting to a positively charged trion, while

the shared electron would be inert. In the case of the X-XX

coupling, the selection rule severely limits the number of

excited X configurations to which any XX configuration can

FIG. 1. (Color online) Schematic diagram of (a) the one-pair

excitation, (b) the two-pair excitation, and (c) the three-pair excitation.

Empty circles denote removed quasiparticles. The negatively charged

trion X− appearing as a result of this scattering event is marked with

the rectangles.
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couple directly. Henceforth we shall refer to these exciton

configurations as X∗
1 . However, there are also excited X

configurations, which are not directly coupled to the XX

configuration, but do couple to X∗
1 . These configurations shall

be referred to as X∗
2 . We shall discuss the importance of X∗

2

later on.

Let us now move on to the coupling between the

two- and three-pair excitations whose one variant is vi-

sualized schematically in the transition in Figs. 1(b) and

1(c). The matrix element between the two-pair configuration

|XX,jkβγ 〉 = c+
j c+

k h+
β h+

γ |0〉 and the three-pair configuration

|XXX,lmnδσπ〉 = c+
l c+

mc+
n h+

δ h+
σ h+

π |0〉 is computed similarly

to the one connecting the one- and two-pair configurations. We

shall not write it here as it is composed of a large number of

terms describing the various permutations of particles. Let us

only emphasize that the scattering process involves a creation

of a negatively charged trion X− out of one excited electron,

or a positively charged trion out of one excited hole, just as

in the case of the X-XX coupling. Figure 1(c) depicts the

former, as the excited electron is scattered down the ladder of

single-particle states (blue arrow) with a simultaneous creation

of the third electron-hole pair (red arrow). The resulting

negatively charged trion is denoted in the right-hand panel of

Fig. 1(b) by the blue rectangle. The remaining three “spectator”

particles are inert and form a positively charged trion X+.

Finally, there is also a possibility of coupling the one- and

three-pair excitations directly via the two last terms of the

Hamiltonian (4). However, in this case the energies of the

configurations must necessarily differ by at least 2Eg . This is

why in the following we shall neglect this term.

B. Eigenstates of the mixed system

Presently we solve for the eigenvalues and eigenstates of the

system with a nonconstant number of excitations. To this end,

we use a procedure consisting of two steps. First, we solve

for eigenstates and eigenenergies of the Hamiltonian (4) in

the subspaces spanned by the configurations with a conserved
number of excitations. In this case, only the first five terms

of that Hamiltonian are considered. We solve this problem in

the exact diagonalization approach, in which the Hamiltonian

matrix is written in the basis of configurations of the type

given in Eq. (3) and diagonalized numerically. As a result of

this procedure, for a system with n electron-hole pairs we

obtain the eigenstates of the form

|nX〉p =
∑

i,j,...,αβ...

A
p,n

i,j,...,αβ...|i,j, . . . ,α,β . . .〉, (8)

where the coefficients A
p,n

i,j,...,α,β... compose the pth eigenvector

of the Hamiltonian matrix, and the energy of this state is Ep,n.

Since the number of possible n-pair configurations can be very

large, we restrict the basis to the region of energies of interest

and control the convergence of the resulting energy levels with

the width of that region.

In the second step, utilizing the energies and eigenstates

of systems with conserved excitation numbers, we set up

the full matrix of the Hamiltonian (4). The only nondiagonal

elements in this matrix will result from the Hamiltonian terms

changing the number of excitations. They are computed as

linear combinations, which, for example, for the coupled

X∗
1-XX system take the form

p〈XX|ĤQP |X∗
1〉q

=
∑

j,k,β,γ

∑

i,α

(

A
p,XX

k,l,β,γ

)∗
A

q,X

i,α 〈klβγ |ĤQP |i,α〉. (9)

Note that although the individual coupling elements under the

sum may vanish due to the selection rule described above, the

elements connecting the correlated states may still be finite. We

diagonalize the Hamiltonian matrix to obtain the eigenstates

with a mixed number of excitations. The Kth state can be

written as the linear combination

|K〉 = BK |0〉 +
∑

i

∑

n

CK
i,n|nX〉i . (10)

The energy of this state is referred to as εK .

