

NRC Publications Archive Archives des publications du CNRC

Development of Gas Pressure Cells for Diffraction Experiments: hurdles, headaches and practical considerations Whitfield, Pamela; Ross, James; Mitchell, Lyndon; Nawaby, Victoria

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=98669e77-33e7-4a8e-853b-4b4ddba790be https://publications-cnrc.canada.ca/fra/voir/objet/?id=98669e77-33e7-4a8e-853b-4b4ddba790be

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

<u>NRC·CNRC</u>

Institute for Chemical Process and Environmental Technology

Development of Gas Pressure Cells for Diffraction Experiments:

hurdles, headaches and practical considerations

Pamela Whitfield, James Ross, Lyndon Mitchell and Victoria Nawaby

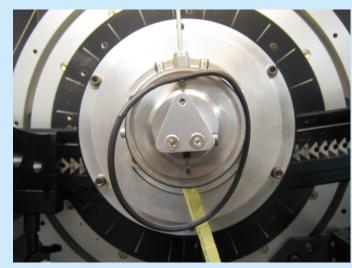
National Research Council Canada Conseil national de recherches Canada

NRC · **CNRC** Institute for Chemical Process and Environmental

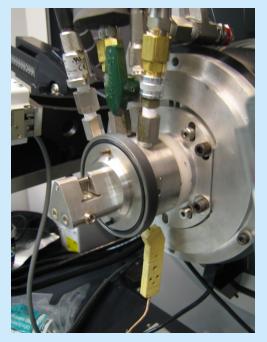
Pressure cells at ICPET the beginning...

- Polymer researchers were interested in the crystallization behaviour of bio-polymers under sub- and supercritical CO₂.
- Decided to construct a cell for *in-situ* lab XRD
 - rated for 125 bar (1800psi) dry CO₂, 200°C (recirculating)
 - intended for use with MoK α (17.5 keV) and PSD detector
- Existing literature design re-visited with finite element analysis
 modifications made for compliance with the ASME pressure code
- 304SS pressure vessel (Nitronic 60 for other parts)
- 1/8" thick coated beryllium windows
- Elastomer seals (started with Viton but changed to Aflas)

NRC-CNRC

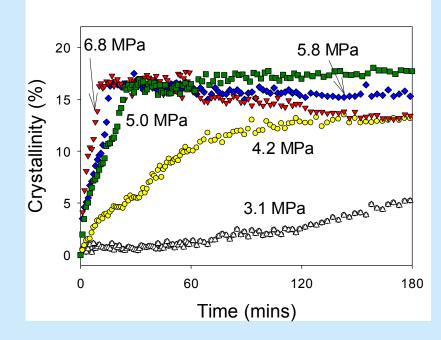

Institute for Chemical Process and Environmental Technology

Polymer crystallization under CO₂ pressure

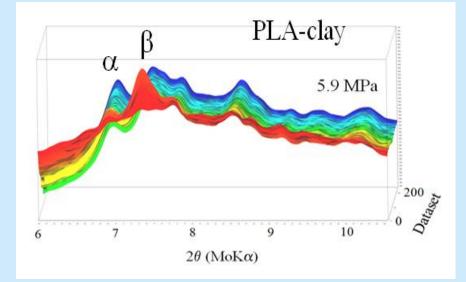

- The cell took ~2 years from concept to delivery
- The cell worked very well but shortly after commissioning the polymer researcher left NRC and the project ended.

The Gen1 stage mounted on a Bruker D8 diffractometer

Viton gets the 'bends' with high pressure CO_2 . Aflas resists explosive decompression


Cover held with a threaded collar

NRC CNRC


Institute for Chemical Process and Environmental Technology

Polylactic Acid

- Crystallization of PLA showed pressure dependence
- Phase changes with some samples...

Crystallization and phase evolution between α and β -PLA in a polylactic acid–clay composite under dry CO₂

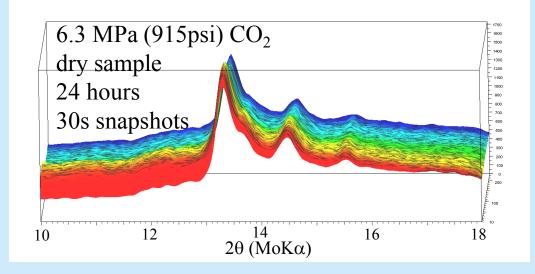
Crystallization over a period of 3 hours of PLA-clay composites under dry CO_2

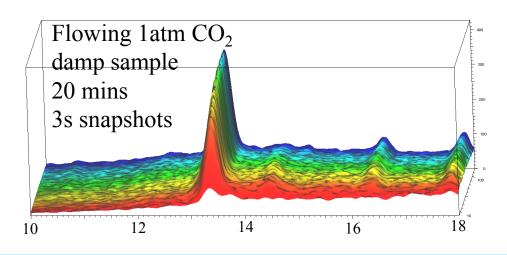
- Had unique expertise and equipment but needed a new direction....
- Was suggested that such technology could be useful for studies relating to reaction kinetics in CO₂ sequestration
 - geochemical models rely on reaction kinetics data to make long term predictions on the fate of CO₂ underground
 - however, there is a serious lack of experimental data on possible reaction kinetics under down-hole conditions
- The big question can a lab pressure cell give us anything useful?

