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Comprehensive Review of Structural Deterioration of Water

Mains: Statistical Models

Y. Kleiner and B. Rajani

Abstract: This paper provides a comprehensive (although not exhaustive) overview of a large

body of work carried out in the last twenty years to quantify the structural deterioration of water

mains by analysing historical performance data. The physical mechanisms that lead to pipe

failure often require data that are not readily available and are costly to obtain. Thus, physical

models may currently be justified only for major transmission water mains, where the cost of

failure is significant, whereas statistical models, which can be applied with various levels of

input data, are useful for distribution water mains. The statistical methods are classified into two

classes, deterministic and probabilistic models. Sub classes are probabilistic multi-variate and

probabilistic single-variate group processing models. The review provides descriptions of the

various models including their governing equations, as well as critiques, comparisons and

identification of the types of data that are required for implementation. In some cases, a brief

description of the methodology is provided where a decision support system was developed

based on a specific statistical model.

A companion paper “Comprehensive Review of Structural Deterioration of Water Mains:

Physical Models” helps to complete the picture of the work that has been done on the subject of

water main deterioration and failure.

Key words :water main deterioration, pipe failure, probabilistic models, statistical analysis of

water main breaks, water main rehabilitation, water main renewal.
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Introduction

Distribution networks often account for up to 80% of the total expenditure involved in water

supply systems. As water mains deteriorate both structurally and functionally, their breakage

rates increase, network hydraulic capacity decrease, and the water quality in the distribution

system may decline. Scarce capital resources make it essential for planners and decision-makers

to seek the most cost-effective rehabilitation and renewal strategy. The ideal strategy should

exploit the full extent of the useful life of the individual pipe, while addressing issues of safety,

reliability, water quality, and economic efficiency.

Kirmeyer et al. (1994) estimated that in 1992, in the United States, more than two thirds of

all existing water pipes were metallic (about 48% cast iron and 19% ductile iron), about 15%

were asbestos-cement and the remaining 18% were plastic, concrete and others. In contrast, of

the new pipes being installed about 48% are ductile iron, 39% PVC and 12.5% concrete pressure.

Rajani and McDonald (1995), in a survey encompassing 21 Canadian cities (about 11% of the

population of Canada) reveal a similar distribution of pipe material types.

The deterioration of pipes may be classified into two categories. The first is structural

deterioration, which diminishes the pipes structural resiliency and its ability to withstand the

various types of stresses imposed upon it. The second is the deterioration inner surfaces of the

pipes resulting in diminished hydraulic capacity, degradation of water quality and reduced

structural resiliency in cases of severe internal corrosion. Both categories of deterioration

contribute to diminish the reliability of the distribution network. Figure 1 provides a holistic

account of all the components that ideally should be considered in deciding on water main

renewal and rehabilitation. Each of the components can be classified into major factors and

mechanisms of: water quality, hydraulic capacity, structural performance and behaviour, pipe

breakage, network reliability, economics, and decision-making process. With the current state of

knowledge, however, there exists no model that can explicitly and quantitatively accommodate

all of the components.
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Figure 1. Factors and mechanisms feeding into the decision-making process: holistic view
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The physical mechanisms that lead to pipe breakage are often very complex and not

completely understood. The facts that most pipes are buried, and that relatively little data is

available about their breakage modes (due to historical lack of awareness at water utilities of the

importance of collecting such data) also contribute to the incomplete knowledge. It appears that

while the physical modelling may be scientifically more robust, it is, to date, limited by existing

knowledge and available data. Some of the data that are required for the physical models can be

obtained albeit at significant costs. These costs may currently be justified only for major

transmission water mains, where the cost of failure is significant. In contrast, the statistically

derived models can be applied with various levels of input data and may thus be useful for minor

water mains for which there are few data available or for which the low cost of failure does not

justify expensive data acquisition campaigns.

This paper provides a critical review of the statistical models that have been proposed in the

scientific literature to explain, quantify and predict pipe breakage or structural pipe failures. The

deterioration of the inner surfaces of the pipes is mentioned only as a factor contributing to the

structural deterioration. Where applicable, a brief description is provided of decision processes

that were formulated based on specific breakage prediction models. A companion paper (Kleiner

and Rajani 1999a) reviews physical/mechanical models that lead to an improved understanding

of structural performance or behaviour. Each of the models is discussed under the titles of

“model description” and “critique” with corresponding data requirements indicated in tabular

form. The intent of this format is to permit the reader to readily identify the principal

characteristics of the models with the corresponding limitations and data requirements. The

equations provided with the models should not deter the less mathematically inclined reader.

These equations are intended mainly as an illustration of the complexity (or simplicity) of the

model and the type of data that is required for its application.

Classes of Statistical Methods to Predict Water Main Breaks

The life cycle of a typical buried pipe is often described by a so-called “bathtub curve” as is

illustrated in Figure 2. It should be noted that there are two types of bathtub curves, one that

describes the instantaneous failure probability (hazard function) of a non-reparable unit, while

the other describes the rate of occurrence of failure (ROCOF) of a repairable unit (Ascher and

Feingold, 1984). A pipe is usually a reparable unit, thus the ROCOF bathtub curve is usually
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associated with its life cycle. The bathtub curve often distinguishes between three phases in the

life of a pipe. The first phase, also known as the “burn-in” phase, describes the period right after

installation, in which breaks occur mainly as a result of faulty installation or faulty pipes. These

breaks emerge gradually and are fixed in a declining frequency. Once the system is purged of

these “childhood” problems the pipe goes into phase two, in which the pipe operates relatively

trouble free, with some low failure frequency resulting from random phenomena such as random

heavy loads, third party interference, etc. The third phase also called “wear-out phase” depicts a

period of increasing failure frequency due to pipe deterioration and ageing. Not every pipe

experiences every phase and the length of the phases may vary dramatically for various pipes

and under various conditions.

Figure 2. The bathtub curve of the life cycle of a buried pipe

Although pipes are reparable, some models actually use the hazard function bathtub (e.g.,

Andreou, 1987 a and b) in conjunction with pipe failure. This is because these models deal with

the time period between pipe breaks, rather than with breakage frequency over the life of the

pipe. When the inter-break time duration is modelled, the hazard function is often used because

the modelled “unit” becomes in fact a unit that is allowed only one failure.

Some of the models described later explicitly consider all three phases of the bathtub, while

others implicitly consider only one or two phases. Others yet, assume different shapes for the

curve (e.g., alternative B to the wear-out phase in Figure 2) as will be discussed later.
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The statistical methods for predicting water main breaks use available historical data on past

failures to identify pipe breakage patterns. These patterns are then assumed to continue into the

future in order to predict the future breakage rate of a water main or its probability of breakage.

The statistical methods described in this paper can be classified broadly into deterministic,

probabilistic multi-variate and probabilistic single-variate models that are applied to grouped

data. The terms “variates”, “co-variates” and “explanatory variables” are used interchangeably in

the literature. They refer to factors that affect the water main breakage rate, survival rate,

probability of failure or other predicted quantities as the case may be in the various models.

These factors are typically expressed in the corresponding equations by a measurable quantity

(e.g., pipe diameter in mm, pipe length in m, soil resistivity in ohm-cm., etc.) or a zero/one

variate for non-measurable quantities such as type of soil, type of pipe, pipe vintage, etc.

The deterministic models predict breakage rates using two or three parameters, based on pipe

age and breakage history. Many factors, operational, environmental and pipe type dependent,

jointly affect the breakage rate of a water main. The population of water mains analysed has to

be partitioned into groups that are appreciably uniform and homogeneous with respect to these

factors, in order for two or three parameters to capture a true breakage pattern. Consequently,

these models implicitly (and qualitatively) use the grouping criteria as covariates in the analysis,

while maintaining a relatively simple mathematical framework. These models were therefore

quite popular and in several cases have been used to analyse large distribution systems (e.g.,

Walski and Wade 1987; Male et al. 1990).

