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25

Abstract26

In lodgepole pine (Pinus contorta Dougl. ex Loud. var.  latifolia Engelm.), cone bud initiation 27

within long-shoot buds varies according to genotype. We chose to study hormone profiles of 28

two genotypes that differed significantly in cone yield.  Phytohormone profiles were 29

established by high performance liquid chromatography-electrospray ionization tandem mass 30

spectrometry (HPLC-ESI-MS/MS) in multiple reaction monitoring (MRM) mode with samples 31

collected from genotypes 299 and 233, the typically high and low cone producers. Generally, 32

concentrations of trans-zeatin-O-glucoside were higher in genotype 299, whereas 33

dihydrozeatin concentrations were higher in genotype 233. Both isopentenyl adenine and 34

isopentenyl adenosine were present at higher concentrations in genotype 233. The ratio of total 35

quantifiable zeatin (Z)-type cytokinins to isopentenyl (iP)-type cytokinins was approximate 36

three-fold higher in genotype 299 during female cone bud differentiation. In genotype 299, 37

ABA concentration was significantly lower than in genotype 233 on the first sampling date, 38

while the phaseic acid concentration was lower consistently throughout the period investigated. 39

Dihydrophaseic acid was present in low concentrations in most samples of genotype 233, but 40

was not quantifiable in genotype 299. Our study reveals that long-shoot buds of the high cone-41

producing genotype had higher ratios of Z-type cytokinins to iP-type cytokinins than were 42

found in the low cone-producing genotype. High cone-producing buds also contained less 43

ABA, phaseic acid and dihydrophaseic acid during female cone bud differentiation.44

45
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Introduction57

In pines, both reproductive buds and vegetative buds are initiated along long shoots. In the 58

specific case of female cone bud differentiation in lodgepole pine, initiation is begun in 59

summer and is completed by fall. A further two years are required for these female cones to 60

mature and produce seed (O’Reilly and Owens 1987; 1988). Although many abiotic and biotic 61

factors affect cone productivity, genotypic effects are relatively strong (Longman 1983;62

Philippe et al. 2006). This is noticeable in seed orchards. Certain genotypes consistently exhibit 63

extremes in productivity. This undermines the purpose of a seed orchard, which is to produce 64

as much seed as possible. Part of this inefficiency lies in the original selection of genotypes. It 65

was not on the basis of seed production, but for fast growth, high wood quality, pest or disease 66

resistance. Consequently, one reason for low seed productivity is low female bud initiation due 67

to genotype.68

To overcome genotype-related limitations in cone production, intervention in bud 69

hormone physiology has proven useful. In both angiosperms (Fiehn et al. 2000) and 70

gymnosperms (Kong et al. 2009), different genotypes exhibit unique metabolic and hormone 71

profiles. In Douglas-fir, correlations between female cone yields and endogenous 72

phytohormone levels of shoot buds have been shown (Kong et al. 2009). Studies of73

endogenous phytohormone levels during cone initiation can provide strategies to overcome 74

cone yield limitations. Most commonly, plant growth regulators (PGRs), such as gibberellins 75

(GAs), are directly applied. Occasionally, cytokinins and even indole-acetic acid have also 76

been used to improve productivity. These plant growth regulators alter concentrations of 77
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endogenous phytohormones and boost cone productivity (McMullan 1980; Bonnet-Masimbert 78

and Zaerr 1987; Pilate et al. 1990; Kong et al. 2008). 79

Cytokinins have been shown to play an important role during the reproductive process 80

(Imbault et al. 1988; Morris et al. 1990; Corbesier et al. 2003; Wakushima 2004). Recent81

studies with Arabidopsis thaliana indicate that cytokinin receptors may have different affinities 82

for particular cytokinins, such as zeatin (Z)-type and isopentenyl (iP)-type cytokinins (Spíchal 83

et al. 2004; Romanov et al. 2006).  Furthermore, the differential compartmentalization of 84

cytokinins may play a role in long-distance signalling (Corbesier et al. 2003; Hirose et al.85

2008). In conifers, attention has been paid to the ratio of Z-type to iP-type cytokinins, but this 86

has been mainly in the context of tree ageing or vigour (Valdés et al. 2002; 2003; 2007) and 87

not in reproduction.88

Abscisic acid (ABA) is involved in the regulation of many physiological processes 89

including the response of plants to environmental stresses (Bravo et al. 1998; Kumar et al.90

