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Abstract: This paper presents a new approach for the maintenance optimization of concrete 

bridge decks, which combines a stochastic deterioration model and a multi-objective 

optimization model. The stochastic deterioration model is based on the first-order Markov chain 

that predicts the probabilistic time-variation of the condition of bridge decks. The multi-objective 

optimization model takes into account two important and conflicting criteria: the minimization of 

maintenance costs, and the maximization of the network condition. This approach generates the 

solution that achieves the best compromise between these competing criteria, while considering 

the uncertainty in bridge deck deterioration. The feasibility and capability of the proposed 

approach is demonstrated on a network of bridge decks obtained from the Ministére des 

Transports du Québec database. This example illustrates the effectiveness of the proposed 

approach in determining the optimal set of maintenance alternatives for reinforced concrete 

bridge decks when considering two or more relevant optimization criteria. 

 

 

Keywords: Concrete bridge deck, maintenance management, multi-criteria optimization, 

Markov-chain, deterioration model. 
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Introduction 

Highway bridges constitute a class of safety-critical infrastructure systems that should be 

analyzed with rigor as their failure can have catastrophic consequences, including multiple 

fatalities and injuries, complete loss of service, major traffic disruption, and considerable socio-

economic impacts.  A large percentage of highway bridge structures in North America are 

classified as structurally deficient or functionally obsolete (US DOT 1999). Their rehabilitation 

and renewal cost is estimated at hundreds of billions of dollars that cannot be accommodated by 

highway agencies. The magnitude of the problem poses great technological and economic 

challenges, specifically which bridge should be given high priority for maintenance and what is 

the optimal maintenance strategy that will reduce its risk of failure and life cycle cost.  

 

The concrete bridge deck system is considered the weakest link of highway bridges in North 

America from the durability viewpoint. Many bridge deck systems are experiencing extensive 

deterioration, which require major rehabilitation or replacement every 15 to 20 years, while other 

bridge systems may last for 40 years or more (FHWA 2001). This is mainly due to the effects of 

direct exposure to traffic loads, frequent freezing and thawing cycles, and corrosive effects of de-

icing chemicals used in winter, in addition to design/construction-related effects, such as, poor 

workmanship, inadequate concrete cover, and lack of inspection and preventive maintenance. 

These effects, with time, results in wear, fatigue, cracking, corrosion of reinforcing steel, 

spalling, delamination, and eventually a complete failure. The high costs associated with the 

maintenance of the large stock of aging and deteriorating decks and the limited funds allocated 

for their maintenance compound the problem and highlight the need for systematic and effective 

approaches to optimize maintenance decisions and ensure adequate reliability.  
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To address this problem, several countries have developed or initiated the development of bridge 

management systems (BMS) to optimize the inspection and maintenance of deteriorated 

structures. Different approaches to maintenance optimization have been implemented in these 

systems ranging from simplified economic models to sophisticated Markovian decision 

processes. The development of a practical and effective bridge maintenance management system 

depends primarily on the existence of reliable performance prediction models and effective 

optimization algorithms. Given the time-dependence and uncertainty of bridge performance, a 

stochastic modeling is required.  Furthermore, bridge maintenance management aims at 

improving the overall performance of a bridge or a network through the satisfaction of several 

and possibly conflicting objectives, which may include the minimization of maintenance costs, 

maximization of network condition, minimization of risk of failure, minimization of bridge 

closures, etc. Multi-criteria optimization techniques provide a practical tool for optimal 

prioritization of bridges for maintenance. 

 

In this paper, a new approach for maintenance management that integrates stochastic 

deterioration modeling with multi-criteria maintenance optimization is presented. This approach 

is based on the minimization of maintenance costs and maximization of the average condition of 

a network of concrete bridge decks. The compromise programming approach is used to 

determine the optimal solutions and first-order Markov chains are used to predict the 

probabilistic time-variation of deck conditions. A numerical example that illustrates the 

application of the proposed approach to the maintenance management of a small network of 

damaged bridge decks is also presented. 