The partitioning of data into groups warrants careful attention because two conflicting

objectives are involved. On one hand the groups have to be small enough to be uniform but, at

the same time, the groups have to be large enough to provide results that are statistically

significant. This subject was addressed by Kleiner and Rajani (1999b), who proposed using one-

and two-way analysis of variance (ANOVA) procedures to ensure that the data are partitioned

into groups that are sufficiently different from each other.

The probabilistic multi-variate models can explicitly and quantitatively consider most of the

covariates in the analysis. This ability makes them potentially more powerful and general for

predicting the future breakage rates of water mains. It also reduces the need to pre-partition the

data into groups, although often some level of partitioning may still be required. However, the

mathematical framework is much more complex and requires significant expertise.
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The models that use probabilistic processes on grouped data to derive probabilities of pipe

life expectancy, probability of breakage and probabilistic analysis of break clustering

phenomenon fall under the class of the so-called probabilistic single-variate group-processing

models. Efforts to statistically relate pipe breakage rates to temperature effects are not discussed

here but in the companion paper within the framework of reviewing the physical/mechanical

models for water main failure.

Deterministic Models

Time-exponential models

Model description. Shamir and Howard (1979) used regression analysis to obtain a break

prediction model that relates a pipe’s breakage to the exponent of its age.

)(

0 )()(
gtA

etNtN
+⋅= (1) 

where t is the time elapsed (from present) in years; N(t) is number of breaks per unit length per

year (km-1 year-1); N(to) = N(t) at the year of installation of the pipe (i.e., when the pipe is new);

g is the age of the pipe at time t; and A is coefficient of breakage rate growth (year-1). Note that

N(to) ≠ 0, which means that on average a pipe is assumed to always have a breakage frequency,

albeit very small in the beginning of its life.

Shamir and Howard (1979) provided no details on the location of the study, the quality and

quantity of available data or the method of analysis. They did recommend that the regression

analysis be applied to groups of pipes that were homogeneous with respect to the factors

influencing their breaks.

Walski and Pelliccia (1982) proposed to enhance the exponential model (Table 1) by

incorporating two additional factors in the analysis, based on observations made by the US Army

Corps of Engineers in Binghamton, N.Y. The first factor accounted for known previous breaks in

the pipe, based on an observation that once a pipe broke it was more likely to break again. The

second factor accounted for observed differences in breakage rates in larger diameter pit cast iron

pipes.

Clark et al. (1982) proposed to further enhance the exponential model and transform it into a

two-phase model (Table 1). They observed a lag between the pipe installation year and the first
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break consequently proposed a model comprising a linear equation to predict the time elapsed to

the first break and an exponential equation to predict the number of subsequent breaks.

Shamir and Howard (1979) subsequently used their exponential model to analyse the cost of

pipe replacement in terms of the present value of both break repair and capital investment. This

analysis shows that a replacement time exists at which the total cost C(T) is minimised:

∫ −+− ⋅⋅⋅⋅+⋅=
T

rtgtA

b

rT

r dteetNCLeCTC
0

)(

0 )()( (2) 

where Cb = cost of a single breakage repair ($); Cr = cost of pipe replacement ($/km); T = year of

pipe replacement; L = length of pipe (km) and r = equivalent continuous discount rate.

The optimal replacement timing is calculated by equating the first derivative of C(T) with

respect to T to zero and solving for T. It should be noted that the form of equations (1) and (2)

above differ slightly from those proposed originally by Shamir and Howard (1979) who used a

discrete rather than the continuous discounting scheme.

Walski (1987) expanded the economic analysis to include the cost of water losses due to

leaks and valve repair costs. These additional cost components were also modelled to increase

exponentially over time. Clark et al. (1982) used a single-replacement cost analysis (similar to

equation (2)) to determine the optimal pipe replacement timing.

Critique. The two-parameter exponential model of Shamir and Howard (1979) is simple and

relatively easy to implement but its simplicity warrants careful treatment in applying the model

to data that are partitioned into homogeneous groups (Figure 3). It should also be noted that this

exponential model implicitly assumed a uniform distribution of breaks along all the water mains

in a group. This assumption was indeed questioned by others, e.g., Goulter and Kazemi (1988),

Goulter et al. (1993), Jacobs and Karney (1994) and Mavin (1996) as discussed in relevant parts

of this paper.

The expanded model proposed by Walski and Pelliccia (1982) added three dimensions to the

two-parameter model of Shamir and Howard (1979), namely, consideration of the type of pipe

casting, distinguishing between first break and subsequent breaks, and consideration of pipe

diameter. The authors did not provide any indication of whether the correction factors they

proposed indeed improve the prediction quality and by how much. It is likely that these three

added dimensions indeed influence the breakage rates of water mains. However, the correction
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factors seem to have been derived arbitrarily and assumed to act multiplicatively on the breakage

frequency (without apparent statistical justification), which implies that these dimensions affect

only the initial breakage rate and not its annual growth rate. The implicit assumption of uniform

distribution of breaks along all water mains in a group is present here too.

Figure 3. Time-exponential breakage patterns derived for homogeneous groups of pipes (same

vintage, same soil type, etc.) in a water utility. The curves were derived using 20
years of data and their ability to predict breaks in the subsequent four years was
examined (after Kleiner and Rajani 1999).

Mavin (1996) compared the time-exponential model to a time-power model depicted in

equation (3) by applying both to filtered data obtained from three Australian water utilities

etan ß= (3) 

where n = number of breaks at time t; t = age of pipe; ε  = random error term; α,β  = coefficients

estimated from regression analysis. He found that the performance of the two models in

predicting water main breaks was comparable.
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Clark et al. (1982) reported only moderate “goodness of fit” with r2 equal to 0.23 and 0.47

for the linear and exponential expressions, respectively. The model proposed by Clark et al.

(1982) was the first reported attempt to explicitly account for several factors that were potential

contributors to pipe breakage rate and to consider two distinctly different deterioration stages in

the life of a water main. The linear equation (Table 1) implied that the covariates acted on the

time to first breakage independently and additively. The low r2 value corresponding to the linear

equation could suggest that this assumption may be incorrect and that the factors affecting pipe

deterioration act jointly rather than independently. The low r2 value could also indicate that other

factors affecting time to first break were present, but were not considered in the equation. The

exponential equation (Table 2) is similar to other time-exponential models described above and

considers the breakage rate primarily as an exponential function of time since the first break.

Other covariates are assumed to act multiplicatively on the breakage rate. It should be noted that

the covariates expressing corrosivity effects are power functions. The moderate r2 value

corresponding to the exponential equation suggests that more research is required to determine

the suitability of this model. The authors did not provide information as to the relative

contribution of each covariate to the total r2. It is possible that the accuracy of the model could

be improved if other types of data were available. The authors also did not indicate whether both

equations had been applied to a holdout sample (sample of water mains that was “held out” for

validation purposes and thus was not included in the data set to perform the regression analysis).

Validation with a holdout sample would have provided more convincing evidence as to the

predictive power of the model. Although this model has been referenced extensively, no

documented reference is available to indicate if its use has been repeated elsewhere.

The economic analysis depicted in equation (2) neglects the cost of breakage repair after pipe

replacement. This shortcoming may introduce inaccuracies especially when low discount rates

are used, when older pipes are analysed and where the optimal (minimum cost) replacement

times are in the near future. In an appendix to their paper Shamir and Howard (1979) proposed a

method for accounting for breakage repair costs in replacement pipes, using perpetual

replacement cycles (assumed identical) to infinity. However, in their formulation they assumed

that the optimal duration of a replacement cycle is always the same whether calculated for a

single or multiple cycles. This assumption may not always be valid and can thus bias the
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calculated costs of perpetual replacement cycles. Kleiner (1996) and Kleiner et al. (1998)

remedied this by re-deriving the economic analysis for infinite cycles in perpetuity.

It should be noted that, with the exception of Clark et al. (1982) all the models described

above deal implicitly with only the wear-out phase of the bathtub curve (Figure 2). Thus, if

historical failure records do include “burn-in” breaks, these (strictly speaking) should not be

considered in the regression. The “time to first break” of the Clark et al. (1982) model could be

viewed as an implicit consideration of the second phase in the bathtub curve.