2008). Abscisic acid negatively modulates the effect of other plant hormones, such as GAs 91

(Tompsett 1977) and auxin (Weiss and Ori 2007). This is of interest in conifers, because 92

exogenously applied GA has been proven to be an effective stimulant of cone formation (Ross 93

1983; Pharis and King 1985; Smith and Greenwood 1995; Kong et al. 2008). The main ABA 94

catabolic pathway in many higher plants is ABA oxidation with its end products of phaseic 95

acid (PA) and dihydrophaseic acid (DPA), but in conifers such as Douglas-fir, the dominant 96

product of ABA catabolism in long-shoots is ABA glucose ester (ABA-GE) (Kong et al. 2008; 97

2009).  98
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The purpose of this research was to investigate changes, during female cone bud 99

differentiation, in endogenous cytokinins and ABA as well as some of their metabolites with 100

two genotypes that differed in cone yield. Lodgepole pine (Pinus contorta Dougl. ex Loud. var.101

latifolia Engelm.), an important forest species in western North America, was used. Seed 102

improvement programs have been created in this species consequently. Many of these trees are 103

genetically well-characterized. Hormone analyses of samples were completed by high 104

performance liquid chromatography-electrospray ionization tandem mass spectrometry 105

(HPLC-ESI-MS/MS) in multiple reaction monitoring (MRM) mode (Chiwocha et al. 2003;106

2005). This method has a number of advantages: multiple compounds can be quantified from 107

the same sample and the need to process separate samples for each class of compounds is 108

eliminated. 109

110

Material and Methods111

Genotype selection112

Genotypes 233 and 299 were selected from an established seed orchard of 15-year-old trees 113

owned by Vernon Seed Orchard Company, located in Vernon, British Columbia (50°13′N, 114

119°19′W). The selection procedure was based on a ranking according to productivity. Cone 115

yields for the three previous years were pooled for six ramets of each genotype. Significantly 116

different (P < 0.05) genotypes were chosen.117

118

Sample collection, processing and storage119
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Samples were collected five times during female cone bud differentiation between the end of 120

July and mid-October, 2006. Depending on the size of the bud, ten to 20 long-shoot buds were 121

collected from each ramet per sampling time. After collection, the buds were kept frozen at -122

20 C for 2 to 3 d before they were lyophilized in a freeze-drier for 48 hrs. The resulting dry 123

samples were sealed in plastic bags and stored at - 20 C. 124

125

Measurement of moisture content126

Fresh weight and dry weight of the samples were used to derive moisture content according to 127

the following formula:128

129
Fresh weight – Dry weight130

Moisture content (%) =      ________________________  x 100131
       132

        Fresh weight133
134
135
136

Analysis of hormones and their metabolites137
138

Chemicals:  Pure hormone standards, used in calibration curve and quality control solutions,139

were obtained as follows: dihydrophaseic acid (DPA), abscisic acid glucose ester (ABA-GE), 140

phaseic acid (PA), 7'-hydroxy ABA (7'-OH ABA) and neophaseic acid (neoPA) from the Plant 141

Biotechnology Institute of the National Research Council of Canada (PBI-NRC, Saskatoon, SK, 142

Canada); IAA, indole-3-acetic acid aspartate (IAA-Asp), indole-3-acetic acid glutamate (IAA-143

Glu), ABA, trans-zeatin (t-Z), trans-zeatin riboside (t-ZR), isopentenyl adenosine (iPA), and 144

isopentenyl adenine (2iP) from Sigma-Aldrich (Oakville, ON, Canada); dihydrozeatin (dhZ), 145
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dihydrozeatin riboside (dhZR), and trans-zeatin-O-glucoside (t-Z-O-Glu) from Olchemim Ltd. 146

(Olomouc, Czech Republic); GA1, GA3, GA4, and GA7 from Prof. Lewis Mander (Australian 147

National University, Canberra, Australia). Bulk amounts of the deuterated forms of the 148

hormones, used as internal standards, were obtained as follows: d3-DPA, d5-ABA-GE, d3-PA, 149

d4-7'-OH ABA, d3- neoPA, d4-ABA, d3-IAA-Asp, and d3-IAA-Glu from PBI-NRC (Saskatoon, 150