NRC-CNRC

Institute for Chemical Process and Environmental Technology

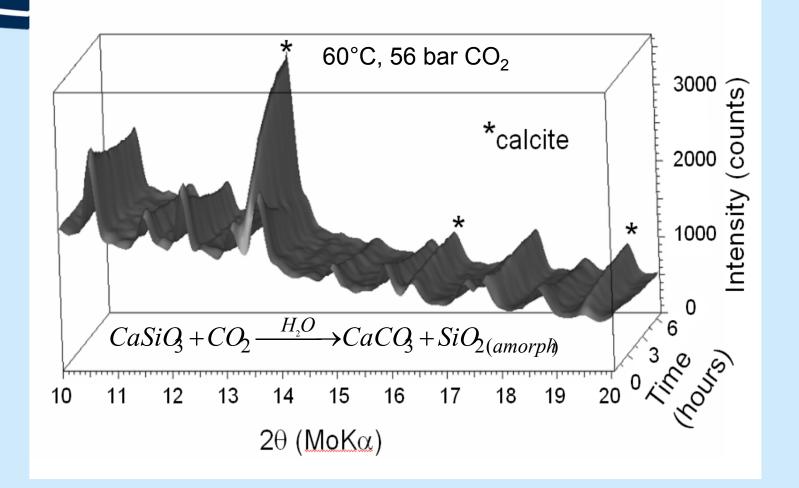
Proof of concept using Gen1 cell


- Gen1 stage very limited
 - not designed for wet experiments have to improvise
 - 304SS susceptible to corrosion high purity H_2O needed
- Targets for a proof of concept
 - synthetic calcium silicate hydrate very reactive
 - wollastonite reactive and readily available in pure form
 - calcined lizardite more reactive than raw serpentine
- Samples had to be damp before heating
 - water is necessary for gas transport and reaction
 - limits upper temperature due to evaporation


NRC·CNRC

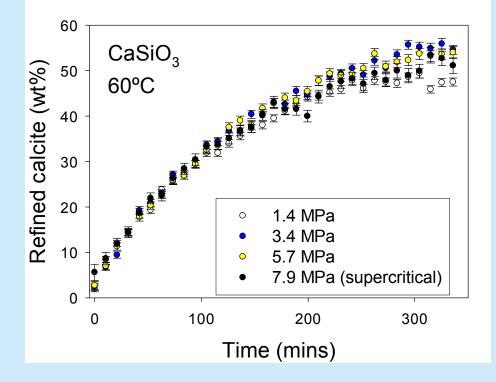
Institute for Chemical Process and Environmental Technology

- Calcium silicate hydrate (C-S-H) is the main binding phase of cement and very reactive with CO₂
- Without water no reaction at 915psi over a full day
- A couple of drops of water and reaction almost instantaneous with flowing CO₂
 - struggled to get good enough time resolution


Effect of water – synthetic C-S-H carbonation

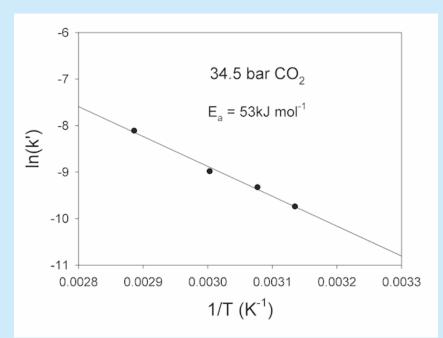
Institute for Chemical Process and Environmental Technology

Wollastonite – CaSiO₃



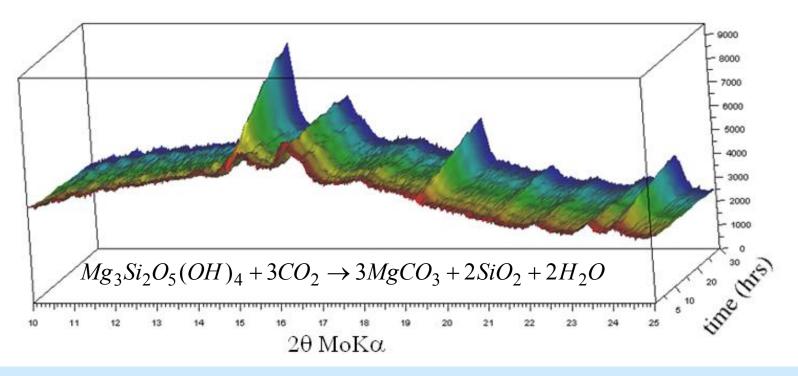
Time-resolved XRD data showing carbonation of damp wollastonite over 6 hours

NRC·CNRC


Institute for Chemical Process and Environmental Technology

Wollastonite – CaSiO₃

Arrhenius plot for carbonation of CaSiO₃ to give activation energy for reaction


Carbonation at 60°C under different CO_2 pressures. Reaction rate not affected when CO_2 supercritical.