Time-linear models

Model description. Kettler and Goulter (1985) suggested a linear relationship between pipe

breaks and age (Table 2). Based on a relatively constant sample of pipes installed within a 10-

year period in Winnipeg, Manitoba, they found a moderate correlation (r2 of 0.563 and 0.103 for

asbestos cement and cast iron pipes, respectively) between the annual breakage rate and the pipe

age. In the same analysis, r2 increased to 0.884 and 0.672 when one outlier (a winter with an

exceptionally low breakage rate) was eliminated. Linear regression on joint failure analysis of

cast iron mains found that r2 was a moderate 0.240, which increased to 0.81 without the data for

outlier winter (Figure 4).

Another interesting observation was that the increase in the breakage rate of asbestos cement

pipes with age was predominantly due to circular cracks. The increase in breakage rate of cast

iron pipes was predominantly related to corrosion while the circular breakage rate decreased with

age. Furthermore, they found a strong negative linear correlation between pipe diameter and

breakage rate, indicating that larger pipes break less frequently than smaller pipes. Using six

years of data from Winnipeg, they performed a weighted linear regression in which pipes with

breakage rates that were more consistent (had less variation) over the six years were assigned

more weight. For the available data of pipes with diameters 100 mm through 300 mm they

obtained a negatively sloped line with r = –0.96. Others (e.g., Walski and Wade 1987) too have

reported this observation.
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Table 1. Deterministic time-exponential models.

Reference Model Notation Data requirements

Shamir and

Howard (1979)

)(

0)()(
gtA

etNtN
+⋅= t = time elapsed (from present) in years

N(t)  = No. breaks per unit length per year (km-1 year-1)
N(to) = N(t) at the year of installation of the

g = age of the pipe at the present time

A = coefficient of breakage rate growth (year-1)

Pipe length, installation date and breakage history;

formation of homogenous groups essential
according to criteria like pipe type, diameter, soil
type, break type, overburden characteristics, etc.

Walski and

Pelliccia (1982)

)(

021 )()( gtAetNCCtN +⋅⋅⋅= C1 = ratio between {break frequency for

(pit/sandspun) cast iron with (no/one or more)
previous breaks} and {overall break frequency
for (pit/sandspun) cast iron}

C2 = ratio between {break frequency for pit cast pipes
500 mm diameter} and {overall break frequency
for pit cast pipes}

Same data as for Shamir and Howard (1979) plus

information on the method of pipe casting and pipe
diameter.

Clark et al. (1982)
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xi,yI = regression parameters,
NY = number of years from installation to first repair,

D = diameter of pipe,
P = absolute pressure within a pipe,
I = % of pipe overlain by industrial development,

RES = % of pipe overlain by residential development,
LH = length of pipe in highly corrosive soil,
T = pipe type (1 = metallic, 0 = reinforced concrete),

REP = number of repairs,
PRD = pressure differential,
t = age of pipe from first break,

DEV = % of pipe length in low and moderately
corrosive soil,

SL = surface area of pipe in low corrosivity soil,

SH = surface area of pipe in highly corrosive soil

Time of installation, breakage history, type and
diameter of the pipe, as well as information about

operating pressures, soil corrosivity and zoning
composition of area overlaying pipe. Additional
types of data such as the type of breaks and pipe

vintage required to enhance model.
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Critique. The application of this model is simple and straight forward, similar to the two-

parameter exponential model of Shamir and Howard (1979). All the qualifiers made with regard

to the critique of the two-parameter exponential model on the requirement to partition data into

homogeneous groups in order to implicitly consider additional variates are equally applicable to

this time-linear model. The authors did not report an attempt to validate the model by applying it

to a holdout sample.

Figure 4. Time-linear breakage patterns derived for cast iron pipes with bolted and universal
joints installed from 1950 to 1959 in the City of Winnipeg. Winter 23 appears to be

an outlier (after Kettler and Goulter 1985).

Model description. McMullen (1982) reported on a regression model that was applied to the

water distribution system of Des Moines, Iowa. The investigating team concluded that corrosion

was a major factor in water main failures since they observed that 94% of pipe failures occurred

in soils with saturated resistivities of less than 2,000 ohm-cm. They examined several models

and the one that performed the best is given in Table 2.

The coefficient of determination (r2) for this regression model was a low/moderate value of

0.375. It can be seen that the soil resistivity appears to be the most dominant factor, reducing the

expected age by 28 years for every 1,000 ohm-cm reduction.

Critique. McMullen’s (1982) model predicts only the time to the first break of a pipe and

thus can not be used as a full-fledged pipe break prediction model. It thus can be viewed as
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implicitly addressing the first and second phases in the bathtub curve of Figure 2. The r2 value,

although better than that of the linear equation of Clark et al. (1982), is not high enough to be

considered a robust prediction. The usage of a linear function, which implies that these three

covariates act on the time to first failure independently and additively, may be the source of

some of the inaccuracy. The dominance of the soil electrical resistivity may on one hand raise a

speculation that incorporating it into the model of Clark et al. (1982) might actually improve it.

On the other hand one cannot help but wonder whether the electrical resistivity of the soil

remains constant over the time period (10+ years) from installation to pipe first break, given

activities such as road salting, acid rain, etc.

Model description. Jacobs and Karney (1994) in consideration of the clustering phenomenon

in pipe breaks that was observed in Winnipeg (Goulter and Kazemi 1988; Goulter, Davidson and

Jacobs 1993) defined independent breaks as breaks that occur more than 90 days after and/or

more that 20 m from a previous break. By their definition, an independent break is often the first

in a cluster of breaks.

They applied a linear regression to 390 km of 150 mm (6”) cast iron water mains with about

3,550 breakage events recorded in Winnipeg. They divided the water mains into three age groups

(0-18, 19-30, and >30 years) to obtain relatively homogeneous groups of water mains, and

applied the equation provided in Table 2.

Initially they applied this regression equation to all the recorded breaks and obtained

coefficients of determination ranging from r2 = 0.704 to 0.937 for the three age groups. A high

correlation means that pipe breaks were uniformly distributed along the pipe. A subsequent

application of equation (Table 2) to the independent breaks rather than to all breaks increased r2

values of 0.957 to 0.969, which confirmed their hypothesis that independent breaks were

uniformly distributed along the length of the water mains. The addition of pipe age into the

regression model improved the predictive power of the model marginally for relatively new

pipes, and significantly for old pipes. The authors attributed this correlation with age to different

manufacturing, installation and operation practices that were typical of different age groups of

pipes. The authors further observed that these differences could be classified geographically and

that the age (or rather the “vintage”) of a pipe may be a convenient surrogate measure which may

be gathered and managed in a Geographic Information System (GIS).
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Table 2. Deterministic time-linear models.

Reference Model Notation Data requirements

Kettler and
Goulter (1985)

AgekN 0= N = number of breaks per year
k0  = regression parameter

Same data as for Shamir and Howard (1979).

McMullen

(1982)
drpHSRAge 049.0338.6028.078.65 −−+= Age = age of pipe at first break (years)

SR = saturated soil resistivity (ohm-cm)
pH = soil pH
rd  = redox potential (millivolts)

Data required typically not available; sporadic data

collection not expensive, however, continuous and
extensive data collection program is costly;
continuous monitoring of soil properties is

important where ground water conditions have not
reached steady state or are seasonally dependent.

Jacobs and

Karney (1994)
AgeaLengthaaP 210 ++= P = reciprocal of the probability of a

day with no breaks
a0,a1,a2 = regression coefficients

Pipe length, age and breakage history; more data

enables formation of homogenous groups.
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Critique. Jacobs and Karney (1994) provide useful insight into the distribution of so-called

independent breaks along the water mains. Their results indicate that the independent breaks are

distributed more uniformly than the total breaks along the pipes, especially in younger pipes. It is

not clear whether this phenomenon is general or unique to the distribution system in Winnipeg.

The authors used random samples comprised 5, 10, 15, …100 pipe links with varied length but

do not provide information on the age of each sample, since each sample is likely to consist of

pipes of various ages.