SK, Canada); d5-IAA, d3-dhZ, d3-dhZR, d5-t-Z-O-Glu, d6-iPA, and d6-2iP from Olchemim Ltd. 151

(Olomouc, Czech Republic); d2-GA1, and d2-GA4 from Prof. Lewis Mander (Australian 152

National University, Canberra, Australia). Bulk amounts of the deuterated forms of selected 153

hormones which were used as recovery standards, namely d6-ABA and d2-ABA-GE, were 154

obtained from PBI-NRC.  Preparations of ABA and ABA metabolite standards were described 155

by Abrams et al. (2003) and Zaharia et al. (2005).156

157

Extraction, purification and quantification by HPLC-ESI-MS/MS:  158

Extraction and purification steps were carried out as in Kong et al. (2008). The procedure used 159

for quantification of multiple hormones, including abscisic acid and its metabolites, was a 160

modification of Chiwocha et al. (2003; 2005). To the spectrum of 18 hormones originally 161

quantified in these papers, including IAA, IAA-Asp, ABA, 7′-OH ABA, PA, DPA, ABA-GE, 162

GA1 (m/z 347>259), GA3, GA4 (m/z 331>243), GA7, t-Z, t-ZR, dhZ, dhZR, t-Z-O-Glu, 2iP, and 163

iPA, were added an additional two; namely IAA-Glu (m/z 303>146) and neoPA (m/z 279>205). 164

Samples were injected onto a Genesis C18 HPLC column (100 × 2.1 mm, 4 µm, 165

Chromatographic Specialties, Brockville, ON, Canada) and separated by a gradient elution of 166
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water against an increasing percentage of acetonitrile and methanol plus 0.04% acetic acid. 167

Calibration curves were generated from the MRM signals obtained from standard solutions 168

using the ratio of the chromatographic peak area for each analyte to that of the corresponding 169

internal standard, as described by Ross et al. (2004). Quality control samples, internal standard 170

blanks, and solvent blanks were also prepared and analyzed along with each batch of tissue 171

samples. The concentrations of IAA, IAA-Asp and IAA-Glu were generally below quantifiable 172

limits of <61 ng g-1 DW, <58 ng g-1 DW, and <58 ng g-1 DW, respectively. All GAs analyzed 173

in this study were also below quantifiable levels of  <473 ng g-1 DW for GA1, <238 ng g-1 DW174

for GA3, <116 ng g-1 DW for GA4, and <116 ng g-1 DW for GA7. As a consequence IAA, IAA 175

metabolites and GAs are not included in the results. 176

177

Experimental design and statistical analysis178

Six ramets were used as replicates for female cone yield evaluation in each genotype, whereas179

3 ramets per genotype were used as replicates for hormone analysis. Data were subjected to 180

one-way analysis of variance (ANOVA) using Minitab statistical software (Minitab, State 181

College, Pennsylvania, USA). The variance was analyzed by Tukey’s significant difference 182

with the level of significance set to P < 0.05. For analysis purposes, concentrations below 183

quantifiable levels were treated as zeros. Significance differences in overall patterns or at each 184

sampling date have been indicated in the text. 185

186

187
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Results188

Genotype performance in cone production 189

Cone yield was significantly different (P < 0.05) between the genotypes. The mean value of 190

female cone yield per tree of genotype 299 was 3.5 times higher than that of genotype 233 191

(Table 1).   192

193

Dry weight and moisture content194

The dry weight of long-shoot buds increased as the season advanced (Fig. 1). Overall, no 195

difference in dry weight existed between these two genotypes (F= 1.79, P = 0.16). Moisture 196

content of the bud decreased consistently in both of the genotypes over the growth period (Fig. 197

2). No significant difference (F = 0, P = 0.951) was found between genotypes 299 and 233.  198

Although the dry weight per bud in genotype 299 was slightly higher than that of genotype 233 199

at weeks 4 and 10, these differences were not significant (F = 4.15, P = 0.069 and F = 3.76, P = 200