Institute for Chemical Process and Environmental Technology

Lizardite (the nonchrysotile serpentine)

 Mg silicates much more sluggish reactions – had to calcine it to get reaction under these conditions

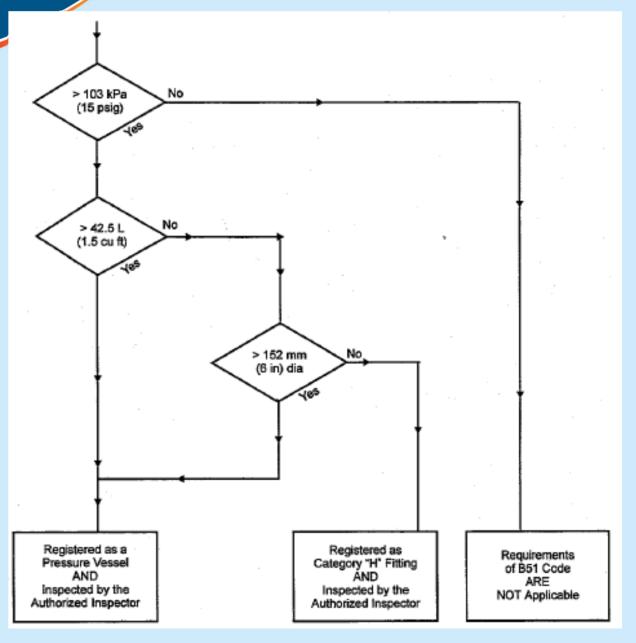
Carbonation of damp, calcined lizardite over 30 hours (4 minute snapshots, 125 °C, 35 bar CO_2)

NRC-CNRC

Institute for Chemical Process and Environmental Technology

The Next Step...

- A custom-designed cell to simulate down-hole conditions
- Would still have to meet CSA regulations and ASME pressure code but working conditions much more severe
 - 300°C max
 - 300 bar (4350 psi) max
 - concentrated brine (e.g. Salton Sea)
 - acidic conditions (pH3)
 - sour conditions
 - possible impurity gases (e.g. SO₂)
- CO₂, H₂S and CH₄ can be supercritical in this range of conditions


NRC CNRC

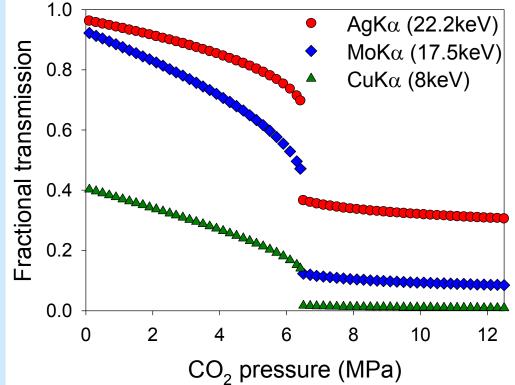
Institute for Chemical Process and Environmental Technology

Decision-tree for vessels containing lethal gases under CSA regulations

Due to small size and gas volume the cell classified as a fitting.

Note that in this tree car tires would be classed as pressure vessels! Tires are specifically exempted under the regulations....

Institute for Chemical Process and Environmental Technology


Lab & Synchrotron as Complimentary Sources

- High pressure experiments usually done at synchrotrons
 - brightness, tuneable wavelength, detector coverage, resolution...
- Very good for fast reactions
 - e.g. reactions with impurities in the CO₂ stream
- However.....
 - many reactions in proposed CO₂ reservoirs are very sluggish
 - getting kinetic information could take weeks or even longer....
 - synchrotron beamtime isn't available on that timescale
- Lab-based systems are less powerful, slower but....
 - if the reactions are slow then....
 - the X-ray source can be tailored to the problem

Institute for Chemical Process and Environmental Technology

Lab Systems - the energy problem...