 4



 

Stochastic Performance Prediction of Bridge Decks Using Markov-chain models 

Markov chains are the most commonly used stochastic techniques for modeling and predicting 

the performance of different types of infrastructure facilities such as pavements, bridges, sewer 

pipes, and water mains (Micevski et al. 2002). Markov-chain models are based on the concept of 

probabilistic cumulative damage, which predicts changes of component condition over multiple 

transition periods (Bogdanoff 1978). The main advantages of Markov-chain models are: 1) 

ability to reflect the uncertainty from different sources such as, uncertainty in initial condition, 

uncertainty in applied stresses, presence of condition assessment errors, and inherent uncertainty 

of the deterioration process (Lounis 2000); 2) incremental models that account for the present 

condition in predicting the future condition (Madanat et al. 1995); and 3) practicality as they can 

be used to predict the performance of a large number of facilities because of their computational 

efficiency and simplicity of use (Morcous and Rivard 2003).  

 

A Markov chain is a special case of the Markov process whose development can be treated as a 

series of transitions between discrete states. A stochastic process is considered as a first-order 

Markov process if the probability of a future state in the process depends only on the present 

state and not on how it was attained (Parzen 1962). Markov-chains are used as performance 

prediction models for bridge components by defining discrete condition states and accumulating 

the probability of transition from one condition state to another over multiple discrete time 

intervals. For a condition rating scale that has (S) number of discrete condition states, transition 

probabilities are represented by a matrix of order (S x S) called the transition probability matrix 

(P). Each element (p
i,j

) in this matrix represents the probability that the condition of a bridge 
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component will change from state (i) to state (j) during a certain time interval called the 

transition period. The future condition of a bridge component after any number of transition 

periods (t) is represented by a vector of order (1 x S) called the condition vector (Dt) that can be 

written as follows: 

 

 [1] 

 

Each element in this vector represents the estimated percentage of the bridge component in a 

particular condition state after t periods or transitions. If the condition vector (Dt-1) that describes 

the present condition of a bridge component is known, the future condition vector (Dt) can be 

obtained as follows (Parzen 1962): 

 

[2a]      PDD tt ×= −1       

 

 

[2b] 

 

 

 

The state-of-the-art bridge management systems (BMSs), such as Pontis and BRIDGIT, have 

adopted Markov-chain models for predicting the performance of bridge components, systems, 

and networks (Golabi and Shepard 1997; Hawk 1995). The transition probability matrices in 

these systems were initially obtained using an expert judgment elicitation procedure, which 

Dt    = dt
S
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required the participation of several experienced bridge engineers (Thompson and Shepard 

1994). A statistical updating of these matrices is possible using the Bayesian approach when a 

statistically significant number of consistent and complete sets of condition data become 

available over the years (Golabi and Shepard 1997). Such updating enables to improve the 

accuracy of the Markov-chain models.   

 

Multi-Criteria Maintenance Optimization of Bridges  

In the literature, most approaches to maintenance optimization of highway bridges are based on 

single objective optimization, and more specifically on the minimization of maintenance costs. 

Similarly, in most bridge management systems, the main criterion used for maintenance 

optimization is the minimization of life cycle cost, which represents the present value of all the 

costs incurred throughout the life cycle of a bridge structure or network, including, the costs of 

design, construction, maintenance, repair, rehabilitation, replacement, demolition, and in some 

instances users’ costs. The actual maintenance optimization problem is multi-objective in nature 

as the bridge owner or manager seeks to satisfy simultaneously several and possibly conflicting 

criteria, such as the minimization of costs to owners and users, improvement of safety, 

improvement of serviceability and functionality, minimization of maintenance time, 

minimization of traffic disruption, etc. The solution of this maintenance management problem 

can be obtained using the techniques of multi-criteria or multi-objective optimization. 