C. Spectral function and its relation to time evolution

The degree of mixing between states with a different

number of excitations can be extracted from the eigenstates

|K〉 by calculating the spectral function Ap,n(K) of the

pth state with n electron-hole pairs |nX〉p. This function is

computed as

Ap,n(K) = |p〈nX|K〉|2 (11)

and, for example, for the pth biexciton state will take the

form Ap,2(K) = |CK
p,2|

2 (i.e., it is readily obtained from the

eigenvectors of the system). For weak coupling we expect

that the spectral function will have the value close to 1 for

K such that εK ≈ Ep,n, and decay as we move to the other

eigenstates |K〉.
In practice, one is typically interested in the lifetime of

the multiexciton state and attempts to engineer the system so

as to achieve long lifetimes of states with many excitons. If

the dynamics of the system is governed by the Hamiltonian (4)

only and is not changed by any incoherent relaxation processes,

we can trace the time evolution of the state |	〉 of the coupled

system simply by

|	(t)〉 = exp

(

−
i

h̄
ĤQP t

)

|nX〉p, (12)

assuming that the system is prepared in the state |nX〉p. Since

|nX〉p =
∑

K (CK
p,n)∗|K〉, we have

|	(t)〉 =
∑

K

exp

(

−
i

h̄
εK t

)

(

CK
p,n

)∗
|K〉, (13)

and we can observe the time evolution of our

state by computing the projection |p〈nX|	(t)〉|2 =

|
∑

Kexp(− i
h̄
εK t)|CK

p,n|
2|2 = |

∑

Kexp(− i
h̄
εK t)Ap,n(K)|2. The

time evolution of the system, and in particular the change of

the number of excitations from the one prepared in the system,

is related to the Fourier transform of the spectral function

in the time domain. At this point it is useful to consider two

limiting examples of the spectral function. First, if Ap,n(K) is

finite only for several states K , we may expect a complex time

evolution, with oscillating contributions from all these states.

Second, if our state |nX〉p is immersed in a quasicon-

tinuous spectrum of other states (possibly with different n)
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and if its spectral function can be approximated by a

Lorentzian, Ap,n(K) ≈ (γ /2π )/[(εK − Ep,n)2 + (γ /2)2] and

Ap,n(K) = A0 on resonance, then the time evolution is

described by an exponential decay, |p〈nX|	(t)〉|2 = |A0 +
(1 − A0) exp(−γ t/2)|2, with γ being the characteristic width

of the spectral function. At long times and with strong mixing

(the value of A0 ≪ 1), the state of the system can no longer

be identified with the state |nX〉p, as the probability density is

distributed coherently in the multitude of states of the system.

The above analysis shows that the characteristic decay time

constant 1/γ is not related simply to the bare coupling between

the state |nX〉p and other states at the same energy, as this will

predominantly affect the spectral function maximum value

A0. The dynamics of this “dissolution” of our state |nX〉p is

decided by its coupling to states off-resonance: the stronger

that coupling, the broader the spectral function and the faster

the decay. Note also that the probability of finding the system in

the state |nX〉p does not decay to zero, but rather the amplitude

A2
0. We shall supplement this intuitive picture with a detailed

analysis of the dynamics in the next section.

III. EXCITON-BIEXCITON COUPLING IN CDSE

NANOCRYSTALS

In this section we apply the general approach to describing

the dynamics of the biexciton XX in a CdSe nanocrystal with

diameter of 3.8 nm, as studied in Ref. 47. We choose to focus

on the low-energy XX states, which allows us to consider

their coupling only to excited exciton states of similar energy.

Below we will discuss the entire procedure, starting from

the computation of single-particle states, then the correlated

states of X and XX, coupling matrix elements, treatment of

the mixed system, and extraction and analysis of the spectral

function.

A. Single-particle states

We start the parametrization of the Hamiltonian (4) with the

computation of single-particle states and their energies. To this

end we utilize the atomistic tight-binding sp3d5s∗ approach.

