
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

The 17th International Workshop on Qualitative Reasoning [Proceedings], 2003

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=98db93a9-0ad7-4a70-a49d-e2dbe13ef77c

https://publications-cnrc.canada.ca/fra/voir/objet/?id=98db93a9-0ad7-4a70-a49d-e2dbe13ef77c

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Qualitative Model Abstraction for Diagnosis
Yan, Y.

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l'information

Qualitative Model Abstraction for Diagnosis *

Yan, Y.
August 2003

* published in The 17th International Workshop on Qualitative Reasoning. Brasilla, Brazil.
August 20-22, 2003. pp. 171-179. NRC 46498.

Copyright 2003 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

Qualitative Model Abstraction for Diagnosis

Yuhong Yan

NRC Institute of Information Technology, Canada
Yuhong.yan@nrc.gc.ca

Abstract
Building qualitative models is a crucial task for model-
based diagnosis. This paper discusses the techniques to
automatically transform a quantitative model in CAD
environment into a qualitative model, under the cases that
the real numbered landmarks are known and unknown. With
known landmarks, the abstraction is through the
discretization process where the simulation data is
discretized according to the given landmarks. If landmarks
are unknown, the landmark generation process, which is
inspired by the discriminability analysis for multiple
behaviour modes, is applicable. For dynamic systems, the
pseudo-variables are introduced to describe the dynamic
behaviour. The techniques developed are demonstrated by a
simplified automotive subsystem.

Introduction

The automobile industry has foreseen the growing demand
of diagnostic analysis for automobiles. Engineers need an
integrated design environment that enables them to do the
diagnostic analysis at the design stage, so that they can
understand and evaluate the effects of each choice on the
diagnostic properties of the system being designed.
European FP5 Project IDD (Integrated Design Process for
On-board Diagnosis) aims to formalize and standardize the
diagnostic design process and to develop new techniques
and tools to support this purpose. After a model-based
diagnosis approach is determined, the problem of creating
the appropriate qualitative model becomes the crucial issue.
 Our starting point is the numeric simulation model which
is built to examine a system’s behaviour by design
engineers in a CAD environment. Matlab/Simulink is the
target CAD platform due to its wide adoption in the
automotive industry. Models in Matlab/Simulink are
illustrated graphically as a set of subsystems/blocks and a
number of interconnected input and output links between
the blocks. Empirical data, library functions, as well as
formulas can be used in the blocks. Normally no explicit
equations are available for the general system under study.
Our task is to develop automatic approaches to abstract the
qualitative model for diagnostic purposes.
 The qualitative model used in this paper is in finite
domain tuples, i.e. the domain of a variable has multiple
landmarks. This paper presents the techniques of model
abstraction with or without landmarks for both static and
dynamic systems. Section 2 reviews the relevant techniques

for model abstraction and diagnosis. Section 3 discusses
the approaches for model abstraction with known
landmarks for both static and dynamic system. Section 4
represents the approach for the landmark determination
based on diagnosability analysis. Section 5 demonstrates
how the approaches developed can be used in a model of a
subsystem in automotive. Section 6 is discussion and
conclusion.

State of the Art in Qualitative Model
Abstraction and Diagnosis

State-based vs. Simulation-based Diagnosis
Diagnosing dynamic system requires checking the
consistency of observations over time with the behaviours
modeled by the dynamic model of the device. A
straightforward solution is to simulate incrementally the
model as observations change, in order to predict the
immediate successor states. This is the simulation-based
approach used in (Dvorak and Kuipers 1992). (Dressler
1996) avoids simulation and generates diagnostic
candidates based on checking consistency of the model
with observed states only. (Malik and Struss 1996) states a
necessary and sufficient condition for the equivalence of
state-based and simulation-based diagnosis without giving
a proof. (Struss 1997) further presents that if the system
dynamic can be modeled as state constraints plus CID
constraints, which are general rules about continuity,
integration and derivatives, then diagnosis based on
checking the state consistency yields results equivalent to
diagnosis based on simulation. Of course, the state-based
approach is much less costly than the simulation-based
approach. If a system has other temporal constraints than
the CID constraints (called trans-constraints), the
conclusion is no longer held. These trans-constraints are
typically constraints introducing discontinuities over time.
(Panati and Dupre 2000) and (Dupre and Panati 1998)
report a violating case where abrupt faults are considered.
Abrupt faults, where a system parameter changes abruptly,
are the cases of discontinuity. By adding constraints
related to injecting a fault, the simulation may actually be
useful to restrict the set of possible diagnoses. There are
many methods on how to model the constraints related to
injecting a fault (Dupre and Panati 1998), (Mosterman and

Biswas, 1997). Abrupt faults are not considered in this
paper.
 The state-based diagnosis engine is used in our project,
though the state-based way could result in more candidates
as stated above. This paper concerns building a qualitative
model efficiently and automatically from the simulation
environment for the state-based diagnosis engine.
Diagnosis equivalence in (Struss, 1997) has a precondition
that there are sufficient observables. More specifically,
since the state-based approach does not use the relation
between x and dx/dt, both x and dx/dt should be
observables in order to have enough redundancy for
diagnostic analysis. Sometimes not both of x and dx/dt are
modeled in the simulation model or not both can be
measured as physical variables. In section 3.3, pseudo
variables are introduced to describe the dynamic behaviour
and also provide redundancy for diagnostic analysis for
dynamic system.