At first glance it is not obvious that this model is a real time-linear model. Since the length of

water mains in a utility is relatively constant, one can divide the equation (Table 2, Jacobs and

Karney 1994) by the length variable and convert all the parameters to units of [length]-1. The

model reduces to a two parameter, single variate (age) linear equation, which is precisely a time-

linear model with an implicit assumption of uniform (linear) distribution of breaks along pipe

length. According to Jacobs and Karney (1994) this implicit assumption is justified when the

regression is applied to independent breaks only.

With the exception of the McMullen (1982) model, the time-linear models, like the time-

exponential and the time-power models, implicitly consider only the wear-out phase in the

bathtub curve.

Probabilistic Multi-variate Models

Proportional hazards models

The proportional hazards model is a general failure prediction model proposed by Cox

(1972), which takes the general form

ZbT

ethZth )(),( 0= (4) 

where t = time; h(t, Z) = hazard function, which is the instantaneous rate of failure (probability of

failure at time t+∆t given survival to time t); h0(t) = arbitrary baseline hazard function; Z =

vector of covariates acting multiplicatively on the hazard function; b = vector of coefficients to

be estimated by regression from available data.
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Figure 5. Proportional hazards model (after Andreou et al. 1987b) for a 100 m long pipe with

no previous breaks, that was installed after 1950. The base hazard describes this
pipe operating at 30 m of pressure and 20% of its length lies under a low

development area. If it reached the age of, say, 70 years without breaking, its
instantaneous probability of breakage (say breakage in the next year, is about 1.5%.
The probability of this pipe to reach age 70 without a break is about 63%. The thin

full line describes the same pipe when 80% of its length is under a low development
area. The hazard and the survival change accordingly. The dashed line describes the

same pipe operating at 60 m pressure.
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The concept of the proportional hazards is demonstrated in Figure 5. The baseline hazard

function h0(t) can be interpreted as a time-dependent ageing component, while the covariates

represent environmental and operational stress factors that act on the water main to increase or

reduce its failure hazard. Further, the data can be partitioned (or “stratified”) with respect to a

covariate if it is judged to act on the hazard function in a non-multiplicative manner, and a

different baseline hazard function can be derived if necessary. A priori knowledge of the baseline

hazard function is not required in order to estimate the elements in vector b.

Marks et al. (1985) was first to propose the usage of the proportional hazards model to

predict water main breaks by computing the probability of the time duration between consecutive

breaks. Multiple regression techniques were used to determine covariates Z that could affect pipe

breakage rates. The most significant covariates found by Marks et al. (1985) are listed in Table 3.

The baseline hazard function h0(t) was approximated by a second degree polynomial (Table 3),

similar to the bathtub effect, in which the hazard decreases initially then increases. It should be

reiterated, however, that the parabolic h0(t) here does not correspond to the bathtub depicting the

life cycle of a pipe (ROCOF) illustrated in Figure 2. Rather it depicts the instantaneous

probability of the next break after installation (for a pipe with no previous breaks) or after the

last break (for a pipe with previous breaks). The parabolic h0(t) proposed by Marks et al. (1985),

had a minimum at t = 28 years (Figure 5), which means that according to their observations, the

probability of a break decreases as the pipe “matures” after installation or after the previous

break. Then, after about 28 years the pipe begins (or resumes in the case of a pipe with previous

breaks) its deterioration and the probability of the next break increases. The model was tested

with two censoring schemes and appeared to have little sensitivity to left data censoring1, which

is an important characteristic because most water utilities have incomplete records of pipe

breakage and repair. Marks et al. (1985) provided a cost analysis for determining optimal timing

for pipe replacement based on minimising the expected costs that are associated with a pipe.

Andreou et al. (1987a, 1987b) and Marks et al. (1987) further developed the proportional

hazards model to include a two stage pipe failure process. The early stage was characterised by

fewer breaks and was represented by the proportional hazards model, while the late stages, with

multiple and frequent breaks were represented by a Poisson type model. They observed that

                                                
1 Left censoring, in this context, means incomplete data due to early breakage records that
are missing or unavailable.
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pipes rarely broke soon after they were installed, and that each additional break typically

shortened the time to the next break (which meant that the h0(t) became tighter parabolas with

minima increasingly smaller than 28 years). After the third break, the breakage rate of the pipes

seemed to be constant (and frequent) regardless of the number of previous breaks and the pipe

age. Consequently, the third break was selected as the cut-off point between the two stages of

failure. A Poisson process was assumed for the late stage where the average breakage rate

appeared constant over time and thus the inter-breakage times were exponentially distributed

with an average failure rate estimated by ? = ebTZ.  Since the hazard function for the exponential

distribution is constant and equal to the average failure rate, it follows that the hazard h for the

late stage is expressed by

ZbT

eh == λ (5) 

which has the same form as the early stage, as in equation (5), except the time dependent

component h0(t) is transformed into a constant. Andreou et al. (1987b) reported a moderately low

r2 = 0.34 in the prediction in the late stage, when the cut-off between the early and late stage was

3 breaks. When the cut-off was taken as 6 breaks it increased to r2 = 0.46.

Eisenbeis (1994) and Brémond (1997) reported the application of the proportional hazards

model to water distribution networks in France, while Lei (1997) reported their in Norway. In

France the Weibull probability baseline hazard function for the water main failure (Table 3) was

used. It was not clear if a two-stage failure process model was used as in Andreou et al. (1987a).

Eisenbeis (1994) and Brémond (1997) reported good predictions of the aggregate number of

breaks in an eleven-year period in Bordeaux, France, based on failure data from the preceding 33

years. Lei (1997) found that pipe material was a stratification criterion rather than an explanatory

variate, implying that the underlying ageing processes are different for various pipe materials.

The report did not provide any indication as to the quality of predictions and it appears that the

second stage was not implemented using a Poisson process as described by Andreou et al.

(1987a).

Li and Haims (1992a, 1992b) formulated a two-stage decision-making process based on

Andreou et al.’s proportional hazards and Poisson model. In the first stage a semi-Markovian

model was applied to individual water mains to determine the optimal repair/replace decision at

various deterioration states while maximising the availability of the water main. The second
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stage uses a multilevel decomposition approach to optimally distribute available funds among the

distribution network components, so as to maximise overall system availability. The authors

acknowledged that the data required to quantify all the necessary transition probabilities may be

beyond what is available in most water utilities. The model also did not consider network

hydraulics.

Critique. The proportional hazards model appeals to many researchers because of its

versatility and robust theoretical basis. The multiplicative effect that the covariates have on the

hazard function is intuitively appealing. The ability to compare various strata in the water main

population is very useful, as is the relative insensitivity to left-censored data and the ability to

consider right-censored data. The inclusion of several variates in a single analysis reduces

significantly the amount of pre-grouping that is required by simple, two or three parameter

models. This grouping requirement is not altogether eliminated and careful analysis is required to

identify groups of pipes that may differ in their underlying ageing process. Further, the

underlying assumption that environmental and operational stresses act to increase or decrease the

failure hazard of all types of pipes in the same proportion may sometimes be invalid. For

instance, soil resistivity has a significant affect on unprotected cast iron pipes, but may have a

lesser affect on coated or cathodically protected pipes. If these two categories are not stratified

(or partitioned) in the analysis, the differences may reduce the accuracy of the results.

The constant hazard function in the second phase of Andreou et al.’s (1987a and b) model

implies that after their third break, pipes no longer age, as their failure hazard remains constant

(see alternative B to the wear-out phase in the bathtub curve in Table 2). This observation was

corroborated by others (e.g., Herz 1996) but at the same time it contradicts the physical realm of

ageing pipes, especially where corrosion exists. It is possible that there is a practical limiting

state for the ageing of a given pipe. This limiting state may be determined by how frequently it is

practical to fix its breaks before actually replacing it. It appears that this limiting state will

usually be reached at a stage that is much later than three or even six breaks. More research with

larger based data sets may be required to resolve this point.