We look for the single-particle wave function |i〉 in the form

of a linear combination

|i〉 =
∑

R,α

F
(i)
R,α|R,α〉 (14)

of atomic orbitals |R,α〉. The index α enumerates the types of

orbitals (s, three p, five d, and s∗, of which all are degenerate

spin doublets), while the index R enumerates atoms. The

coefficients F
(i)
R,α and the energies Ei of states are computed

by diagonalizing the tight-binding Hamiltonian

ĤT B =
∑

R,α

εR,αc+
R,αcR,α +

∑

R,α,β

λSO
R,α,βc+

R,αcR,β

+
∑

R,α

∑

R′,β

t
R′,β

R,α c+
R,αcR′,β (15)

written in the basis of atomic orbitals. This Hamiltonian is

parametrized by the on-site energies εR,α , spin-orbit parame-

ters λSO
R,α,β , and hopping elements t

R′,β

R,α c+
R,α . These parameters

are established by fitting the bulk band structure obtained with

the above Hamiltonian to the structure obtained either with

ab initio methods or experimentally.47 In Ref. 47 we have

presented an extensive analysis of the electronic and optical

properties of NCs using the atomistic tight-binding method.

Here we will summarize it briefly.

We focus on the spherical CdSe nanocrystal with diameter

of 3.8 nm. The underlying crystal lattice of the NC is of the

wurtzite modification. The lattice symmetry induces the crystal

field, whose effects are apparent only at the third-nearest-

neighbor distances, and therefore are not treated naturally with

the nearest-neighbor Hamiltonian (15). We model the crystal

field by introducing a splitting in energies of the p orbitals on

each atom. The NC surface is passivated in a model approach

by applying a large energy shift to any dangling bond.49 The

sample is composed of 103 atoms, which results in the tight-

binding Hamiltonian matrix of 2 · 104. Since in our further

analysis we require single-particle states whose energies fall

into a large region (approximately from −2Eg to 2Eg), we

perform the diagonalization of our Hamiltonian using full-

matrix diagonalization tools.

The energies of several lowest-lying electron and hole

states are visualized in Fig. 2(a). Here, bars represent the

energies of Kramers doublets, which are degenerate due to the

time-reversal symmetry. The electron states correspond well

with those of a spherical quantum well, with a single s-like

level and three quasidegenerate p-like levels about 270 meV

higher. The hole states, on the other hand, form a low-energy

quasidegenerate shell composed of four Kramers doublets,

separated from the rest of the spectrum by a gap of about

120 meV. The complicated structure of the hole states is a

FIG. 2. (Color online) (a) Energies of several lowest-lying single-

particle electron and hole states of a CdSe spherical nanocrystal with

the diameter of 3.8 nm. Bars denote Kramers doublets. (b) Schematic

representation of the dominant two-pair configuration of the lowest

biexciton state. Arrows distinguish the states within each Kramers

doublet. (c) Lowest-energy segment of the biexciton spectrum. Arrow

denotes the lowest XX state.
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consequence of the spin-orbit interactions and the presence of

the crystal field.

To complete the construction of the quasiparticle Hamilto-

nian (4), we need to compute all relevant Coulomb matrix el-

ements using the single-particle tight-binding wave functions.

We use the expansion, in which we separate the on-site terms

arising from the scattered particles residing on the same atom

and the long-distance terms describing scattering between

more remote atoms

〈ij |Vee|kl〉 = Vons + Vlong, (16)

Vons =
∑

R

∑

αβγ δ

F
(i)∗
R,αF

(j )∗
R,β F

(k)
R,γ F

(l)
R,δ

×〈R,α,R,β|
e2

ǫons|	r1 − 	r2|
|R,γ,R,δ〉, (17)

Vlong =
∑

Ri

remote
∑

Rj

∑

αβ

F
(i)∗
Ri ,α

F
(j )∗
Rj ,β

F
(k)
Rj ,β

F
(l)
Ri ,α

×
e2

ǫlong| 	Ri − 	Rj |
. (18)

The integrals scaling the on-site terms are computed by ap-

proximating the atomistic functions |R,α〉 by Slater orbitals.50

In an attempt to simulate the distance-dependent dielectric

function,31,51–54 each of these terms is scaled by a different

dielectric constant ǫ. Typically we take ǫons = 1. As for the

long-distance term, if the two atoms in question are nearest

neighbors, we take ǫlong = 2.9, while for more remote pairs we

take ǫlong = 5.8, the latter one being the bulk CdSe dielectric

constant.