Abstraction of Qualitative model
Qualitative models have already been successfully used in
the framework of model-based diagnosis. When
abstracting a qualitative model for a system, the crucial
requirement is to transform the model to the right level of
abstraction after composing it. In (Struss 2002), the
problem is stated as to find the necessary and sufficient
distinctions in the domains of the system variable to
achieve a particular goal in a certain context and under
given conditions. The right level of abstraction is task-
dependent; depending on the requirements of the tasks, the
distinctions can be different. (Sachenbacher and Struss
2001) introduces AQUA, a framework for automated
qualitative abstraction. In AQUA, the goal of using a
model is characterized by a set of target partitions of the
domains of selected variables (e.g. output variables), the
context is given by the structure of the model system, and
the conditions are represented by a set of initial variables
and their possible distinctions (e.g. possible observations).
AQUA needs a fine-grained qualitative relation as the
starting point. The partitions of domain can be given by
(finite) sets of landmarks that define qualitative values as
intervals between adjacent landmarks. AQUA then
eliminates landmarks that do not contribute to a distinction
between target partitions. The abstract model will then
contain a subset of the landmarks of the original model but
maintain the predictive power with respect to qualitative
values of the target variables. One difficulty of this method
is that the starting “fine” domain model is difficult to obtain.
We do not know how fine the starting model should be, so
that the abstract process can remove some landmarks to get
the optimized qualitative model. Second there are no
criteria to determine the target distinctions. (Struss 2002)
extends AQUA by giving an approach to automatically
determine the landmarks for the variables. It is a recursive
subdivision process. The criterion to divide the domain is
that if a qualitative value of some variable occurs in many
tuples, it is identified as a candidate for refinement and
split into two or more intervals by introducing additional

landmarks. This criterion does not show how the new
partitions effect on the target distincts, thus its effectiveness
is questionable.
 Qualitative simulation is a widely used tool. The
fundamental difference is QSIM starts from QDE
(Qualitative Differential Equation) and the simulation is on
qualitative level, while the starting point in this paper is the
numerical simulation model, and the simulation is
numerically. Many QSIM techniques, such as value
generation, constraint filtering, can’t be used here. A
summary of QSIM techniques and their extensions can be
found in (Kuipers 2001).
 In FDI community, there is also some work on building
qualitative system models. One example is (Lunze et al.
1999), in which the state variables are partitioned along the
time based the state transforms. The result is the discrete
trajectory of states. In this paper, pseudo-variables, which
are the derivatives of flow or effort variables (cf. section
3.3), are introduced to describe system dynamic. The
pseudo-variables are equivalents to the state variables.
While Lunze uses the state transform equations to
determine the state variables in the next time step, our
approach does not have transform equations. The
discretization is on the values of input and output data after
the time information is removed. Thus the two approaches
are different from each other and both are suitable for their
diagnosis principles.
 There are some other commonly used ways to obtain
qualitative model, e.g. the qualitative derivation model
(Malik and Struss 1996), and Bond-graph analysis
(Mosterman and Biswas 1997). They either have no
automatic methods available or not start with simulation
model. So they are not reviewed here. The techniques
listed here are far from complete. A review on qualitative
model construction can be found in (Schit and Bredeweg
1996).

Features of a Simulation Model and Its Gap to
Qualitative Model
There is a big gap between the simulation model which is a
description of the system behaviours and the qualitative
model which is used for diagnosis. The qualitative model
for diagnosis needs two kinds of information: 1) the
structural model which is the physical structure of a system,
i.e. how the physical components are connected; 2) the
behaviour model which is a description of the input-output
relation for every physical component. In a graphical CAD
environment, like Matlab/Simulink, the physical compo-
nents are represented by blocks. A block can have sub-
blocks for describing internal structure or functions inside
the components. The links between the blocks are the
physical connections, where the connected blocks have
shared variables. The structural model is obtained by
extracting the connections and block information from the
CAD environment. This can be done by calling CAD
functions to collect this kind of information. The difficulty
is in abstracting the behaviour model. The relations of a

component are implied by the blocks. The standard blocks
are normally mathematical operators and can be expressed
as formulas between inputs and outputs. Many other so
called “customized” blocks contain C-code, look-up tables
and Matlab scripts, which have no explicit equations.
These blocks can be cascaded or sub-composed together
for one physical component. This gives the design
engineers the maximum flexibility for building models.
They can either encode their empirical data into the look-
up tables, or embed logic clauses in the script code, or call
professional libraries from C-code. But on the other side,
this causes a great gap between a simulation model and a
model-based diagnosis engine that requires explicit
relational expression. Moreover, simulation is executed
only in one direction, i.e. we are unable to compute the
inputs from the outputs. Though the gap exists, one benefit
of the CAD environment is its effective computation
capacity to simulate the system behaviour in both static and
dynamic processes. We can depend on this when we
design our solution.

Abstracting Qualitative Models from
Simulation Models using Finite Domains

Finite Relation Qualitative Model
A Finite Relation Qualitative Model uses a set of real
numbers as landmarks for each variable. The qualitative
values are the intervals between adjacent landmarks. The
qualitative relation is the mapping between the qualitative
values. More landmarks produce a finer qualitative model.
 Definition1: An interval is a pair of numeric landmarks:
I1:=[lma, lmb], where lma ≤ lmb.
 Definition2: Two intervals are equal if and only if the
two landmarks are equal:
For intervals I1:=[lma, lmb], and I2:=[lmc, lmd], I1 equals I2
iff lma= lmb and lmc= lmd.
 Definition3: A tuple is a collection of ordered intervals:

T:={ I1, …, In} = {[lma, lmb],…, [lmp, lmq]}
If vectors LM1:= [lma,…, lmp] and LM2=[lmb,…, lmq], the
tuple T can be represented by T:=[LM1, LM2]. An n-
dimension tuple can represent an n-dimension rectangle.
 Defintion4: A qualitative model q is a mapping
between two sets of intervals:
q: Ψ1→Ψ2. The source set Ψ1= {[lmi

in, lmi+1
in]} is the set of

qualitative inputs to the model, the target set Ψ2= {[lmk
out,

lmk+1
out]} is the set of qualitative outputs from the model.