0.081).201

202

Cytokinins and metabolites203

Zeatin (Z)-type cytokinins: The concentration of t-ZR was highest at the beginning of August 204

(week 0), reaching 109 ng g-1 DW and 90 ng g-1 DW in genotypes 299 and 233, respectively 205

(Fig. 3). Concentrations then declined as the season advanced. The average concentration of t-206

ZR in genotype 299 samples was slightly higher than that in genotype 233 until week 6. 207

Concentrations of t-ZR in genotype 299 samples then dropped below quantifiable levels. There 208
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was no significant difference (F = 0.04, P = 0.836) between genotypes 299 and 233 in the 209

overall pattern of t-ZR concentration changes. In genotype 233, the concentration of dhZ210

remained fairly steady until week 4 when it dropped below quantifiable levels (Table 2). In 211

contrast, dhZ levels were below quantifiable levels in all genotype 299 samples at all sampling 212

dates. In genotype 299, the concentration of t-Z-O-Glu peaked at week 4 before progressively 213

declining. At week 10, its concentration dropped below quantifiable levels (Table 2). Genotype 214

233’s t-Z-O-Glu levels were below quantifiable levels throughout. In both genotypes, 215

concentrations of dhZR and t-Z were generally below quantifiable levels.  216

217

Isopentenyl (iP)-type cytokinins: A significant difference (F = 10.94, P = 0.003) existed in the 218

overall pattern of iPA concentration changes between the two genotypes. The concentration of 219

2iP in genotype 233 peaked at week 2, declined at week 4 and remained unchanged throughout 220

the subsequent sampling dates (Table 2). In genotype 299 samples, 2iP was only quantifiable at 221

week 10.  The concentration of iPA in genotype 233 stayed relatively constant throughout the 222

time period studied, varying between 11 and 14 ng g-1 DW (Fig. 4). The concentrations of iPA 223

were significantly (P < 0.05) lower in the samples of genotype 299 than in genotype 233 at 224

weeks 0, 6 and 10 (Fig. 4). In genotype 299, the highest concentration of iPA (13 ng g-1 DW) 225

was observed at week 4. 226

227

The ratio of Z-type to iP-type cytokinins: Significant difference (P < 0.05) existed between 228

these two genotypes in the ratios of Z-type cytokinins (dhZ, t-Z-O-Glu, t-ZR, dhZR) to iP-type 229
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cytokinins (2iP, iPA). This ratio was approximately 3-fold higher in genotype 299 than in 230

genotype 233 during the first four weeks (Fig. 5). It then decreased as the season advanced. 231

232

Abscisic acid233

Concentrations of ABA were significantly lower in genotype 299 than in genotype 233 only at 234

the first sampling date (F = 14.49, P = 0.019) (Fig. 6). Afterwards, no significant differences235

were noted between these genotypes. The overall pattern of a continuous increase in ABA 236

concentration was observed for both genotypes (F = 2.22, P = 0.147).   237

238

ABA metabolites239

Concentrations of ABA-GE were initially 343 ng g-1 DW and 408 ng g-1 DW in long-shoot 240

samples of genotypes 299 and 233, respectively. As with ABA, the concentration of ABA-GE 241

in both genotypes continued to increase as the season progressed (Fig. 7). The overall pattern 242

of ABA-GE concentration change showed little difference (F = 0.36, P = 0.551) between the 243

two genotypes. Generally, the PA concentration was higher in genotype 233 than in genotype 244

299 (Fig. 8). The initial concentration of PA was 84 ng g-1 DW in genotype 233, and it 245

remained fairly consistent thereafter. Phaseic acid was only quantifiable at low concentrations246

in genotype 299 during the first four weeks, ranging from 21 to 46 ng g-1 DW. The overall 247

pattern of PA concentration changes between these two genotypes was significantly different 248

(F = 49.03, P < 0.001). Dihydrophaseic acid was only quantifiable in the samples of genotype 249

233, with concentrations ranging from 9 ng g-1 DW to 21 ng g-1 DW at all time points except 250
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that of week 6, where the level was below the limit of quantification (data not shown). 251

Dihydrophaseic acid was below quantifiable levels in all genotype 299 samples. Neither 7′-OH 252