 

Concept of Pareto Optimality 

For single-objective optimization problems, the notion of optimality is very well defined as the 

minimum or maximum value of some given objective function is sought. In multi-criteria (or 
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multi-objective or vector) optimization problems, the notion of optimality is not obvious because 

of the presence of multiple, incommensurable and conflicting objectives. In general, there is no 

single optimal (non-dominated or superior) solution that simultaneously yields a minimum (or 

maximum) for all objective functions. The Pareto optimality concept has been introduced as the 

solution to multi-objective optimization problems (Koski 1984; Eschenauer et al. 1990). A 

solution x* is said to be a Pareto optimum if and only if there exists no solution in the feasible set 

of solutions that may yield an improvement of some criteria without worsening at least one other 

criterion. The multi-criteria optimization problem can be mathematically stated as follows: 

 

[3a]  Find:  x*     =  Optimum 

[3b]  Such that:   f (x) = [ f1(x)  f2(x) ………. fm(x)  ]  =  minimum 

[3c]       and           x ∈ Ω   

where f(x) is the vector of optimization criteria (e.g. risk of failure, maintenance cost, traffic 

delay); and Ω is the set of feasible solutions that satisfy the problem constraints (e.g. budget, 

condition, practicality). The concept of Pareto optimality mentioned earlier can be stated 

mathematically as follows (Koski 1984; Lounis and Cohn 1993):  x* is a Pareto optimum if: 

 

[4a]    fi (x) ≤ fi (x*)                      for i=1,2,…,m    

[4b]      fk (x) < fk (x*)                    for at least one k.    

  

In general, there are several Pareto optimal solutions (called also non-dominated solutions) for a 

multi-criteria optimization problem as shown in Figure 1. Once the set of Pareto optima is 

generated, the “best” solution that achieves the best compromise between all competing 

objectives is sought. Such a solution is refereed to as “satisficing” solution in the multi-criteria 
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optimization literature (Koski 1984). Several techniques have been developed to determine the 

satisficing solution in multi-criteria optimization problems, including the multi-attribute utility 

theory (Von Neumann and Morgenstern 1947; Keeney and Raiffa 1976), weighted sum approach 

(Zadeh 1963), compromise programming, ε-constraint approach, sequential optimization (Koski 

1984; Duckstein 1984; Osyzcka 1984; Fu and Frangopol 1990; Eschenauer et al. 1990; Lounis 

and Cohn 1993). In this paper, the compromise programming approach is used to solve the 

multi-criteria maintenance optimization problem.     

 

In compromise programming, the satisficing solution is defined as the solution that minimizes 

the distance from the set of Pareto optima to the so-called “ideal solution”. This ideal solution is 

defined as the solution that yields the minimum (or maximum) values for all criteria. Such a 

solution does not exist, but is introduced in compromise programming as a target or a goal to get 

close to, although impossible to reach. The criterion used in compromise programming is the 

minimization of the deviation from the ideal solution (f*) measured by the family of (Lp) metrics 

(Koski 1984; Lounis and Cohn 1993). In this paper, a multi-criteria optimality index introduced 

by Lounis (2004), “MOI”, is defined as the value of the weighted and normalized deviation from 

the ideal solution (f*) measured by the family of (Lp) metrics: 

[5]    
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This family of (Lp) metrics provides a measure of the closeness of the satisficing solution to the 

ideal solution. The value of the weighting factors (wi) of the optimization criteria fi (i =1,…,m) 

depends  primarily on the attitude of the decision-maker toward risk. The optimization will be 
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carried out using different weights of all criteria to show the impact of weighting factors on the 

optimal decision. The choice of (p) indicates the importance given to different deviations from 

the ideal solution. For example, if (p = 1), all deviations from the ideal solution are considered in 

direct proportion to their magnitudes, which corresponds to a group utility (Duckstein 1984). 

However, for (p ≥2), a greater weight is given to larger deviations from the ideal solution, and 

(L2) represents the Euclidian metric. For (p=∞), the largest deviation is the only one taken into 

account and is referred to as the Chebyshev metric or mini-max criterion and (L∞) corresponds to 

a purely individual utility (Duckstein 1984; Koski 1984; Lounis and Cohn 1995). In this paper, 

the Euclidean metric is used to determine the multi-criteria optimality index and corresponding 

satisficing solution.   