 The mapping is a multiple valued relation, i.e.
∀ [lmi

in, lmi+1
in] ∈Ψ1 , q:[lmi

in, lmi+1
in]→ Ψ2’ ⊂ Ψ2 , Ψ2 is

empty or has one or more elements. If we can enumerate
the mapping pairs, q can be presented in set of tuples, as:
{{[lmi

in, lmi+1
in], [lmj

out, lmj+1
out]},…{[lmp

in, lmp+1
in][lmq

out,
lmq+1

out]}} (1)
 When the input is multi-demensional, a qualitative model
q is a mapping between two sets of tuples: q: ΨΨΨΨ1→ΨΨΨΨ2. The
source set ΨΨΨΨ1 = { Ti} is the set of input tuples and the target
set ΨΨΨΨ2 = { Sj} is the set of output tuples of the model. If we

can enumerate the mapping pair of tuples, q can be
represented by
 {{ T1, S1},{ T2, S2},…,{ Tn, Sm}} (2)
 Definition5: If a system described by y=f(x) is a static
quantitative model, landmarks x1, x2,…,xn and y1, y2,…, ym
are selected for x and y and in an ordered sequence. A
qualitative abstraction q(f) is a mapping from set Ψ1 =
{[x1,x2],[x2,x3],...,[xn-1,xn]} to set Ψ2 ={[y1,y2],[y2,y3],...,[yn-1,
yn]}:
q(f):{[x1,x2],[x2,x3],...,[xn-1,xn]} →{[y1,y2],[y2,y3],...,[yn-1,yn] },
such that:∀[xi,xi+1], q(f): [xi,xi+1]→[yj,yj+1], iff ∃x, xi≤x≤xi+1,
yj ≤y≤ yj+1.
 Qualitative abstraction q(f) results a qualitative model.
Landmarks x1,x2,...,xn and y1,y2,...,ym are selected to cover
y=f(x)’s domain and range, i.e. ∪i[xi, xi+1] ⊇ Domain(x),
and ∪j [yj, yj+1] ⊇ Range(y). Definition 5 can be extended
for multiple in-out systems.
 Definition6: Y=f(X) is a static quantitative model,
where X= [x1, x2,…,xn] and Y=[y1, y2,…, ym]. [xi,1, xi,2,…,xi,n]
are landmarks for xi. [yi,1, yj,2,…, yj,m] are landmarks for yj.
A qualitative abstraction of model Y=f(X) is a mapping
from set Ψ1= {Πi[xi,p, xi,p+1]} to set Ψ2= {Πj[yj,q, yj,q+1]}:

q(f): Ψ1→Ψ2, such that
∀ Πi[xi,p, xi,p+1], q(f): Πi[xi,p, xi,p+1]→Πj[yj,q, yj,q+1], iff ∃X,
X∈Πi[xi,p, xi,p+1], Y∈Πj[yj,q, yj,q+1].

Model Abstraction for Static Simulation Model
with Known Landmarks
Discretization Algorithm is designed to deal with the
simplest case, in which the simulation model is static and
the landmarks for the variables are known. The name come
from that the algorithm discretizes the simulation data into
intervals of landmarks.
 Algorithm 1 is the discretization algorithm with the
simulation model Y = f(X), where f can be implicit, and the
landmarks for X and Y as inputs. Suppose xi has a set of
landmarks {x_lm1

i
 , x_lm2

i, …, x_lmm
i}, the adjacent

landmarks makes a set of the intervals {[x_lm1
i,x_lm2

i],…,
[x_lmm-1

i, x_lmm
i]}. The simulation inputs for xi are from

one of these intervals. Thus, the input points for X are
generated from a multi-dimensional rectangle, which is one
element in the set of the combination of the intervals:
Πi{[x_lm1

i,x_lm2
i], …, [x_lmm-1

i, x_lmm
i]} , as in Line 2.

 Suppose [x_lmp
i, x_lmp+1

i] is the interval for xi, k random
values are generated in this interval. For an n-dimensional
rectangle, totally kn testing points generated (Line 3). The
purpose of generating the random values is to probe the
extrema when function f is not monotonic. This is just an
approximate approach to deal with non-monotonic (ref.
discussion below). Line 4 calls Simulink simulation
function to get the values of the outputs for each of the kn
testing points. Line5-6 gets the minimum and maximum
output values. Line7-8 gets the landmarks that cover the
range of output values. The qualitative relation is in line 9.