The proportional hazards model is quite powerful but it also requires significant technical

expertise to apply. As was stated earlier, careful examination of the data is required in order to

identify the covariates with the best predicting ability, as well as those which are required for

data stratification.
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It should be noted that in the proportional hazards model with a parabolic h0(t), the first

parabola, depicting the time to first failure could be viewed as implicitly corresponding to the

first and second (burn-in and in-usage) phases of the bathtub curve in Figure 2. Subsequent

breaks would thus correspond to the wear-out phase, and the constant breakage rate (modelled by

the Poisson process) corresponds to alternative B of the wear-out phase in Figure 2.

Data requirements. The proportional hazards model can be applied with any level of data

availability. Of course, the more data on the covariates that may affect pipe failure hazards, the

more beneficial is its usage, and predictions could even be extended to the individual pipe level.

Significant covariates may vary from one utility to the next, depending on prevailing

environmental and operational conditions and on the types of pipes used. It appears that

currently, lack of data in most utilities would limit the potential benefits of this model.

Accelerated lifetime models

Lei (1997) examined an accelerated lifetime model of the form provided in Table 3. The

essence of the accelerated lifetime models is that time to next failure expands or contracts

relative to that at x = 0, where x is defined as a vector of explanatory variables (see broad

definition in Table 3). Lei (1997) applied both proportional hazards and accelerated lifetime

models to the distribution system of Trondheim, Norway. The explanatory variates x were age

groups, pipe size groups and length of pipe. The report did not note whether the model was

validated or comment on the quality of the predictions. No significant difference was found

between the results of the two models, which should not come as surprise since it can be shown

that an accelerated lifetime model translates into proportional hazards when Z has a Weibull

distribution (Cox and Oakes 1984).

Eisenbeis et al. (1999) applied the accelerated lifetime model (Table 3) to three water

distribution systems in Norway and France. They assumed that Z followed the extreme value

distribution for minima (or the Gumbel distribution). The covariates used for each system varied

according to local conditions. Using the previous number of breaks as a covariate complicated

the application of the method necessitating the use of Monte-Carlo simulation for the prediction

of the number of failures at a desired time-horizon. The authors reported good predictions using

this method but did not provide any details to demonstrate them.
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Critique. The accelerated lifetime model can be viewed as analogous to the proportional

hazards model. It differs from the proportional hazards model in that the covariates act on the

time to failure, whereas failure hazard is affected in the proportional hazards model. In both

models the effects are multiplicative and covariates that are thought to act in a non-multiplicative

manner would require data partitioning. Like the proportional hazards, the accelerated life model

is quite versatile as long as the data are available, and requires significant technical expertise to

apply it effectively. The manner with which the accelerated life model relates to the bathtub life

cycle curve (Figure 2) can be determined only after inter breakage times are obtained from a

specific data set. For example, if results show that the time to first break is shorter than the time

between the first and second break and the time between higher order breaks becomes

increasingly shorter, that would indicate an explicit depiction of all three phases of the bathtub

curve.

Time-dependent Poisson model

Model description. Constantine and Darroch (1993) and Constantine et al. (1996) proposed a

model where pipe breakage follows a Poisson process in which the mean breakage rate depends

on pipe age as is depicted in Table 3. This process is also known as a Weibull process, because

the resulting cumulative distribution in this process is precisely equivalent to the Weibull

cumulative distribution function. The parameter ß (shape parameter) was considered by the

authors to be constant for a homogeneous group of failures (e.g. failures that are attributed to

corrosion only), whereas ? (scale parameter) was a function of some operational and

environmental covariates (Table 3).

Miller (1993) applied this model to a data set containing about 1,150 asbestos cement and

cement-lined cast iron water mains, with about 2,600 recorded breakage events in Melbourne,

Australia. This set was reduced to only those mains that had at least five breaks. It was assumed

that for those pipes the principal cause of failure was corrosion. The covariates that were found

to contribute to θ were mean static pressure, overhead traffic conditions, pipe diameter and soil

type. The model could explain 68% of the variation in the breakage rates. In some pipes the

differences between the expected and the actual number of breaks were markedly large,

prompting the speculation that the underlying cause of some of the failures had not been

corrosion which meant that the β  was inappropriate for all the pipes. The author did not report
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any attempt to fit the model into a holdout data set, thus testing its ability to predict failures that

were not part of the data used for parameter derivation.

Mavin (1996) used the time-dependent Poisson model of Constantine and Darroch (1993) to

filter out of a given data set those water main breaks that were not likely to be the result of a

natural deterioration process. He calculated the probability of occurrence of any two successive

failures in a water main. The covariates used were pipe diameter, material, traffic level and soil

type, and the coefficients were given without an explanation as to how and where these

coefficients had been derived. He proposed the following rules:

• When two successive breaks occurred in spite of a very low probability (1% was suggested)

and also occurred within a small distance (5 m was suggested) from each other – the second

break was assumed a “bad repair” and was thus filtered out of the data. This is similar to the

spatial breaks clusters concept introduced by Goulter et al. (1993) and Jacobs and Karney

(1994).

• When a break occurred less than two days after the previous break – the second break was

assumed to be related to careless re-pressurisation of the system after the repair of the

previous one, and was thus filtered out of the data set.

• When two successive breaks occurred in spite of a very low probability, and these

occurrences took place in a period of industrial tension in the utility, or during a holiday

period in which overtime rates are very high – these breaks could be due to intentional

damage and may thus be filtered out.

• Two successive breaks occurring in spite of an extremely low probability (e.g., 0.1%) could

be attributed to faulty operational procedures or accidental damage and may thus be filtered

out.
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Table 3. Probabilistic multi-variate models - proportional hazards and accelerated life.

Reference Model Notation Explanatory variables (data)

Proportional

hazards

Marks et al. (1985)

ZbT

ethZth )(),( 0=

2754

0 10210102)( ttth −−− ⋅+−⋅=

T = time to next break
h(t, Z) = hazard function

h0(t) = baseline hazard function
Z = vector of covariates
b = vector of coefficients to be estimated by maximum

likelihood

• natural log of pipe length

• operating pressure

• percentage of low land development

• pipe “vintage” (or period of installation)

• pipe age at second (or higher) break rate

• number of previous breaks in pipe

• soil corrosivity

Andreou et al.

(1987a, 1987b)
Marks et al. (1987)

Early stage: same as Marks et al.

(1985) described above

Late stage: 
ZbT

eh == λ

h = hazard (constant at the late stage) Same as above

Proportional

hazards

Brémond (1997)

ZbT

ethZth )(),( 0=

1

0 )()( −= βλλβ tth

t = time to (next) failure

h(t) = hazard function
?, ß, = scale and shape parameters (respectively) of the

Weibull distribution

• number of previous breaks

• pipe diameter

• ground conditions

• traffic loading

Time dependent

Poisson model

Constantine and
Darroch (1993),

Miller (1993);
Constantine et al.
(1996)

β

θ





= t

tH )(

Zeαθθ 0=

t = pipe age
H(t) = mean number of failures per unit length at age t

?, ß, = scale and shape parameters, respectively
?0 = baseline value
a = vector of coefficients to be estimated by regression;

Z = a vector of covariates affecting breakage rate.

• mean static pressure

• overhead traffic conditions

• pipe diameter

• soil type



26

Table 3. (Continued).