B. Biexciton and excited exciton

Next we populate the single-particle states with electron-

hole pairs. Since the energy range of interest for the exciton-

biexciton coupling is defined by the energies of XX states,

we start with considering the two-electron-hole-pair configu-

rations

|i,j,α,β〉 = c+
i c+

j h+
α h+

β |0〉. (19)

We stress that the quasihole single-particle wave functions

are obtained by applying a complex conjugate to the valence

functions obtained from diagonalization of the tight-binding

Hamiltonian. We build the matrix of the many-body Hamilto-

nian (4) in the basis of these configurations and diagonalize it

numerically. We have presented an extensive study of the elec-

tronic and optical properties of XX in Ref. 47. We found that

the XX eigenstates have a correlated character, which is due

to the gaps between the single-particle hole states being of the

same order as the Coulomb scattering matrix elements between

the two-pair configurations (tens of meV). By constraining

the two electrons to occupy the s-shell electron orbital and

distributing the holes among the four double-degenerate states

of the hole shell [marked in Fig. 2(a) with a red rectangle] we

obtain 28 two-pair configurations which mix with each other

strongly. The configuration of the four carriers with the lowest

single-particle energy is shown schematically in Fig. 2(b).

However, the basis restricted to these configurations only is

not sufficient to obtain convergence of the XX energies. A

satisfactory spectrum of XX energies, shown in Fig. 2(c),

is obtained only when the electrons are allowed to populate

the s- and p-shell single-particle orbitals, while holes are

allowed to spread on 14 lowest-energy Kramers doublets.

This results in 10 976 two-pair configurations. The inclusion

of the mixing between the two-pair configurations decreases

the XX ground-state energy to the value of E1,2 = 4.237 eV,

that is, by about 75 meV with respect to the uncorrelated

case.

In Fig. 2(c) we show only the XX correlated states built

predominantly from the original 28 two-pair configurations.

The respective XX eigenstates are linear combinations of all

basis states, represented in general by Eq. (8) and in this case

taking the form

|XX〉p =
∑

i,j,α,β

A
p,XX

i,j,α,β |i,j,α,β〉. (20)

However, these states are typically dominated by one con-

figuration. In Fig. 2(b) we show the two-pair configuration

dominant in the lowest-energy XX state. The segment of

the spectrum built upon the lowest-shell configurations is

separated from the rest of XX states by a gap resulting from

the gap in the hole single-particle spectrum. This defines

a region of energies appropriate for the studies of X-XX

mixing. In what follows, we shall construct the excited exciton

configurations, whose energy falls within the window of 4.0

to 4.35 eV, that is, that corresponding to the lowest XX band

enlarged from each side by about 0.25 eV.

Let us now describe the procedure of generation of the

excited X states. As was explained in Sec. II A, to be able

to couple, a two-pair configuration and an excited one-pair

configuration have to share at least one carrier. Figure 3 shows

how such X∗
1 configurations are created assuming that they

FIG. 3. (Color online) Schematic representation of the allowed

Coulomb scattering mechanism connecting the two-pair and one-pair

configurations. Empty circles denote removed quasiparticles. Panels

(a) and (b) show, respectively, the event in which the electron and

hole are scattered.
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FIG. 4. (Color online) Magnitudes of the Hamiltonian matrix

element coupling the lowest-energy biexciton configuration [shown

in Fig. 2(b)] with single-pair configurations with excited electron,

as a function of the energy of these configurations. Inset shows a

schematic illustration of the scattering process.

share a hole (a) or an electron (b) with a two-pair configuration.

In this way, from each two-pair configuration one can generate

families of X∗
1 one-pair configurations and select only those,

whose energy falls in the chosen window, as described above.

However, generating all eligible X∗
1 from all 10 976 two-pair

configurations would result in a prohibitive size of the X∗
1

space. Therefore, we only generate the X∗
1 families from the

28 lowest-shell configurations.