 

Formulation of Bridge Deck Maintenance Optimization 

The application of multi-criteria optimality concept to infrastructure maintenance management is 

very limited. Examples are those proposed by Lounis and Vanier (1998), Fwa et al. (2000), and 

Lounis (2004). These studies presented the application of multi-criteria optimization to prioritize 

networks of bridges or pavements for maintenance according to several and possibly conflicting 

criteria, such as risk of failure, cost, and traffic disruption. However, most of these models were 

limited to scheduling maintenance alternatives for a given year not over an entire planning 

horizon, which requires accounting for deterioration modeling, effectiveness of maintenance 

projects, and life cycle costing. The proposed formulation integrates the use of Markov-chains 

for modeling deterioration with the multi-criteria optimization model proposed earlier for a 

multi-year maintenance management. In this formulation, each bridge deck is classified into one 

of four predefined environmental categories that represent different combination of parameters 
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that affect bridge deck deterioration, such as total traffic volume, truck traffic volume, highway 

class, and climatic region (Morcous et al. 2003). The objectives of such a classification are 

twofold: i) achieve reliable performance prediction; and ii) enable grouping of bridge decks that 

are subjected to similar environments to reduce the computational complexity of the optimization 

problem. The parameters of the proposed formulation are defined as follows: 

 

N =  number of bridge decks; 

T  = length of the planning horizon in years; 

M = number of feasible maintenance alternatives for bridge decks; 

Xnt = maintenance vector (M x 1) of deck n during year t; 

 

 x nt
1

              

                                                             
 x nt

2

Xnt = . 
 [6] 

 . 

  x nt
M

 

where, 

xnt
m  

       =  binary variable that indicates that maintenance alternative m is implemented for 

deck n at year t (1 if implemented, 0 if not implemented). 

 

C = unit cost matrix (S x M) 
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  c 
S,1 c 

S,2    ...... c 
S,M

 c S-1,1 c S-1,2 ...... c S-1,M

C  =

     

   .    . ......    . 

 
[7] 

   .    . ......    . 

  c 1,1 c 1,2 ...... c 1,M

 

where, 

c
s,m  

       = unit cost of implementing maintenance alternative m when bridge deck is in 

condition state s.  

 

Cnt = unit cost of implementing any maintenance alternative on bridge deck n at year t 

 

[8]     ntntnt XCDC ××=  

 

where, Dnt is the condition vector of bridge deck n at year t. This vector is obtained using the 

initial condition vector and the transition probability matrix corresponding to the deck 

environmental category using Equation 2a.  It should be noted that some constraints may be 

introduced to determine the applicability of various maintenance alternative according to bridge 

deck conditions, such as restricting the implementation of the replacement alternative for bridge 

decks with very poor or critical conditions, and assigning the “do-nothing” alternative to those 

decks with “like new” or “good” conditions. These constraints may vary significantly from one 

agency to another and are defined by bridge experts based on their performance requirements 

and budget availability (i.e., user defined). Other constraints, such as non-negativity constraints, 

are applied to this optimization model in order to guarantee the feasibility of the solutions 
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obtained. 

 

The two optimization criteria or objective functions defined in this formulation include: 1) 

minimization of the present value of the total maintenance cost for all bridge decks over the 

entire planning horizon using a discount rate (r), and 2) maximization of the weighted average of 

the network condition of bridge decks over the entire planning horizon. These objective 

functions can be written as follows: 

[9]      ∑
∑=

=

=

=

+

×
Tt

1t

t

Nn

1n

ntn

)r1(

CA

Minimize  

 [10]      
T

Dk

Maximize

Tt

t

Nn

n

ntn∑∑
=

=

=

=

×
1 1    

where, 

An = total surface area of bridge deck n; 

kn           = factor that indicates the importance of bridge deck n relative to other decks.  

 

This importance factor is a function of the traffic volume, detour length, and deck area. It is a 

factor that indirectly account for users’ costs. The two objective functions formulated above are 

examples of conflicting criteria in maintenance optimization that will be solved using the multi-

criteria optimality index shown earlier. Figure 1 is a schematic illustration of the conflicting 

nature of these two criteria and the corresponding Pareto optimal solutions (called also non-

dominated solutions). Also, two dominated solutions are shown to illustrate the concept of 

dominance. Other objective functions, such as minimization of risk of failure and minimization 
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of traffic disruption, can be added in the future using the same procedures. Also, users’ costs and 

failure costs can be discounted and added to the above maintenance cost when adequate cost data 

become available. 