Reference Model Notation Explanatory variables (data)

Accelerated life

Lei (1997)
βσµ

σβµ
Tx

T

eZfT

ZxT

),,(

)ln(

=

⇒++= T = time to (next) failure
x = vector of explanatory variables

Z = random variable distributed as Weibull

σ  = parameter to be estimated by maximum likelihood
ß = vector of parameters estimated by max likelihood

• pipe age group

• pipe size

• pipe length

• pipe material was taken as stratification
criterion

Accelerated life

Eisenbeis et al.
(1999)

Same as Lei (1997) above Z = random variable distributed as Gumbel (extreme

distribution for minima)
• log of pipe length

• pipe diameter

• pipe material

• traffic loading

• soil acidity

• soil humidity

• number of previous breaks was taken both as

a covariate and as a stratification variate
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Critique. The time-dependent Poisson model represents the pipe breakage rate as a power

function of time or pipe age where the accelerated time equation can be rewritten as

βθ ttH ')( = (6) 

The scale parameter θ’ is modified by environmental and operational covariates, while the power

parameter β  is said to be unique to the type of failure (e.g., corrosion-related, longitudinal split,

etc.). The function θ0’t
β  is thus similar conceptually to the base hazard function in the

proportional hazards model. Change in β  is analogous to stratification in the proportional hazards

model, and the scale parameter which is modified multiplicatively by a vector of covariates, is

analogous to the failure hazard modifiers in the proportional hazards model. The potential

strengths and caveats inherent in this model are similar to those mentioned for the proportional

hazards model except that it appears that this time-dependent Poisson model is less able to deal

with left censored data. The manner with which this model has been applied by Miller (1993),

using only pipes that had at least five breaks, raises the question of how to deal with those pipes

that had fewer breaks. It may be possible to group together adjacent pipes provided they are

similar with respect to the covariates used for prediction. There have been no reports about

applying this model to other distribution networks. This model, which is essentially a time-power

model, corresponds implicitly only to the wear-out phase in the bathtub curve.

Probabilistic Single-variate Group-Processing Models

Cohort survival models

Model description. Herz (1996) proposed a lifetime probability distribution density function

based on the principles that had originally been applied to population age classes or cohorts. The

probability density f(t), hazard h(t) and survival S(t) functions are given in Table 4. The

parameter c, resistance time, in fact corresponds to the burn-in phase of the bathtub curve in

Table 2. It can be shown that the hazard function approaches the constant value b asymptotically

as the age t increases, and the Hertz distribution approaches an exponential distribution. As

previously noted a hazard function whose value remains constant corresponds to no ageing,

which concurs with the observations of Andreou et al. (1987a) and thus corresponds to the

alternative B of the wear-out phase of the bathtub curve (Figure 2). The observed constant hazard

refers to pipe breakage in the context of Andreou et al.’s model while Herz refers to pipe “death”

or pipe replacement. When a = 0 the distribution becomes an exponential function shifted to the
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right by c, and the hazard function again becomes a constant which implies no ageing (hence the

naming of parameter a as the ageing parameter). Herz (1996) proposed to apply the model to

groups (cohorts) of pipes that are homogeneous with respect to their material type and

environmental/operational stress class. The estimation of parameters a, b and c was done using

water utility data, where historically, the time that a pipe had been replaced was considered to be

the time of its “death”.

Figure 6. The Herz model applied to a homogeneous group of pit-cast iron water mains
installed between 1900 and 1929, in Clay soil. The pipe “time of death” was defined

as the end of its economical life. The plot indicates a median survival of 50% (i.e.
50%) of the pipes in the group would likely have to be replaced by the year 2010.
Note also the hazard rate which tends to a constant of about 8% as the water mains

in the group age (after Kleiner and Rajani 1999).

0

2

4

6

8

1930 1950 1970 1990 2010 2030 2050 2070

H
a
z
a
rd

 r
a
te

 (
%

)

0

20

40

60

80

100

S
u
rv

iv
a
l 
(%

)

10

0

1

2

3

4

5

1930 1950 1970 1990 2010 2030 2050 2070

R
e

p
la

c
e

m
e

n
t 
ra

te
 (

%
)

0

20

40

60

80

100

C
u

m
u

la
ti
v
e

 r
e

p
la

c
e

m
e

n
t 
(%

)

Year



29

Deb et al. (1998) applied the cohort survival model (“KANEW”) to one British and four

American water utilities. A Delphi process was used to estimate the three parameters for the

model when sufficient historical “pipe death” data were not available.

Herz (1998) presented a case study and a framework to use the cohort model in the long-term

planning of water mains renewal. In this framework the planner generates various scenarios that

include different rates of pipe replacement and/or rehabilitation, in order to find the most suitable

strategy. Appropriate assumptions have to be made on the performance and life expectancy of

the replacement pipes and/or rehabilitation technologies. These scenarios can include, in addition

to ageing parameters, expected failure frequencies and economic data such as direct and (if

available) indirect cost of pipe failure, rehabilitation and replacement costs, etc.

Critique. The cohort survival model can be a useful tool for evaluating the future financial

needs of a water distribution system. It may provide useful insight into the long-term planning of

water main renewal budgets. The model can only deal with relatively large groups of water

mains and is not suitable for prioritising individual pipes for rehabilitation. The assumption that a

pipe actually reached the end of its useful life when it was replaced by the utility introduces a

weakness in the application of the model because the decision to replace a pipe does not always

indicate that the pipe had indeed reached the end of its useful life. Historical pipe replacement

decisions often reflect political choices (e.g., allocation of resources) or perceptions rather then

best technical judgement. Kleiner and Rajani (1999) proposed an alternative approach. They

posited that the useful life of a pipe is an economic outcome of its deterioration rate, thus

suggested that the pipe “death” coincided with the optimal time of its replacement. They

partitioned the pipe inventory into relatively homogeneous groups and, for each group

established the optimal age of pipe replacement, based on projected breakage rates and cost data.

They then derived the appropriate parameters and replacement rates for the respective groups, as

is illustrated in Figure 6.

Bayesian diagnostic model

Model description. Kulkarni et al. (1986) developed the Cast Iron Maintenance Optimisation

System (CIMOS) for the Gas Research Institute to identify failure-prone segments of gas pipes

and to determine the optimal time for their replacement. They identified two groups of pipe

characteristics, static (e.g., diameter, length, soil type, etc.) and dynamic (e.g., cumulative
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number of breaks, age, etc.). The basic premise of the model was that the probability of failure

(break or leak) in a pipe segment can be related to three factors: (1) system-wide probability of

failure Pf, (2) probability of observing specified characteristics on a segment that failed Pc/f, and,

(3) the probability of observing the same characteristics on a segment that has not failed Pc/nf.

According to Bayes theorem
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= (7) 

If the Prob.[failurespecified characteristics] is close in value to Pf (= system-wide

probability of failure), then this particular set of characteristics has little diagnostic capability. If

the value is significantly larger or smaller than Pf, then the presence of this set of characteristics

can “explain” a relatively high (or low) breakage rate. The system-wide average probability of

failure/segment/year is calculated
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where N = total number of years accounted for in the database.

The probability of observing specified characteristics in a pipe that has failed is
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where Cj = a set of characteristics, also called a condition state.

Condition states can be defined by combinations of individual characteristics. For example, a

condition state of a pipe segment can be age 50 year, 150 mm (6”) diameter, 100 m long in clay

soil, etc. After identifying condition states Cj for which P[f/C j] is significantly different than Pf,

one can calculate the expected number of failures in one year on a given segment E[n/C j]

]  statecondition in  failure oneleast at th segment wi aon year  onein  failures ofnumber  expected

year onein  failure oneleast at 

[

] Prob[][

j
C

jj CCnE ⋅=

(10) 
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The first term in the right hand side of equation (10) is calculated using equation (7). The

second term depends on the segment length. This dependence can be estimated by an appropriate

regression analysis of number of failures versus segment length.

As previously mentioned, this procedure was developed for the gas industry, where the

consequences of failure can be grave. Thus, it is necessary to estimate the probability of various

consequences given that a pipe failure had occurred. The issue of consequence of failure has not

yet been addressed rigorously in the water industry, while pertinent data is scarce and awareness

is generally low.

The authors validated the procedure on two sets of data and reported good agreement

between the predicted and observed failure rates. A decision procedure was also developed for

optimising segment replacement strategies. This procedure is based on a dynamic process in

which a decision has to be made at the end of every year as to whether it is cheaper to replace the

pipe now, or postpone a decision to the next year while repairing the failures this year as they

occur. This can be summed up by the general recursive formulation









+

−
+= ∫

F

m

R xdFxVxc
c

cxV )'()'()(;
1

min)( 0 α
α

(11) 

where V(x) = optimal decision (minimum cost) for a given segment; x = expected number of

failures in the segment at the current year; x’ = expected number of failures in the segment at the

next year; cR = segment replacement cost; cm = annual expected maintenance cost of the new

(replaced) segment; α = discounting factor, cm/(1-α) = discounted maintenance cost; Σcm =

discounted maintenance cost from present to infinity; co(x) = expected cost of failure repair at the

current year; dF(x’) = probability distribution of x’. The CIMOS was subsequently developed by

Woodward-Clyde Consultants into a full-fledged computer application for managing the

maintenance and planning of gas lines.