The next step is to compute all relevant Coulomb matrix

elements between configurations as defined by Eq. (7). As an

example, in Fig. 4 we show the absolute values of elements

connecting the lowest-energy two-pair configuration with the

X∗
1 configurations which share a common hole (see a schematic

diagram in the inset to this figure). We see that the elements

fall into two categories. Some elements have values ranging

from 10−6 eV to 2 · 10−4 eV, while other elements are of

10−9 eV and less. We find a similar distribution of the values of

matrix elements for X∗
1 configurations which share a common

electron with the two-pair configurations. The elements from

the second category are within the numerical noise of our

computation and should be treated as zero, although they

quantify an allowed coupling process. The source of such

a large disparity of magnitudes of these elements lies in

the character of the wave function of the excited electron,

promoted to a high orbital due to the scattering. In Fig. 5 we

show the single-particle probability densities of the orbitals

which participate in the scattering. The electron is promoted

from the s-type orbital (left) onto one of the highly excited

orbitals (right). In the case (a) we find that the final orbital

is distributed in an outermost layer of fully coordinated Cd

atoms of the nanocrystal such that the overlap with the tightly

confined s orbital is small. This results in a negligible coupling.

On the other hand, in the case (b) the overlap between the

relevant orbitals appears to be more substantial, resulting in a

FIG. 5. (Color online) Cross-sectional view of the probability

density of electronic states taking part in the scattering process de-

picted in Fig. 4. The left-hand images correspond to the electron wave

function on the s orbital, while the right-hand images characterize

the wave functions of the final state. Due to the distribution of

the probability density, the element corresponding to the situation

(a) is negligible, while that corresponding to the situation

(b) is finite.

much larger coupling of 10−5 eV. Note that all these matrix

elements are at least two orders of magnitude smaller than

those connecting different two-pair configurations to each

other.47

C. Spectral function and dynamics of X X

We now proceed to computing the electronic properties

and dynamics of the coupled XX-X system. According to

the procedure described in Sec. II B, having diagonalized the

XX subsystem separately, we should now perform a separate

diagonalization of the X subsystem and then connect the two.

We found, however, that a more computationally efficient

procedure involves writing the entire Hamiltonian (4) in the

basis of the single-pair and two-pair configurations. This is due

to the fact that in such large bases, the calculation of elements

(9) coupling correlated X∗
1 and XX states takes a very long

time.

To be able to compute the spectral function, we require all

the eigenstates of the coupled system. This sets another limit

of the basis size, which, by necessity, was chosen to be about

11 000 basis states: 1000 of the two-pair, and 10 000 of the
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FIG. 6. (Color online) Spectral function of the biexciton im-

mersed in the spectrum of exciton states. Red lines indicate the

energies of the biexciton eigenstates, while gray lines correspond to

the exciton eigenstates. Blue bars represent the values of the spectral

function of the lowest-energy biexciton for each eigenstate of the

coupled system.

single-pair configurations. As a result, the eigenstates of the

coupled system, defined in Eq. (10), can be written as

|K〉 =
∑

i,j,α,β

CK
i,j,α,β |i,j,α,β〉 +

∑

i,α

DK
i,α|i,α〉, (21)

while the pure XX states are described by Eq. (20). Since the

spectral function is defined in terms of a projection of one of

the XX states onto the spectrum |K〉, in this case we have

Ap,XX(K) = |1〈XX|K〉|2

=

∣

∣

∣

∣

∣

∑

i,j,α,β

(

A
p,XX

i,j,α,β

)∗
CK

i,j,α,β

∣

∣

∣

∣

∣

2

. (22)

In Fig. 6 we plot the spectral function A1,XX(K) of the

XX ground state (p = 1) as a function of the energy of

the eigenstates of the coupled system. The red vertical lines

represent the XX (i.e., not mixed with X∗
1) eigenstates, while

the gray vertical lines denote the energies ε(K) of the mixed

eigenstates |K〉. The values of the spectral functions for

different K are represented by the height of the blue bars.