Algorithm 1: Discretization
Inputs:
 - numeric model Y = f(X) in Matlab/simulink format

Comp1 Comp2

E1 E2 E3

F1 F2 F3

Comp1 Comp2

E1 E2, dE2/dt

F1 F2 F3

E3 dE3/dt

 -{x_lm1
i, x_lm2

i, …, x_lmm
i} is the set of landmaks for xi,

{ y_lm1
j, y_lm2

j, …, y_lmq
j } is the set of landmarks for yj

 - a nature number k
Outputs:
 - a vector q storing the mapping pair (as format in (2))
1: create a vector q to store the mapping pair
2: for each element in Πi{[x_lm1

i, x_lm2
i], …, [x_lmm-1

i,
x_lmm

i]}
3: generate k random values for each [x_lmp

i, x_lmp+1
i],

lets say {x_lmp
i, xx1

i,…, xxk
i, x_lmp+1

i}, the input points are
Π{ x_lmp

i, xx1
i,…, xxk

i, x_lmp+1
i}

4: call Simulink function to simulate f(Πi{ x_lmp
i,

xx1
i, …, xxk

i, x_lmp+1
i})

5: Ymin = min(f(Π{ x_lmp
i, xx1

i,…, xxk
i, x_lmp+1

i}))
6: Ymax = max(f(Π{ x_lmp

i, xx1
i,…, xxk

i, x_lmp+1
i}))

7: y_lowj = max({y_lmu
j | y_lmu

j � ymin
j})

8: y_highj = min({y_lmv
j | y_lmv

j ≥ ymax
j})

9: store <Π [x_lmm
i, x_lmm+1

i], [y_lowj, y_highj]> in q
10: end for
11: report q

 Algorithm 1 is similar to the method in (Struss 2002).
The similarities are both methods use real numbers as
landmarks and discretize the continuous model with these
landmarks. The differences are: first, (Struss 2002)
considers the precision of the model, i.e. the base model is
given by the envelope of f(X). This is perhaps for
considering noise in the signals or the computation error in
simulation. We consider it is not necessary to add this
envelope. If concerning the noise, it is better to eliminate
the noise from the signals than adding the tolerance at the
modeling stage. If concerning about the computation error,
it is rather small that ignoring it won’t affect the
approximation of the qualitative model. Adding envelope
could degrade the qualitative model because the
distinctions between right and faulty behaviour might be
removed. Secondly, (Struss 2002) limits the algorithm to
monotonic functions or monotonic sections of a function.
With the monotonic constraint, the tuples are determined
by the bounding landmarks (e.g. the corners of the
rectangle). If users do not know the shape of the function,
users can choose wrong landmarks that the relation
determined by the bounding landmarks can miss the
extreme points, thus abstracted qualitative behaviour is not
“sound”. To get the monotone pieces from the discrete
simulation data is not a trivial problem. The way to
compute the derivative numerically from the discrete
simulation data in order to determine the monotone as in
(Struss, 2002) is not feasible because the very small but
numerous turbulences on the data, which is the case for the
simulate data, could lead to wrong results. Our method
using random points to probe the extrema between the
landmarks is a practical solution for the non-monotonic
function. If the random points are in a large amount,
practically this method can get satisfactory results for non-
monotonic systems. But this problem is still open.
(Brooks, 1984) gives a mathematical foundation for
detecting monotonic pieces from discrete data (simulation

data). We believe this could be a solution, though we did
not test this technique yet.

Model Abstraction for Dynamic Model
As discussed in Section 2.1, there are two views on how to
diagnose dynamic systems. State-based diagnosis is used
in our project. In state-based diagnosis, the relations
between the time steps are not considered, i.e. dx/dt is not
computed from x, or when dx/dt and x are both known, the
relation between them is ignored. One straightforward way
to model the dynamic for state-based diagnosis is to model
the derivatives of the variables. But in many situations, the
derivative of a variable is not a variable in the simulation
model, or physically is not a measurable variable. For
example, Figure 1 is the model for a RC circuit. Voltages,
u1, u2, and u3, are the observable variables, while current i
is non-observable. u1 and u3 are constant. The derivatives
of the voltages or the currents, which are necessary for
modeling the dynamic behaviour, are missing in the
simulation model.

Our solution is to introduce the pseudo variables, which
are the derivatives of effort or flow variables, in the
qualitative model. A systematic framework exists for
building consistent and well constrained models of
dynamic physical systems from multiple domains (e.g.
electrical, mechanical, hydraulic), which is based on the
continuity of power and conservation of energy between
system components (Karnopp and Rosenberg 1975) The
effort variables are to represent generalized voltage,
pressure, temperature, etc., and the flow variables are to
represent generalized current, volume flow, entropy flow,
etc. Depending on the dynamic is caused by capacity or
inertia element, the derivatives of effort or flow variables
are chosen as the pseudo variables. As shown in figure 2,
(a) is the original model, in which E is the effort vector, and
F is the flow vector. For the system has capacity dynamic,
dE/dt is added as pseudo variables, or for inertia dynamic,
dF/dt is added as pseudo variable. Fig 2(b) is a case with
capacity dynamic, in which dE1/dt to dE3/dt are added as
pseudo variables. The pseudo variables are a part of the
qualitative relations as the other variables.

For the RC example, the derivative of u2 (du2 in figure

R C

u1

i i

u2 u3

i

R u1

C

u2

u3

(a) RC Circuit (b) RC Circuit in block diagram
Fig. 1 Example: RC Circuit and Simulation Model

(a) original model (b) model with pseudo variables
Fig. 2 Dynamic System

R C
u1

i i

u2, du2 u3

i

du2

i

u2

i

3(a)) is added as the pseudo variable. The qualitative
model of the capacitor is:
 Q(fc): {u2, u3, du2}�{ i} (3)
The qualitative model for the resistor is
 Q(fr): {u1, u2, du2}�{ i} (4)
 At the modeling time, the pseudo variables are computed
numerically from their correspondent variables using the
simulation data. Then time index is eliminated from the
data to obtain value relations between all the variables
including the pseudo variables.