 

Illustrative Example 

The approach presented in this paper is applied to the maintenance optimization of 10 concrete 

bridge decks using field data obtained from the Ministére des Transports du Québec (MTQ) 

database.  This database includes: i) inventory data, which consist of bridge identification, 

description, environment, and geometry; ii) condition data, which contain the results of the 

detailed visual inspections carried out on all bridges approximately every three years; and iii) 

maintenance data, which include the estimated costs and expected times for recommended 

maintenance and rehabilitation activities. The condition data comprises two condition ratings 

(MTQ 1995): (i) Material condition rating (MCR), which represents the condition of an element 

based on the severity and extent of observed defects, and (ii) Performance condition rating 

(PCR), which describes the condition of an element based on its ability to perform the intended 

function in the structure. Both the MCR and PCR are represented in an ordinal rating scale that 

ranges from 6 to 1, where 6 represents the condition of a new and undamaged element. Because 

MCR is the governing parameter in most of MTQ maintenance decisions, transition probability 

matrices are developed for MCR only. Table 1 shows the definition of each condition state in the 

MCR scale for bridge deck components as listed in the MTQ inspection manual. Table 1 also 

lists the definition of the four environmental categories and the four maintenance alternatives 

that will be used in this illustrative example. 
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The MTQ data are screened by filtering out the records with inadequate inventory data, missing 

condition data, or non-negative deterioration rates. The filtered data were used in developing 

transition probability matrices for concrete bridge decks protected with asphaltic concrete (AC) 

overlay in four environmental categories (benign, low, moderate, and severe). These matrices 

developed for a 1-year transition period when the “do-nothing” maintenance alternative is 

implemented (i.e. no maintenance is undertaken) using the percentage prediction method. In this 

method, the probability that the condition of an element will change from state (i) to state (j) 

during a certain time interval is calculated as the ratio of the number of transitions from state (i) 

to state (j) within this time period to the total number of elements in state (i) before the transition. 

Since, the MTQ bridge decks are inspected approximately every three years, transition 

probabilities were calculated for a 3-year transition period first, and then modified to generate 

those corresponding to a 1-year transition period. Table 2 shows the transition probability 

matrices developed for different combinations of environmental categories and maintenance 

alternatives (Morcous and Lounis 2005). For simplification, the cells of the matrices shown in 

Table 2, when the “do-nothing” maintenance alternative is implemented, are considered zeros 

except for the diagonal line and the line above it assuming that a bridge deck can change by, at 

most, one condition state in a year. For the other three possible maintenance alternatives, three 

matrices were obtained from the literature and based on personal judgment to represent the 

impact of each maintenance alternative on the condition of concrete bridge decks.  

 

 Table 3 shows the estimated unit cost matrix that lists the estimated unit cost of each 

maintenance alternative when applied to different condition states. Actual unit costs may slightly 

differ from those listed, however, the unit costs of each alternative relative to other alternatives 

 15



are similar. The feasibility of each maintenance alternative depends on the aggregated MCR 

(AMCR) of a bridge deck as shown in Table 3. The AMCR is calculated as the sum of product of 

the deck condition vector by the condition state vector (i.e., a vector of MCR). A maintenance 

alternative cannot be applied to a bridge deck unless its AMCR falls into the specified range. 

This constraint was made to avoid unrealistic maintenance decisions and improve the efficiency 

of the optimization model by eliminating infeasible alternatives.  

 

Table 4 lists the actual data of 10 bridge decks representing a small network used for validating 

the proposed approach. The surface area, importance factor, and environmental category of each 

bridge required by the maintenance optimization model presented earlier are also listed in Table 

4. The importance factor that represents the relative importance of different bridge decks in the 

network is calculated by multiplying the deck area, average daily traffic, and detour length. This 

factor is used to assign a high priority to bridge decks with higher traffic volumes, longer 

detours, and larger surface areas. Table 4 also shows the initial condition vector of each deck, 

which represents the deck condition at the beginning of the planning horizon. This vector was 

computed based on the current MCR of the five elements of a bridge deck, which is determined 

during the periodic visual inspection.  Table 5 lists these five elements along with their weights 

(i.e., balancing factors) as defined by the MTQ bridge experts in the MTQ inspection manual 

(MTQ 1995).    