We find that the value of the spectral function is 0.847 at the

energy corresponding to that of the unmixed XX ground state,

and smaller by about an order of magnitude at the energy

corresponding to the next state |K〉. Its value falls off very fast

as we move away from this energy, becoming negligibly small

already at about 1 meV away. We conclude that our XX level

is coupled very weakly to the underlying spectrum of the X∗
1

states and is not resonant with any of them.

FIG. 7. Time evolution of the probability of finding the coupled

biexciton-exciton system in the ground biexciton state.

Next we examine how this weak coupling translates into the

dynamics of the coupled system. We assume that the system

is prepared in the XX ground state and simulate its time

evolution as described in Sec. II C. The resulting probability

of finding the system in the state |XX〉1 at time t is plotted

in Fig. 7. We find that this probability oscillates around the

value of |A1,XX, max|
2 = 0.72 with no appreciable decay. The

oscillations are not regular, as there are several states which

are effectively coupled to |XX〉1 and the values of coupling

elements vary strongly from state to state. It is clear, however,

that we cannot define the XX lifetime in our system in a

meaningful fashion.

D. Biexciton decay and lifetime

The treatment of our system in terms of the coherent

evolution of weakly coupled multiexciton states does not

reflect the experimental situation, in which finite lifetimes, of

order of tens of picoseconds, are found.8,11,39,42 In Sec. II C

we have demonstrated that we can obtain a population of

the multiexciton state which decays in time even within the

coherent model if its spectral function is sufficiently broad. In

our system, such broadening can occur as a result of mixing

of the X∗
1 one-pair configurations, which can be directly

coupled to the two-pair configurations, and the X∗
2 one pair

configurations, which exhibit no such coupling. To account

for this mixing, however, we would have to generate all the

single-pair configurations with energies falling into the chosen

energy window. This results in prohibitively large basis sizes.

The second broadening mechanism involves relaxation of the

one-pair configurations due to phonons. Such relaxation is

not relevant for the XX subsystem, as we focus on the XX

ground state only. Coherent simulations of the time evolution

of such a system have been reported,43 however, there the

electronic structure was computed within the four-band k · p

approach. Our simulations on model systems indicated that if

the relaxation times of the single-pair states are very short, the

155327-8



THEORY OF HIGHLY EXCITED SEMICONDUCTOR . . . PHYSICAL REVIEW B 84, 155327 (2011)

FIG. 8. (Color online) Lifetime of the biexciton in the coupled

biexciton-exciton system computed using the Fermi’s golden rule

with the broadening Ŵ = 0.1 meV (gray), 5 meV (green), and 20 meV

(magenta). Both exciton and biexciton states are uncorrelated.

dynamics of the biexciton can be described by a single lifetime

obtained using the Fermi’s golden rule7,9,38–41

1

τ1

=
2π

h̄

∑

i

|1〈XX|Vee|X〉i |
2δ(E1,XX − Ei,X), (23)

where E1,XX is the ground-state energy of the biexciton state

and Ei,X is the energy of the ith exciton state. The influence

of scattering and relaxation processes is introduced into this

rule by broadening the delta function such that δ(E1,XX −
Ei,X) → (Ŵ/2π )/[(E1,XX − Ei,X)2 + (Ŵ/2)2], where Ŵ is a

model broadening. In an attempt to model fast relaxation

processes, one typically chooses Ŵ to be sufficiently large

so that the result of the calculation does not depend on it.

To make contact with previous work,7,9,38–41 we begin by

assuming that the states |XX〉1 and |X〉i are uncorrelated

and are simply represented by the two-pair and one-pair

configurations, respectively. The single-pair energies are com-

puted as the respective expectation values of the quasiparticle

Hamiltonian (4): Ei,X =i 〈X|ĤQP |X〉i . On the other hand,

we treat the XX energy E1,XX as an independent variable,

whose value will be tuned artificially to examine the values

of lifetimes over an energy region. However, to compute the

matrix element we always use the XX ground state.