Eliminating the time index from the data is a trivial
problem, especially when there is the aide of the simulation
tool. Figure 3(b) is the relations between i and du2 and
between i and u2. Algorithm 1 then can be used to obtain
the qualitative model.
 At the diagnosing time, we assume the observables are
measured along time. If an observable’s derivative is a
pseudo variable, the derivative values are computed
numerically from the observations and supplemented to the
diagnosis engine as observations. For the RC example, if
du2 is considered as an observable, one can see there are
enough redundant relations to diagnose the dynamic
behavior.
 One last point is that if more knowledge is used, the
qualitative model can be simplified. For example, if the
dynamic element and the static element can be identified,
the pseudo variables can be added only to the dynamic
element, not to the static element. For the RC circuit, the
capacitor is a pure dynamic element and the resistor is a
pure static element, the qualitative model can be simplified
to:
 Q(fc): {du2}�{ i} (5)
 Q(fr): {u1, u2}�{ i} (6)
If we use the knowledge that the current of a resistor is
proportional to the difference of the voltages on its two
terminals, i.e. equation (u1-u2)/R = i, the qualitative model
can be:
 Q(fc): {du2}�{ i} (7)
 Q(fr): {u1- u2}�{ i} (8)

Model Structure Extraction
Model structure extraction is to get the physical
connections between components. It is just a technique
problem. In Matlab/Simulink, the details of model, e.g. the
blocks and the links between blocks are described in a
script file. Matlab/Simulink parses the script information
and loads the system into its workspace. We can call
Matlab/Simulink functions to get the structural information,

more specifically, get_param() and get_link() are the
functions used for this purpose. The function interfaces
remain unchanged when software version evolves.

Landmark Determination and qualitative
model Abstraction

In the discretization algorithm, landmark selection is
crucial. Only if landmarks have necessary and sufficient
distinctions, the expected diagnosis results can be obtained.
Design engineers can contribute their knowledge in
selecting good landmarks. But it is not a reliable way to
get landmarks. In this section automatic landmark
generation is discussed and the model abstraction algorithm
is modified.

Discriminability vs. Domain Partition
Our method is inspired by the discriminability definition in
[Struss et al. 02], where the relation of two behavior modes
falls into three categories: non-discriminable (ND),
deterministically discriminable (DD), and possibly
discriminable (PD). In this section we will discuss the
relation of domain partition and discriminability. The
criterion for selecting landmarks is to keep the necessary
and sufficient distinctions between the right and the fault
mode, i.e. the deterministic discriminability. In the
following context, the two behavior modes are one right
mode and one faulty mode.
The notations are the same as in [Struss et al. 02]: Vobs is
the set of observable variables; Vo-cause is the set of
“causal” variables in Vobs; and Vobs\cause is the set of the rest
variables in Vobs that are not “causal”. For the model
abstraction problem, we are only interested by DD scope.
Define SITo-cause is the scope of Vo-cause for DD, then
([Struss et al. 02]):
 SITo-cause = PROJo-cause(OPCi) \ PROJo-cause(PROJobs
(MODELmode1 � OPCi) � PROJobs (MODELmode2 �
OPCi)) (9)
 where PROJ is projection operation, OPC is operation
conditions.
 In the problem of qualitative model abstraction, the right
and fault mode have the same input values, i.e. the Vo-cause
are the same. Thus the discriminability is determined by
the discrepancy of the output, i.e. the projection on Vobs\cause:
 Proposition 1: Assume Vo-cause variables take value from
tuple [X1, X2], MODELmode1 and MODELmode2 is DD in
[X1, X2], iff
PROJobs\cause(MODELmode1�OPCi)�PROJobs\cause(MODEL
mode2�OPCi) = Ø (10)
 Proof: efficiency: assume (10) is satisfied, we need to
prove [X1, X2]⊂ SITo-cause. (10) means that Mode1 and
Mode2 are disjoint when projected on Vobs\cause under
condition Vo-cause∈ [X1, X2]. So their projections on Vobs
are also disjoint under condition Vo-cause∈ [X1, X2]. We get:
PROJobs(MODELmode1�OPCi)�PROJobs(MODELmode2�O
PCi) = Ø Thus under condition Vo-cause∈ [X1, X2], (10)
is simplified to

(a) Qualitative model (b) relations of i-du2 and i-u2
Fig. 3 Example: RC Circuit Qualitative Model

PROJo-cause(OPCi) \ PROJo-cause (Ø) = PROJo-cause(OPCi)=
[X1, X2].
 This proved [X1, X2]⊂ SITo-cause.
 Necessary: assume [X1, X2]⊂ SITo-cause , we need to
prove that (10) is satisfied.
 Notice that Vo-cause variable take value from [X1, X2]
means PROJo-cause(OPCi) = [X1, X2], thus from (9):
PROJo-cause(OPCi) \ PROJo-cause(PROJobs(MODELmode1 �
OPCi)�PROJobs(MODELmode2�OPCi)) = PROJo-cause (OPCi)
 That means the second term of the left side is Ø. So we
have:
PROJo-cause (PROJobs (MODELmode1 � OPCi) �PROJobs
(MODELmode2 � OPCi)) = Ø
 That means the term in bracket is Ø, so we have
PROJobs (MODELmode1 � OPCi) �PROJobs (MODELmode2
� OPCi) = Ø
 Since Vo-cause takes the same value for mode1 and mode2,
we have1
PROJobs\cause (MODELmode1 � OPCi) � PROJobs\cause
(MODELmode2 � OPCi) = Ø �
 Proposition 1 shows that if the two modes take the same
value for Vo-cause variables, the diagnosability is determined
by the projections on Vobs\cause variables. For model
abstraction problem, the two modes work under the same
operation conditions, and more important, work under the
same inputs. Take the observables in inputs as Vo-cause,
other observables as Vobs\cause, the diagnosability is
determined by the observables in Vobs\cause.
 Intuitionally, if the domain partition is too coarse, the