    

In order to apply the proposed multi-criteria optimization approach, the extreme values of each 

objective function have to be determined to be used in calculating the multi-criteria optimality 

index (MOI) as shown in Equation 5. Because the minimization of the maintenance cost results 
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in minimum deck condition and the maximization of the maintenance cost results in maximum 

deck condition, only two optimization cases are required. The results of these two cases are listed 

in the first two rows of Table 6. Figure 2 shows the details of these two cases by plotting the 

annual cost and aggregated MCR of the 10 bridge decks over the ten-years period. Case # 1 

represents the minimum maintenance requirements of the 10 decks, which results in a continuous 

decline in the average condition. While, case # 2 represents the immediate fulfillment of all 

maintenance needs of the 10 decks, which results in steady excellent condition.  

 

Using the compromise programming and the (L2) metric, the proposed MOI is determined for the 

10 bridge decks for three cases: (i) Case # 3, equal weights are assigned to both condition and 

cost criteria; (ii) Case # 4, weights of 0.75 and 0.25 are assigned to the condition and cost criteria 

respectively; and (iii) Case # 5, weights of 0.25 and 0.75 are assigned to the condition and cost 

criteria, respectively. These three cases are just examples of possible maintenance and 

expenditure practices that transportation agencies may adopt. The last three rows of Table 6 list 

the total present value and global aggregated MCR (AMCR) of each of the three cases. Figure 3 

shows the details of each case by plotting the annual cost and AMCR of the 10 bridge decks over 

the ten-year period. Case # 3 represents the spending plan that maintains a satisfactory condition 

of the network, while keeping maintenance expenditures at an average level. Case # 4 represents 

the spending plan that is close to case # 2, where more importance is given to improving the 

network condition than reducing maintenance budget. On the other hand, case # 5 represents the 

spending plan that is close to case # 1, where more importance is given to limiting maintenance 

budget than upgrading the network condition. 
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For illustrative purposes, the schedule of maintenance activities of case # 4 is shown in Table 7. 

This schedule lists the maintenance alternative chosen for each bridge deck, total annual cost, 

average condition vector, and AMCR for every year in the planning horizon. The global AMCR 

and the total present value calculated using a 5% discount rate are also shown at the bottom of 

the table.  

 

Summary and Conclusions 

This paper presents a new approach to programming maintenance alternatives for a network of 

concrete bridge decks, which can be applied to other infrastructure components, facilities, and 

networks. This approach integrates a multi-criteria optimization model with a Markov-chain 

deterioration model to perform a stochastic multi-criteria decision analysis for maintenance 

management of structurally deteriorated bridge decks. The major merits of the approach are: (i) 

consideration of all possible (even conflicting) objective functions; (ii) ability to account for the 

uncertainty associated with bridge deck deterioration; and (iii) rational and efficient decision-

making regarding the selection of maintenance alternatives for a network of bridge decks. 

 

The multi-objective optimization problem was formulated to achieve a satisfactory trade-off 

between two competing criteria: maximization of deck condition, and minimization of 

maintenance cost. The use of compromise programming and the proposed multi-criteria 

optimality index yield the optimal solution as the one that has the minimum weighted and 

normalized deviation from the ideal solution in a set of Pareto optima. A small network of 10 

concrete bridge decks was used to implement and illustrate the capabilities of the proposed 

approach. Inventory and condition data of these decks were obtained from the Ministére des 
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Transports du Québec database. Several transition probability matrices were developed using the 

condition data of thousands of bridge decks to represent the impact of four different 

environments. The total present value and the average aggregated material condition rating were 

obtained for different trade-offs between the condition and cost criteria. This investigation shows 

that the use of multi-criteria optimization with Markov-chain models is another step towards the 

development of more powerful bridge management systems that will enable the decision-maker 

to select several and conflicting criteria, while accounting for uncertainty to determine the 

optimal maintenance alternatives.      
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List of symbols 

S  = number of discrete condition states  

P = the transition probability matrix 

Dnt = condition vector of bridge deck n at year t 

p
i,j

 = transition probability from state i to state j 

N =  number of bridge decks; 

T  = length of the planning horizon in years; 

M = number of feasible maintenance alternatives for bridge decks; 

Xnt = maintenance vector (M x 1) of deck n during year t; 

xnt
m  

       =  binary variable that indicates that maintenance alternative m is implemented for 

deck n at year t  

C = unit cost matrix (S x M) 

c
s,m  

       = unit cost of implementing maintenance alternative m when bridge deck is in 

condition state s.  