In Fig. 8 we show the lifetimes computed as a function

of the biexciton energy for four broadenings Ŵ. The actual

ground-state energy of the uncorrelated XX is marked with

the black arrow, while the energy corresponding to the fully

correlated XX is denoted by the red arrow. We find that

for a small broadening of Ŵ = 0.1 meV, the lifetime as a

FIG. 9. (Color online) Lifetime of the biexciton in the coupled

biexciton-exciton system computed using the Fermi’s golden rule

assuming that the exciton is correlated and biexciton is (a) not and

(b) conversely.

function of the XX energy exhibits very fast oscillations

over many orders of magnitude. Increasing the broadening

leads to averaging of these oscillations and an emergence of

a monotonic dependence of τ1 on E1,XX. This dependence

seems to be converged for Ŵ = 20 meV. We find that the

lifetime increases with the energy, which is consistent with

the decrease of the coupling element with energy (see Fig. 4).

In general, we find that depending on the biexciton energy

the calculated lifetimes can vary from about 50 ps to about

800 ps. As we change the XX energy from its uncorrelated to

correlated value, the lifetime changes by a factor of 3. It is clear,

therefore, that accounting for correlations in the many-body

states is of crucial importance.

Finally, we examine how the XX lifetime changes if we also

include correlations in the many-body states (i.e., depending

upon how we compute the coupling matrix element in the

Fermi’s golden rule). Figure 9 shows the lifetime as a function

of energy assuming that the X states are correlated while the

XX state is not (a) and the other way around (b). Preparation

of the X states in their correlated form does not introduce any

drastic changes into the lifetime. These correlations can be

modeled essentially by an additional broadening in the density

of states of single-pair configurations. On the other hand,

introducing correlations into the XX ground state increases
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the lifetime by about a factor of 2 for lower energies, while for

higher energies the lifetime is reduced by a factor of 5. Clearly,

the XX lifetime strongly depends on the details of the sample

and its coupling with relaxation mechanisms. Detailed ab initio
studies of the nanocrystal electronic structure and coupling

with phonons are necessary to obtain predictions of the lifetime

which could be compared with the experimental data.

IV. CONCLUSION AND OUTLOOK

In conclusion, we have presented a theory of the coupling

between states with different numbers of electron-hole exci-

tations in semiconductor nanostructures. We have derived the

appropriate quasiparticle Hamiltonian and demonstrated that

the states are coupled by a Coulomb interaction element. This

element accounts for the process whereby one electron-hole

pair is annihilated and another carrier is scattered within the

same band. We have shown that these processes involve the

creation or collapse of a charged trion, while the remaining

particles act as spectators. The general Hamiltonian for such

a coupled system can be diagonalized exactly in the basis

of states with different number of excitations. The spectral

function of the state with a higher number of pairs among the

states with fewer pairs was calculated and shown to be related

to the time-dependent evolution of the system by the Fourier

transform.

This methodology was applied to analyzing the dynamics

of the biexciton (XX) state immersed in the excited exciton

(X) states of similar energy confined in a CdSe spherical

nanocrystal. The NC single-particle energies and states were

computed within the sp3d5s∗ tight-binding approach and the

Coulomb scattering matrix elements were obtained with these

atomistically resolved wave functions. We derived the spectral

function of the XX ground state immersed in the excited

exciton states for an example nanoscrystal of 3.8 nm diameter.

We found that the ground XX state is coupled only to a few

X∗ states close to it in energy. This property was reflected

in the time evolution of the state of the coupled system,

which involved clear coherent oscillations in the population

of the XX state without decay. The lifetime of the XX state

could be defined only by introducing additional coupling of

excited exciton states and their nonradiative decay mediated

by phonons. The exciton-phonon coupling was accounted for

in a model fashion by broadening the resonance condition

in Fermi’s golden rule treatment of the XX lifetime. We

found that the lifetime is very sensitive to that broadening

(characteristic relaxation times), if the broadening itself is

small, but has a convergent behavior for large broadenings.

On the other hand, a large change in the XX lifetime was

seen when the correlated character of the XX state was

accounted for. To investigate this dependence further, we

plan to improve on the elements of our approach which

were carried out in a model fashion: treatment of surface,

a simplified treatment of the distance-dependent dielectric

function, and the approximate treatment of relaxation mech-

anisms of the excited exciton states. Such an approach could

be used to provide more quantitative estimates of XX lifetime

in NCs.
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