Critique. The Bayesian diagnostic model is based on some simple and robust mathematical

principles in which the mains are partitioned into homogeneous groups with respect to some

criteria (condition states), and the failure ratios in these groups are systematically compared and

evaluated. The model is “flat” with respect to time. It does not consider the time of breakage

occurrence, just the cumulative number of breaks to the time of analysis. It implicitly then

assumes that the ratios of cumulative number of breaks between the various condition states will
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be the same in the next year. The model, therefore, cannot predict the number of breaks over

time, rather it indicates the probability of failure, or the expected number of failures in the next

time period. The model can therefore be used for analysing repair/replacement decisions in the

next year rather than for formulating long-term replacement strategies. The model assumes that

breaks are linearly related to pipe length for a given condition state, an assumption that has been

challenged by others. The authors do not provide any information as to the sensitivity of the

model to left-censored data. It would seem that since the model deals mainly with the cumulative

number of breaks, left censored data would have relatively little affect, but this needs to be

verified.

Data requirements. For a simple analysis, only pipe lengths and breakage history are needed.

A detailed analysis requires partitioning the mains into an extensive list of condition states. The

appropriate criteria for these condition states are required, which is equivalent to the grouping

criteria mentioned previously in the application of other models.

Break history as a semi-Markov process

Model description. Gustafson and Clancy (1999a) modelled the breakage history of water

mains as a semi-Markov process in which each break order (e.g., 1st, 2nd ,3rd break, etc.) is

considered a “state” in the process and the inter-break time ti is considered the “holding time”

between state (i-1) and state i. The semi-Markov process implies that the time to the next break ti

is completely independent of the times between previous breaks (tj, j<I), rather it depends solely

on the break order i. The time from installation to the first break t1 was modelled as a three

parameter gamma distribution while the subsequent inter-break times (ti, i>1) were modelled as

exponential distributions with parameters 1/λi. The λi are in fact the mean of their respective

exponential distributions. The breaks were found to decrease as i increased, which means that the

higher the number of previous breaks in a pipe, the shorter the expected time to the next break.

The inventory of pipes in Saskatoon, Saskatchewan, was partitioned into thick wall, medium

wall and thin wall water mains, and this concept was applied to the three groups of pipes. It was

found that the mean time to first break was 96, 44 and 34 years for the thick, medium and thin

wall pipes respectively. The expected times to second, and higher breaks became increasingly

smaller for all three groups, until they almost converged and became approximately constant
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(2.1, 1.9 and 1.4 years respectively) from the 9th-10th break. This apparent tendency towards

constant breakage rate has been discussed previously.

Gustafson and Clancy (1999b) applied a Monte Carlo simulation, using the parameters they

had derived for the inter-break times, to generate breakage rate predictions for the future. They

obtained a prediction that the breakage rate in the five years subsequent to the analysis will

increase more than 50% per year. This outcome was judged an unreasonably over-prediction that

was likely the result of deterioration mechanisms that had changed over the life of the water

mains. They then used a simple Bayesian process to extract transition probabilities based only on

data taken from the five years preceding the analysis (reasoning that deterioration processes are

relatively constant in a five-year period and are unlikely to change in the next five-year period).

These transition probabilities were then used to re-derive λi parameters (representing mean

holding times) for the second and higher breaks. They then re-applied the results in the semi-

Markov framework to predict future breakage rates of about 20% per year increase in the

subsequent five years.

The authors also presented a method for using the model to determine the optimal time of

replacing a water main. They used Monte Carlo simulations to generate synthetic breakage

histories, based on the parameters derived earlier. The pertinent costs (e.g., breakage repair and

replacement costs) were attached to the synthetic history and the pipe replacement year that

would minimise the discounted stream of costs was obtained. This is similar to equation (2)

except that it is applied on a synthetic data set. They used a concept of “expected economic loss”

to translate the optimal replacement timing to an optimal replacement break order (i.e., after

which break the pipe should be replaced to minimise total costs).

Critique. Gustafson and Clancy (1999a, 1999b) provide additional insight into the

deterioration rates of water mains. Their findings are intuitively appealing and their method lends

itself relatively easily to computer implementation. They developed an elaborate model to

predict the inter-break times in water mains, based on historical data, but found this model

inadequate for predicting future breaks. They reasoned that this inadequacy is the result of

conditions that changed over the years, and thus ended up basing their predictions not on the

original model but rather on a different process that used the data from only the preceding five

years. If this reasoning were correct, it would imply that a semi-Markov process with stationary

transition probabilities may not be appropriate because of changing conditions throughout the
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life of a watermain. Further, Gustafson and Clancy implied that at best, a semi-Markov process

with stationary transition probabilities can be assumed for a period of no more than about ten

years, during which one can be reasonably certain that pipe deterioration conditions are relatively

constant. It is not clear why the distribution of time to the first break was not re-calibrated as

well as the time distributions for higher order breaks. The author’s proposed economic

framework makes predictions of future breakage rates well beyond the time limit of ten years.

This presents somewhat of an inconsistency in the manner with which the analysis period is

considered. It is possible that the results could have been more consistent had the method been

applied to a pipe inventory that was partitioned into more homogeneous groups. It seems,

however, that the data that are necessary for such action are not available in Saskatoon. Another

caveat of this approach is that the model appears to be very sensitive to left censored data.

It should be noted that this model, similar to the proportional hazards, can identify any phase

in the bathtub curve (Figure 2). The time to the first break that was found to be significantly

longer than the times to subsequent breaks, could be viewed as corresponding to the first and

second phases of the bathtub curve. Subsequent (decreasing) inter-break times indicate

correspond to a wear-out phase. The asymptotic tendency of the inter-break time to a constant

value seem to correspond to the alternative B of the wear-out phase, albeit at a later time in the

pipe life cycle, compared with the proportional hazards model.

Data requirements. The data requirements for this model consist primarily of a complete (as

possible) breakage history of the water mains. In addition, any data that can be used to partition

the pipe inventory into homogeneous groups is likely to improve the accuracy of the predictions.

Break clustering

Model description. Goulter and Kazemi (1988) observed significant temporal and spatial

clustering of water main failures in Winnipeg. They investigated 10-year pipe breakage data that

comprised about 2,200 km of water mains and over 20,000 maintenance events, the vast majority

of which related to cast iron pipes. They found strong evidence that an occurrence of a repair

event is very likely to trigger a subsequent breakage in close proximity soon thereafter. They

attributed this phenomenon to (1) deteriorated bedding conditions around the failure location due

to the leakage of water, (2) repair of water mains in the winter which exposed them and their
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immediate surroundings to low ambient temperature and frost, and (3) the actual repair process

which physically disturbed the pipe and bedding in the vicinity of the repair.

Subsequent to the observations of Goulter and Kazemi (1988), Goulter et al. (1993) proposed

a model to accommodate the clustering phenomenon. They defined an initial failure, a space

interval S (m) and a time interval T (days) which together defined a clustering domain. Any

failure occurring within S and T of the initial failure was considered to belong to that cluster. A

non-homogeneous Poisson probability distribution was proposed to predict the probability of

subsequent breaks in a pipe, given that the first break had already occurred.
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m = mean number of subsequent failures occurring in the cluster domain; x = number of

subsequent failures occurring in the cluster domain; r(s,t) = failure rate as a function of time t

and distance s. The values of m as a function of time t and distance s were predicted using a non-

linear regression
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where ε  = random error term; b0, b1, b2 = regression parameters.