output ranges of the two modes will be overlapped. In this
case, such that the two modes are undiscriminable (cf.
figure 4). In other word, if the discrepancy between the
two modes is larger, the domain partition can be coarser.
Assume the two behavior modes have numeric models:
Y=f1(X) and Y=f2(X). MODELmode1 and MODELmode2 are
the qualitative models, so MODELmode1=q(f1) and
MODELmode2=q(f2). If ∃[X1 X2], q(f1): [X1 X2]→[Y1
Y2], q(f2):[X1 X2]→[Y1’ Y2’].
 From proposition1, if
[Y1 Y2]obs � [Y1’ Y2’] obs = Ø, (11)

1 This can be easily prove by assume PROJobs\cause
(MODELmode1 � OPCi) � PROJobs\cause (MODELmode2 �
OPCi) � Ø. Since Vo-cause take the same value for mode1 and
mode2, we have PROJobs (MODELmode1 � OPCi) �PROJobs
(MODELmode2 � OPCi) � Ø , conflict.

The [X1 X2] belongs to DD range. In (11) the [Y1 Y2]obs
is the observables in [Y1 Y2]. This is the case in Figure4(a).
 If [Y1 Y2]obs � [Y1’ Y2’] obs � Ø (12)
The [X1 X2] belongs to non-DD range. This is the case in
Figure4(b).
 The limit between DD and non-DD is as Figure 2(c):
[Y1 Y2]obs � [Y1’ Y2’] obs = Y1’obs =Y2obs, or (13)
[Y1 Y2] obs� [Y1’ Y2’] obs = Y2’obs =Y1obs (14)
 Figure 4(c) is the coarsest partition for Vobs that still
keeps DD. It is easy to prove if the partition is coarser, the
modes are non-DD2.

Corollary: The boundary of the coarsest partition is the
surface where the two modes joint.
 For monotonic functions, the coarsest landmark is easy
to compute:
Proposition 2: Assume MODELmode1 and MODELmode2

have quantitative models f1 and f2. f1 and f2 are monotonic.
{ X1, X2,…, Xi,…} are the input points. The coarsest
partition for Vo-cause satisfies
f1(X1) = f2(X2)

f1(X2) = f2(X3)
…

f1(Xi) = f2(Xi+1)
 When Vo-cause get the coarsest partition {X1, X2,…,
Xi,…} obs, Vobs\cause get the coarsest partition {f1(X1),
f1(X2), …, f1(Xi), …}obs.
 Proposition 2 provides a way to generate new landmarks.
It is possible to numerically compute Xi+1 from Xi. For
non-monotonic functions, proposition 2 does not hold. In

the next section, a non-optimal but satisfactory
solution of landmark generation is presented.

Model Abstraction with Landmark
Generation
The method presented in this section is relied on
one fact that if the domain partition is finer, the
discriminability can be improved. X = f(t) is a
dynamic system. The simulation time is from 0 to
Tc. The algorithm 2 starts from the coarsest

landmark [LOC1, LOC2], in which LOC1 and LOC2is the
lower bound and upper bound of Xo-cause. From the
simulation data, the discriminability on [LOC1, LOC2] is
examined (based on Proposition 1). If [LOC1, LOC2] is not
a DD range, that might mean that this partition is too coarse.
[LOC1, LOC2] is split from the medium point, i.e.
(LOC1+LOC2)/2 is added as a new landmark. [LOC1,
(LOC1+LOC2)/2] and (LOC1+LOC2)/2, LOC2] are two
intervals to be checked. The split process will continue
until a DD scope is found, or the split makes the intervals
smaller than a pre-defined minimum length D. Algorithm 2
records the generated landmarks, the qualitative relations,

2 Without loss of generality, assume f1 and f2 is monotonic as
figure 2(c), and f1(X1) = f2(X2). If Vo-cause has a larger partition
[X3, X2], where X3<X1, we get f1(X3)<f1(X1) = f2(X2) and
f2(X3) < f2(X1)<f1(X1). Thus [f1(X3), f1(X2)] � [f2(X3),
f2(X2)] = [f1(x3),f1(x1)] � Ø.

(a)DD with good margin (b) ND (C) DD with no margin

Figure 4: the limitation of partition for discriminability

as well as the discriminability property on each input
partitions.
Algorithm2: qualitative model abstraction X = f(t)
Input:
D: Minimum landmark interval
Tc: duration of simulation time
f, f’: Quantitative models for two modes,
Vo-cause ={ x i | xi∈X}, V obs\cause = { x j | xj∈X}, V obs\cause ∪
Vo-cause ⊆ X
[LOC1, LOC2]: the start landmark for Vo-cause, i.e. LOC1=fo-