ABA nor neoPA was quantifiable in either of the genotypes.  253

254

Discussion255

The ratio of Z-type to iP-type cytokinins in lodgepole pine long-shoot buds differed 256

between genotypes of high and low cone yield. This supports previous studies in which 257

cytokinins were shown to regulate bud differentiation and shoot development in Norway258

spruce (Bollmark et al. 1995; Chen et al. 1996) and radiata pine (Zhang et al. 2001; 2003).  In 259

angiosperms, cytokinin receptors have different affinities for Z-type and iP-type cytokinins260

(Spíchal et al. 2004; Romanov et al. 2006). Both cell fate and organ formation have been261

associated with local concentration gradients of Z-type and iP-type cytokinins (Frugis et al.262

2001). These hormones may also act as long-distance signals since Z-type cytokinins exist 263

predominantly in xylem sap whereas phloem sap mainly contains iP-type cytokinins (Corbesier 264

et al. 2003; Hirose et al. 2008).265

There is some evidence that Z-type cytokinins may favour female cone bud 266

differentiation. The largest differences in the ratio of Z-type to iP-type cytokinins were seen 267

from the middle of summer to early September.  In terms of development, this is no longer the 268

bud initiation stage, but corresponds to the early stages of differentiation. These ratio 269

differences disappeared by late in the growing season. In our study, the absolute amounts of Z-270

type cytokinins were higher than iP-type cytokinins in the higher cone producer. Our results for 271
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lodgepole pine accord with those of Morris et al. (1990) for Douglas-fir, in which272

concentrations of Z-type cytokinins were also higher than iP-type cytokinins in female cone 273

buds and vegetative buds, but not male cone buds.  Z-type cytokinins are derived from iP-type 274

compounds and not vice versa (Kakimoto 2003; Sakakibara 2006). Thus, the lower275

concentrations of 2iP and iPA in the genotype with better cone production indicates a higher 276

capability for Z-type cytokinin synthesis. Trans-zeatin riboside and iPA were the major 277

cytokinins in both of the genotypes, whereas t-Z-O-Glu was only quantifiable in genotype 299, 278

a good cone producer.  These three compounds were also found in Douglas-fir shoots with 279

differentiating cone buds (Kong et al. 2008; 2009).280

Abscisic acid metabolism differed between the two genotypes. The ABA oxidation281

pathway, which leads to DPA and PA, was more active in the low cone-producing genotype. 282

Kong and von Aderkas (2007) reported ABA utilization was genotype-dependent during283

conifer somatic embryogenesis; genotypes that responded to ABA supplementation during 284

maturation converted more ABA into PA and DPA. Concentrations of ABA in developing 285

buds are also sensitive to physiological intervention. When trees are subjected to cone 286

induction treatments, such as GA injection, ABA concentration decreases (Kong et al. 2008).287

Abscisic acid metabolism may also vary by the type of bud. In Pinus tabulaeformis, Bao and 288

Zheng (2005) found much higher ABA concentrations in female-sterile trees than in fertile 289

trees. 290

Cytokinins and ABA may play a role in regulating female cone differentiation but, to 291

date, studies are few and evidence is scant and mixed. In Douglas-fir, the lowest ABA292
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concentration was observed when bud primordia began to form (Kong et al. 2008; 2009). In 293

Pinus tabulaeformis, high levels of ABA have been correlated with female gametophyte 294

abortion in a female-sterile genotype (Bao and Zheng 2005). In other higher plants, cytokinin 295

levels increased during flowering induction (Lejeune et al. 1994; Corbesier et al. 2003). Higher 296

cytokinin concentrations were found in female gametophytes than in male gametophytes in 297

Blechnum spicant (Menéndez et al. 2009).298

We have shown that a genotype that characteristically had high cone yield also had 299

much higher ratios of Z-type to iP-type cytokinins compared with a low cone yield genotype. 300