Cnt = unit cost of implementing any maintenance alternative on bridge deck n at year t 

An = total surface area of bridge deck n; 

kn = factor that indicates the importance of bridge deck n relative of other decks.  
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Table 1. Definition of condition ratings, maintenance alternatives, and environmental categories 

 Item Code Name Description 

Material Condition Ratings 6 Like New Condition No observed material defects

5 Good Condition Observed material defects are up to 5% of deck surface area

4 Fair Condition Observed material defects are over 5% to 10% of deck surface area

3 Poor Condition Observed material defects are over 10% to 15% of deck surface area

2 Urgent Condition Observed material defects are over 15% to 20% of deck surface area

1 Critical Condition Observed material defects are over 20% of deck surface area

Maintenance Alternatives 1 Do Nothing Activities that do not change the deck structure (e.g. routine cleaning)

2 Repair Activities that require partial bridge closure (e.g. patching, sealing)

3 Rehabilitate Activities that require full bridge closure (e.g. add overlay or cover)

4 Replace Complete replacement of the deck

Environmental Categories 1 Benign There are no environmental factors that affect the element deterioration

2 Low Environmental factors have minor impacts on the element deterioration

3 Moderate Environmental factors maintain the progress of element deterioration

4 Severe Environmental factors speed up the element deterioration significantly  
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Table 2. Transition probabilities for different maintenance alternatives and environmental 

categories 

6 5 4 3 2 1

1 1 6 0.98 0.02 0 0 0 0

5 0 0.96 0.04 0 0 0

4 0 0 0.93 0.07 0 0

3 0 0 0 0.84 0.16 0.00

2 0 0 0 0 0.92 0.08

1 0 0 0 0 0 1.0

2 6 0.93 0.07 0 0 0 0

5 0 0.93 0.07 0 0 0

4 0 0 0.94 0.06 0 0

3 0 0 0 0.94 0.06 0

2 0 0 0 0 0.90 0.10

1 0 0 0 0 0 1.0

3 6 0.83 0.17 0 0 0 0

5 0 0.86 0.14 0 0 0

4 0 0 0.95 0.05 0 0

3 0 0 0 0.91 0.09 0

2 0 0 0 0 0.84 0.16

1 0 0 0 0 0 1.0

4 6 0.77 0.23 0 0 0 0

5 0 0.81 0.19 0 0 0

4 0 0 0.87 0.13 0 0

3 0 0 0 0.93 0.07 0

2 0 0 0 0 0.88 0.12

1 0 0 0 0 0 1.0

2 1,2,3,4 6 1.00 0 0 0 0 0

5 1.00 0 0 0 0 0

4 0 1.00 0 0 0 0

3 0 0 1.00 0 0 0

2 0 0 0 1.00 0 0

1 0 0 0 0 1.00 0

3 1,2,3,4 6 1.00 0 0 0 0 0

5 1.00 0 0 0 0 0

4 1.00 0 0 0 0 0

3 0 1.00 0 0 0 0

2 0 0 1.00 0 0 0

1 0 0 1.00 0 0 0

4 1,2,3,4 6 1.00 0 0 0 0 0

5 1.00 0 0 0 0 0

4 1.00 0 0 0 0 0

3 1.00 0 0 0 0 0

2 1.00 0 0 0 0 0

1 1.00 0 0 0 0 0

MCR / Transition ProbabilityMaintenance 

Alternative

Environmental 

Category

Material Condition 

Rating (MCR)

0

0

0

0
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Table 3. Unit costs of selected maintenance alternatives 

1 2 3 4

6 0 0 0 400

5 0 40 120 400

4 0 80 180 400

3 0 120 240 400

2 0 160 300 400

1 0 200 360 400

AMCRmax 6 6 4 3

AMCRmin 3 2 1 1

Maintenance Alternative / Unit Cost ($/m
2
)

MCR
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Table 4. Bridge deck data used in illustrative example 