cause(0), LOC2= fo-cause(Tc)
Output:
DD: Vector for input scope that system are DD
ND: Vector for input scope that system are non-DD (PD or
ND)
q: Vector for storing qualitative model
loop: the Boolean variable controls loop, initialized as true
Internal Variables:
p: stack to store input tuples
1: Store [LOC1, LOC2] in p
2: While p is not empty
3: pop a tuple [LOCi, LOCi+1] from p
4: find ti and ti+1 correspondent to LOCi, LOCi+1
5: LONCi = min{fobs\cause(t)| ti <t<ti+1}
6: LONCi+1 = max{fobs\cause(t)| ti <t<ti+1}
7: LONCi’= min{ f’ obs\cause(t)| ti <t<ti+1}
8: LONCi+1’= max{f’ obs\cause(t ti <t<ti+1}
9: if [LONCi, LONCi+1]∩ [LONCi’, LONCi+1’] = ∅,
(that means [LOCi, LOCi+1] is in DD scope)
10: store [LOCi, LOCi+1] in vector DD
12: store {[min{f(t)| ti <t<ti+1}, max{f(t)| ti < t <
ti+1}]} in vector q
13: remove [LOCi, LOCi+1] from p
14: else
15: mid = (LOCi+LOCi+1)/2
16: if | LOCi- mid|<=D or |LOCi+1 -mid| <=D
17: store {[min{f(t)| ti<t<ti+1}, max{f(t)| ti< t <
ti+1}]} in vector q
18: store [LOCi, LOCi+1] in vector ND
19: remove [LOCi, LOCi+1] from p
20: else
21: push [LOCi, mid] and [mid, LOCi+1] into q
22: end-if
23: end-if
24: end-while
25: report DD,ND, q
 The key issue for algorithm 2 is the splitting procedure
that refines the qualitative relation until to the level the
fault is discriminable.
 Resume the RC example in section 3.3. The voltage u1,
u2, and u3 are measurable observables. du2, the derivative
of u2, is the pseudo variable and is also a supplementary
observable. The fault considered is the resistance of the
resistor doubled, which causes the transient process slower.
u1 and u3 are constant (u1 = 100v, u3 = 0v) in this

example. u2 is chosen as Vo-cause, and du2 as Vobs\cause.
Figure 5 is the relation of u2 and du2 under the right (solid
line) and faulty modes (doted line). Using algorithm 2, the
split process is like figure 5.
Some comments on algorithm 2:
 1. the partitions obtained from algorithm 2 are not the
coarsest but the satisfactory one for diagnosis purpose. It is
the

trade-off of optimization and computation cost.
 2. the success of algorithm 2 depends on the selection of
the variables to be split. Normally the most influential
variables are chosen as the base variables. The split of the
base variables can cause the largest change on the output
variables. It needs special techniques to determine which
variables are the most influential variables. The causal
ordering algorithm [Iwasaki and Simon, 1994] can be used
for this purpose. The base variables used in the RC circuit
and in the demonstration case in this paper are selected by
experience.
 3. For the monotonic functions, the refinement of domain
partition always refines the distinctions of Vobs\cause. For the
non-monotonic functions, it is not true due to the local
extrema. But it is sure that the partition refinement doesn’t
remove the distinctions of Vobs\cause.
 4. This algorithm considers only partitions on continuous
variables. For discrete variables, normally we regard them
as different operation mode. For example: the switch can
be on and off. They are considered as two operation modes.
Thus this algorithm is suitable for most of the system.
 5. For continuous variable, the valid value is bounded by
working environment. For example, for a normal AC
system, we consider the outside temperature is from –20 to
40.

Demonstration

(R=100ohm, C=0.001F for the right mode,
and R=200ohm C=0.001F for the faulty mode)

Fig. 5 Landmark Determination and Qualitative Model Abstraction

Table 1 Landmarks for p1 and dp2

(a) Matlan/SimulinkModel

Blower Distribution

p0, f0,E p1, f1
Cabin

p2, f2 p3, f3

(b) Model in block diagram

Figure 6: AC system with 3 components

A simple Air Conditioning system has 3 components,
Blower, Distribution and Cabin (figure 6). Figure 6(a) is
the model in Matlab/Simulink, while figure 6(b) is in block
schema with the input and output variables for each block.
pi is pressure, fi is airflow rate, E is the electricity power

driving the blower. The flow rate and pressure inside the
system increase when the blower begins to work, and they
reach a stable point when E is unchanged. If the cabin
volume increases, the transient procedure is slower than
normal case but the same stable point can be reached. It is
difficult to manually determine the landmarks for the
variables. The algorithm 2 can deal it with. Suppose we
can measure any pressure if necessary because normally
pressure is easier to measure than flow rate. Since we
already know p0 and p3 are equal to outside air pressure,
they have no influence on diagnosability. Consider Vo={p1,
p2, dp2}, where dp2 is the derivative of p2. The relations
of p1-p2 and p1-dp2 are drawn from simulation data as in
Figure 7, where the solid curve is for the right mode and
the doted line is for the faulty mode. One can see that the
relations of p1-p2 at the two modes are too close to
distinguish the two modes, but the relations of p1-dp2 have
good distance to each other. And if p1 is the base variable
to be split, the two modes can be distinguished. We choose
Vo-cause = {p1} and Vobs\cause = {p2, dp2}. The landmarks
for p1 and dp2 are listed in table 1. Figure 8 shows the
partitions on p1-dp2. Figure 8(a) is the result of 6 times of
split. Except the most right and left interval of p1, the
other intervals are Deterministic Diagnosable region. The
landmarks of other variables are computed accordingly,
which are not showed
in this paper. Figure
8(b) shows the
partition result when
E changes. The two
solid curves are for E
= 500 and E = 300
respectively. The
area between the two
curves are the right
behaviour when 300
<= E <=500. The
faulty mode is the

 area between the two dotted curves. The partitions are
result after 6 split. One can see that after p1>3500, the
refinement of landmarks does not help to increase the
diagnosability. For the algorithm 2, the split continues and
generates some landmarks that do not help to distinguish
the fault.