Most of the pronounced changes occurred before week 6. This period corresponds to female 301

cone bud differentiation on the basis of our previous structural study of lodgepole pine long-302

shoot buds (von Aderkas et al. 2007). In addition, the dramatic increases of bud dry weight 303

between weeks 2 and 6 also indicate fast growth during cone bud differentiation and 304

development. Comparison of bud dry weight and moisture content between the high and low 305

yielding genotypes does not indicate a difference in the health of these trees. The buds in both 306

types grew equally well. The difference in cytokinin metabolism should be further investigated, 307

as this pathway may provide opportunities in developing new strategies for cone induction. For 308

example, cone bud gender in pines is known to be developmentally sensitive to exogenously 309

applied cytokinins (Wakushima 2004, Kong et al. 2011). To date, only adenine type cytokinins 310

have been used, e.g. 6-benzylaminopurine, with other more stable phenylurea types (e.g. 311

thidiazuron) untried. Cytokinins would appear to offer some yet unexplored possibilities in 312

female cone induction (Kong et al. 2011).313
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Figure legends447

448

Figure 1 Changes in dry weight of long-shoot buds during female cone differentiation in 449

genotype 299 (open circle) and genotype 233 (solid circle).  Sample collection started on 450

August 1, Mean ± SE, n > 30. 451

Figure 2 Changes in moisture content of long-shoot buds during female cone differentiation in 452

genotype 299 (open circle) and genotype 233 (solid circle). Sample collection started on453

August 1, Mean ± SE, n > 30. 454

Figure 3 Concentration of t-ZR in long-shoot buds during female cone differentiation in 455

genotypes 299 (open circle) and 233 (solid circle).  Sample collection started on August 1, 456

Mean ± SE, n=3. 457
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Figure 4 Concentration of iPA in long-shoot buds during female cone differentiation in458

genotypes 299 (open circle) and 233 (solid circle). Sample collection started on August 1,459

Mean ± SE, n=3. Asterisk (*) indicates a significant difference (P < 0.05) between genotypes460

at the individual time point.  461

Figure 5 Ratio of Z-type cytokinins to iP-type cytokinins in long-shoot buds during female 462

cone differentiation in genotypes 299 (open circle) and 233 (solid circle). Sample collection 463

started on August 1, Mean, n=3. Asterisk (*) indicates a significant difference (P < 0.05) 464

between genotypes at the individual time point.  465

Figure 6 Concentration of ABA in long-shoot buds during female cone differentiation in 466

genotypes 299 (open circle) and 233 (solid circle).  Sample collection started on August 1,467

Mean ± SE, n=3. Asterisk (*) indicates a significant difference (P < 0.05) between genotypes468

at the individual time point.  469

Figure 7 Concentration of ABA-GE in long-shoot buds during female cone differentiation in 470

genotypes 299 (open circle) and 233 (solid circle).  Sample collection started on August 1,471

Mean ± SE, n=3. 472

Figure 8 Concentration of PA in long-shoot buds during female cone differentiation in 473

genotypes 299 (open circle) and 233 (solid circle).  Sample collection started on August 1,474

Mean ± SE, n=3.  Asterisk (*) indicates a significant difference (P < 0.05) between genotypes475

at the individual time point. 476
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Table 1  Female cone production per ramet in lodgepole pine genotypes 299 and 233.  Cone 

yield data was collected by Vernon seed orchard company (VSOC) during a three-year period

before sampling.  Mean ± SE, n = 6. 

Genotype 299 Genotype 233

Ramet Cone yield Ramet Cone yield

BB91 267 ± 22 AA89 83 ± 8 

P91 267 ± 44 BB63 38 ± 7 

T67 208 ± 22 O93 60 ± 21 

U103 300 ± 52 S66 108 ± 33 

Y99 217 ± 22 S79 58 ± 8 

O100 142 ± 22 V64 47 ± 3 

Total 233 ± 17 Total 66 ± 8 
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Table 2 Concentrations (ng g-1 DW) of cytokinins in long-shoot buds during female cone 

differentiation in genotypes 233 and 299. Sample collection started on August 1, Mean ± SE, 

n=3.  NQ stands for not quantifiable.

Week dhZ t-Z-O-Glu 2iP

233 299 233 299 233 299

0 12 ± 2 NQ NQ 7± 3 15.3 ± 0.1 NQ 

2 10± 2 NQ NQ 7 ±4 18± 2 NQ 

4 10± 1 NQ NQ 10.1± 0.4 14± 2 NQ 

6 NQ NQ NQ 7 ± 34 14 ±1 NQ 

10 NQ NQ NQ NQ 13 ± 1 6 ± 3
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