3 4 5 6 7 6 5 4 3 2 1

00005 1296 9000 6 22.7% 2 4 4 5 5 5 0 0.6 0.4 0 0 0

00006 193 3070 47 9.0% 4 4 4 3 4 4 0 0 0.8 0.2 0 0

00018 210 1120 111 8.5% 3 4 4 4 4 4 0 0 1 0 0 0

00048 378 1669 46 9.4% 3 6 6 5 5 5 0.4 0.6 0 0 0 0

00076 235 1272 51 5.0% 3 3 3 5 5 5 0 0.6 0 0.4 0 0

00088 452 4300 20 12.6% 3 4 4 5 6 5 0.2 0.4 0.4 0 0 0

00109 254 2390 25 4.9% 2 3 4 5 5 5 0 0.6 0.2 0.2 0 0

00150 1273 1110 55 25.2% 4 4 3 2 3 2 0 0 0.2 0.4 0.4 0

00204 1380 690 8 2.5% 2 6 6 5 5 5 0.4 0.6 0 0 0 0

00241 197 100 29 0.2% 1 5 5 5 4 5 0 0.8 0.2 0 0 0

MCR / Condition ProbabilityAverage 

Daily 

Traffic

Deck 

ID

Enviorn. 

Category

Surface 

Area 

(m
2
)

Detour 

Length 

(km)

Importance 

Factor

Deck Element / MCR
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Table 5. Bridge deck elements and corresponding balance factors 

Element ID Description Balance Factor

3 Exterior Face 1 0.20

4 Exterior Face 2 0.20

5 End Portion 1 0.20

6 Middle Portion 0.20

7 End Portion 2 0.20  
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Table 6. Optimization results for different cases of compromise programming 

No. Description

1 Min. Condition + Min Cost 336,666$       4.11

2 Max. Condition + Max. Cost 840,285$       5.95

3 50% Condition + 50% Cost 497,192$       5.20

4 75% Condition + 25% Cost 664,399$       5.74

5 25% Condition + 75% Cost 418,989$       4.49

Optimization Case  Total 

Present 

Value 

Global 

AMCR
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Table 7. Schedule of maintenance activities for optimization case # 4 

00005 00006 00018 00048 00076 00088 00109 00150 00204 00241 6 5 4 3 2 1

1 2 3 1 1 1 2 2 2 1 2 319,899 0.36 0.31 0.20 0.12 0.00 0.00 4.90

2 2 1 3 2 1 2 2 2 1 1 195,997 0.68 0.19 0.11 0.02 0.00 0.00 5.52

3 2 2 1 1 1 2 2 2 1 2 68,133   0.79 0.18 0.02 0.02 0.00 0.00 5.73

4 1 2 2 1 3 1 1 2 1 1 67,006   0.88 0.10 0.01 0.00 0.00 0.00 5.87

5 2 2 2 2 1 2 2 2 1 1 14,166   0.95 0.04 0.01 0.00 0.00 0.00 5.94

6 1 2 2 1 2 2 2 2 1 1 6,233     0.94 0.06 0.01 0.00 0.00 0.00 5.93

7 1 2 2 2 1 2 1 2 1 2 3,815     0.93 0.06 0.01 0.00 0.00 0.00 5.92

8 1 2 1 1 1 2 2 2 1 2 787        0.88 0.10 0.01 0.00 0.00 0.00 5.86

9 2 2 2 2 1 2 1 1 1 1 15,788   0.89 0.10 0.01 0.00 0.00 0.00 5.87

10 1 2 2 1 1 1 1 2 1 2 11,676   0.88 0.10 0.02 0.00 0.00 0.00 5.86

Total Present Value 664,399 Global AMCR 5.74

Year
Bridge Deck / Maintenance Alternative Annual 

Cost

MCR / Condition Probability Annual 

AMCR
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Figure Captions 

Fig. 1. Schematic illustration of Pareto optima and conflicting optimization criteria 

Fig. 2. Annual cost and aggregated MCR for optimization cases: (a) Case # 1 and (b) Case # 2 

Fig. 3. Annual cost and aggregated MCR for optimization cases: (a) Case # 3, (b) Case # 4 and 

(c) Case # 5 
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