Discussion and conclusion

This paper bridges the gap between the numeric simulation
model and the qualitative model for diagnosis purposes.
The problem can be classified into four classes: 1) known
landmark, static system; 2) known landmark, dynamic
system; 3) unknown landmark, static system; 4) unknown
landmark, dynamic system. The first class can be solved by
algorithm 1. The performance of algorithm 1 is discussed
in section 3.2. The second class can be transformed to the
first class if the time information is eliminated from the
simulation data. Similarly, the fourth class can be
transformed to the third class in this way. For the third
class, this paper reveals the relation of discriminability and
model partition. The approximation of the qualitative
model should keep the distinctions between the right and
faulty behaviours. Beginning with the coarsest domain
partition, algorithm 2 is a refining process, generating new
landmarks until the target modes can be distinguished at the
new, finer partitions.
 Algorithm 2 can be used as a generalized approach for
both static and dynamic systems and both monotonic and
non-monotonic cases. Algorithm 2 is limited in two ways.
First only single fault is considered. This needs further

p1 dp2

209.7617
307.2409
446.2227
697.8665
1246.9854
2326.6505
3491.1238
4019.3584
4350.6848
4498.3403
4690.4157

0.3072
4.4389
11.2196
22.7634
49.7219
99.5160
147.2230
160.8867
156.5737
138.0294
0.0

(a) Relation of p1-p2 (b) Relation of p1-dp2
(solid line is right mode, doted line is faulty mode)

Fig. 7 Model of Air Conditioning System

 (a) E = 500 (b) 300<= E <= 500
Fig. 8 partition on the relation p1-dp2

work, but the principles developed here can be used.
Secondly, the approach is system-context dependent and
diagnosis task dependent. That means the abstracted
qualitative model depends on the current system structure
and the considered fault. If the component model is reused
in another system context or to diagnose other faults, we
can not guarantee the fault is detectable. This is a
compromise of data explosion because theoretically a
universal qualitative model contains an unlimited amount
of information, which is unable to be described by finite
domains. After this project, we believe no universal
qualitative model exists. The only feasible way is to get a
qualitative model under certain conditions. Based on this,
our algorithm has many advantages: first it is a one-step
method. By running one process, all component models
are obtained. Practically it is not a big deal to run it on
each system even if the component model is not reusable.
Second the considered fault is guaranteed to be detected
using the resulted model. Third it avoids possible conflicts
when the shared variables among components are no in the
same scope if the component models are collected one by
one. From our experience, this approach is very practical
in dealing with complex real-world industrial applications.

References

Brooks, M. 1984., Approximation Complexity for
Piecewise Monotone Functions and Real Data. Computers
and Mathematics with Applications 27(8).
Dressler, O. 1996. On-line Diagnosis and Monitoring of
Dynamic Systems based on Qualitative Models and
Dependency-recording Diagnosis Engines, in Proceedings
of the 12th European Conference on Artificial Intelligence,
481-485.
Dupre, D. and Panati, A. 1998. State-based vs simulation-
based diagnosis of dynamic systems. In Proceedings of the
9th International Workshop on Principles of Diagnosis, 40-
46.
Dvorak, D. and Kuipers, B. 1992. Model-based Monitoring
of Dynamic Systems, in Readings in Model-based
Diagnosis: 249-254. Morgan Kaufmann Publishers.
Iwasaki, Y. and Simon, H. 1994. Causality and Model
Abstraction. Artificial Intelligence 67(1):143-194.
Karnopp D. and Rosenberg, R. 1975, System Dynamics: A
Unified Approach, John Wiley & Sons, Inc.
Kuipers, B. 2001. Qualitative Simulation. In R.A. Moyers
(Ed.) Encyclopedia of Physical Science and Technology,
Third Edition, NY Academic Press.
Lunze, J., Nixdorf, B. and Schreoder, J. 1999. Deter-
ministic Discrete-event Representations of Linear
Continuous-variable Systems, Automatic 35:395-406.
Malik, A. and Struss, P. 1996. Diagnosis of Dynamic
Systems Does Not Necessarily Require Simulation. In
Proceedings of the 10th International Workshop on
Qualitative Reasoning, 127-136.
Mosterman, P. and Biswas G. 1997. Model Based Dia-
gnosis of Dynamic System. In Seventh Journees de

L.I.P.N.,134-154, University of Paris Nord, Villetaneuse,
France.
Panati, A. and Dupre, D. 2000. State-based vs simulation-
based diagnosis of dynamic systems. In Proceedings of the
14th European Conference on Artificial Intelligence, 176-
180.
Sachenbacher, M. and Struss, P. 2001. AQUA : A Frame-
work for Automated Qualitative Abstraction. In
Proceedings of 15th International Workshop on Qualitative
Reasoning, 5-12.
Schit, C. and Bredeweg, B. 1996. An overview of
approaches to qualitative Model Construction. The
Knowledge Engineering Review 11(1):1-25.
Struss, P., Refus, B., Cascio, F., Console, L. Dague, P.,
Dubois, P., Dressler, O., and Millet, D. 2002. Model-based
Tools for the Integration of Design and Diagnosis into a
Common Process – A Project Report. In Proceedings of
13th International Workshop on Principles of Diagnosis,
25-32.
Struss, P. 1997. Fundamentals of Model-Based Diagnosis
of Dynamic Systems. In Proceeding of the 15th Inter-
national Joint Conference on Artificial Intelligence, 480-
485.
Struss, P. 2002. Automated Abstraction of Numerical
Simulation Models – Theory and Practical Experience. In
Proceedings of Sixteenth International Workshop on
Qualitative Reasoning, p161-168.