A cross-referencing scheme was used for identifying clusters of breaks with various S and T

parameters, using the data from Winnipeg. The parameters m were re-derived for every year to

allow changes due to pipe deterioration and due to various winter conditions. Once a parameter

m was derived for a given year and a given time and space domain, one could find the

probability of subsequent breaks occurring in this domain given that the initial break had already

occurred. The authors reported good agreement between the observed and predicted distribution

of breakage events. This agreement diminished as values of m for various domains increased,

and Poisson representation was deemed not valid when m was greater than 0.14. The authors

hypothesised that higher values of m were indicative of an underlying failure process different

from the Poisson process.

The phenomenon of break clustering was also observed by Sundahl (1997) in Malmö,

Sweden. The author compared number of breaks that occurred within a radius of 200 m and

within a period of 2, 6 and 12 month from a previous break. He found that in the old part of the

city, the spatial and temporal clustering of breaks was higher than in the newer parts.
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Critique. The model proposed by Goulter et al. (1993) contributes significant insight into the

spatial and temporal clustering of water main breakage in Winnipeg. Since there is no

publication indicating whether this model has been applied elsewhere, it is not clear whether it

describes a global clustering phenomenon or a situation that is unique to Winnipeg. Further,

since water main breakage rates are subject to significant annual variations, the parameters b0, b1,

b2 cannot be known for any future year. Consequently, this model by itself does not provide real

break prediction capabilities, rather it could be superimposed on another predictive model (e.g.,

time-exponential or time-linear) to provide local break patterns. In addition, the model can be

applied only if the initial break in the cluster is known to have occurred, and only if the mean

number of subsequent breaks does not exceed 0.14 of the total number or breaks observed.

Davidson and Goulter (1994) proposed a probability distribution termed “Recursive Poisson

Distribution” as an improvement to the non-homogeneous Poisson probability distribution model

with relatively large m values. They suggested that since subsequent breaks in a cluster are not

entirely random, but rather are affected by previous breaks, the probability distribution of these

breaks is really not Poisson but, rather, appears to be Poisson for small m values. The distribution

they proposed, however, could not be derived analytically and thus their model was still not

predictive since the actual breaks had to occur in order for the recursive process to be applied.

An additional source of inaccuracy in modelling the clustering phenomenon is the fact that often

a failure is discovered and recorded long after it has occurred.

Data requirements. Pipe breakage date is typically available in most water utilities, however,

breakage location with precision of a single metre is less likely to be available in utilities that do

not use intricate data management systems such as GIS.
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Table 4. Probabilistic single-variate group models.

Reference Model Notation Data requirements

Cohort Survival Model

Herz (1996); Deb et al.

(1998)
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f(t) = probability density function
h(t)  = hazard function
S(t)  = survival function

t = useful lifetime of pipe
a = ageing factor (year-1)
b = failure factor (year-1)

c = resistance time (years), i.e., pipe will not
be replaced at age < c years

• pipe installation dates

• pipe “time of death”

• valid grouping criteria will enhance
accuracy

• alternative to “time of death”: end of
economic life (optimal time for
replacement) requires break history

.

Bayesian Diagnostic Model

Kulkarni et al. (1986)
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= Pf, = system-wide probability of failure
Pc/f, = probability of observing specified

characteristics on a segment that failed
Pc/nf. = probability of observing the same

characteristics on a segment that has not

failed

Grouping criteria (“sets of
characteristics”) such as pipe diameter

length, age and type, soil characteristics,
operating conditions such as pressure, etc.

Semi-Markov chain

Gustafson and Clancy
(1999a)

§ generalised gamma distribution for
t1

§ exponential distribution – identical
for all ti (i>1)

ti = time between the (i-1)
th

 and the ith

breaking pipe
• pipe breakage history

• pipe type

• other grouping criteria to enhance
accuracy

Break Clustering

Goulter and Kazemi (1988);

Goulter et al. (1993)
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m = m(s,t)

m = mean number of subsequent failures
occurring in the cluster domain

x = number of subsequent failures occurring in

the cluster domain
s = distance from the 1st break in a cluster
t = time elapsed from the 1st break in a cluster

Pipe breakage history with the exact time
and location of each break.

Data Filtering

Mavin (1996)

4 rules to filter pipe breakage data,
based on calculating the probability of
two consecutive breaks (Constantine

and Darroch 1993), and discarding the
second break if probability is low.

• pipe diameter

• pipe material

• traffic level

• soil type
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Summary

The authors have reviewed statistical, deterministic and probabilistic models that attempt to

quantify and predict the probabilities and/or frequencies of water main breakage. The models

were described, critiqued and their data requirements were identified. Where applicable, a brief

description was provided of decision processes that were formulated based on specific breakage

prediction models. Figure 7 provides a graphical summary of models and model classes covered

in this paper.

The distribution network is the single most expensive component of a water supply system.

The deterioration of water mains results in high maintenance costs, reduction in water quality,

reduction in quality of service and loss of water and disruption of street level activities. Planning

for water main rehabilitation and renewal is imperative to meet adequate water supply objectives.

The ability to understand and quantify pipe deterioration mechanisms is an essential part of the

planning procedure.

The statistical methods use historical data on water main breakage to identify breakage

patterns. Under the assumption that these historical patterns continue in the future, breakage

prediction models can be formulated. These models were broadly classified into deterministic,

probabilistic multi-variate and probabilistic single-variate group-processing categories.

The deterministic models typically use two or three parameter equations to model breakage

patterns. These models are best applied to groups of water mains that are relatively homogeneous

with respect to factors that might influence their breakage patterns. These models are relatively

simple to apply but require careful consideration of water main grouping schemes.

The probabilistic multi-variate models can consider many covariates that influence breakage

patterns, thus reducing the need to partition the water mains into homogeneous groups. They can

also explicitly consider right censored data. They are thus better suited for application to

individual pipes for the purpose of identifying and prioritising water mains for rehabilitation and

renewal. These models require significant technical expertise and data that are sufficient to

handle multiple variates.

The probabilistic single-variate group-processing models include models that use

probabilistic processes on grouped data to derive probabilities of pipe life expectancy,
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probability of breakage and probabilistic analysis of break clustering phenomenon. The pipe life

expectancy models can be useful to predict and plan for the future financial needs of utilities for

renewal of water mains. The break clustering models can be instrumental in the short term

planning of water main rehabilitation and renewal.

The physical/mechanical models, described in detail in a companion paper, attempt to predict

pipe failure by analysing the loads to which the pipe is subject as well as the capacity of the pipe

to resist these loads. There is little doubt that robust and comprehensive physical modelling will

drastically improve failure prediction. A true physical model would explicitly encompass all the

inter-relations between the factors affecting pipe breakage, and eliminate the need to use

statistics on breakage history to identify breakage patterns. However, even the best analysis is

only as good as the data that are available for its implementation, and in the water supply

industry many of these data are unavailable or very costly to acquire. It appears that currently,

only large water mains with costly consequences of failure may justify the accumulation of data

that are required for physical model application. The statistical models are an economically

viable approach for the smaller distribution water mains. More research is still required to

improve and validate both the statistical and the physical models.
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Andreou et al.; Marks;

Bremond; Li and Haims

Li and Haims;

Gustafson & Clancy

Extensive grouping,
environmental and

operational conditions

Pipe breakage and pipe

characteristics data

Homogeneous data

groups

Cohort survival

Probability of failure, or

time to failure of individual

pipes

Shamir and Howard; Walski

and Pelliccia; Clark et al.

Lei; Eisenbeis

Predict breakage

frequency

Proportional hazard

Bayesian diagnostics

Time dependent

Poisson’s model

Accelerated-life

Time-linear regression

analysis

Constantine and Darroch;

Miller; Mavin

Herz; Deb et al.

Kleiner and Rajani

Kulkarni
Probabilistic

Deterministic

Few, basic groups

Probability of failure, or
survival functions of groups

of pipes

Time-exponential

regression analysis

Kettler and Goulter;

McMullen; Jacobs and Karney

Data
filtering
and break

clustering

Goulter et al.,

Mavin

Markovian approach
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