- Lab systems are limited by the available X-ray tubes and generators
- Density of CO₂ can approach H₂O at high pressures
- Even MoKα won't punch through – too much attenuation
- Highest practical energy is a silver anode X-ray tube but very rare

Theoretical room temperature X-ray transmission (Gen1) at increasing CO_2 pressure with different X-ray tubes

Institute for Chemical Process and Environmental Technology

Challenges in Building the Gen2 Cell

- Have to satisfy pressure regulations and ASME code
 - ASME boiler and pressure vessel code written for industry
 - materials for a 10 ton boiler not exactly suitable
 - have to get it right first time, on-the-fly modifications not allowed

- Space we have to make the assembled stage small and light enough to fit on a lab diffractometer $\theta \theta$ goniometer
- Design for both reflection and transmission with same cell
- Have to find a TSSA-approved pressure-vessel company willing to work on an all-machined fitting
 - TSSA is the Ontario regulatory body for pressure vessels

Institute for Chemical Process and Environmental Technology

Materials Selection

- Materials have to withstand extremely corrosive conditions
 - candidates for vessel were alloys suitable for geothermal wells
 - NACE not enough, had to be ASME compliant
- Grade 20 titanium would be great but its not code-approved
- Settled on C-22 for best corrosion resistance rather than strength
 - bar-stock >4" diameter acceptable under Section VIII, division II ASME but not acceptable under B31.3 piping code
 - had to get a 4" forging made to be code compliant
 - lack of consistency in different sections so gets very complicated...

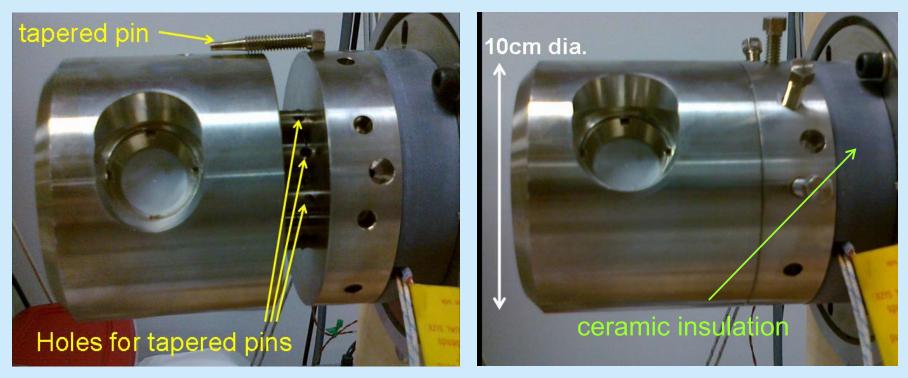
Nuclear

Sections VIII, X, XII

NRC-CNRC Institute for Chemical Process and Environmental Technology

- The windows were the biggest problem...
 - Beryllium very sensitive to chloride corrosion but can get certified stress-strain behaviour for structural grade Be
- Would be great to use thinner diamond of sapphire windows but
 - materials properties not certified so can't use them
 - tests to failure on windows not good enough...
- Brush-Wellman recommended Ta coating
 - AgK α can get through it
 - window assembly designed to avoid damaging this coating
 - each window ¼" thick and costs \$2500!
- Nickel alloy c-rings used for window and cover seals
 - The seal with c-rings actually improves with pressure

Notched to stop window ~ rotating when seal tightened


c-ring

NRC CNRC

Institute for Chemical Process and Environmental Technology

What it looks like...

- Complete redesign from the ground up
 - little in common with Gen1 design

Cover held by 12 tapered pins seating into retaining bolts. The Gen1 design using a locking collar warped during FEA analysis under the stress of Gen2 conditions.

NRC·CNRC

Institute for Chemical Process and Environmental Technology

Other features

- Electrically heated
 - 3 sets independently controlled for a more even temperature (reduce stress)
- Multipurpose internal slot
 - integrated Ta knife-edge for reflection
 - sample holder for transmission experiments

Institute for Chemical Process and Environmental Technology

The design process

- Basic design done at the NRC design and Fabrication Services – including full FEA and thermal modelling
 - done to ASME section VIII division 2 (design by analysis)
 - certified as process piping under ASME B31.3 (small volume)
- A prototype was built to test thermal behaviour of the cell
 - checking for hot spots that would increase local stresses

Instrumented mock-up of the Gen2 stage made for testing thermal behaviour. Inset is a infra-red image of the stage at an internal temperature of 300°C.

NRC · CNRC Institute for Chemical Process and Environmental Technology

More Regulatory Headaches....

- As per Ontario regulations the design had to be fully reviewed, reanalyzed and signed off by professional engineers (in this case All-Weld)
- The design was then submitted to the Ontario regulator for yet another review (third time..) and final design registration
- Now All-Weld can go ahead and make one.....
- Before delivery has to be hydrostatically tested to 1.5x maximum working pressure – 450 bar (6500 psi)

NRC-CNRC

Institute for Chemical Process and Environmental Technology

You have the cell... Now what?

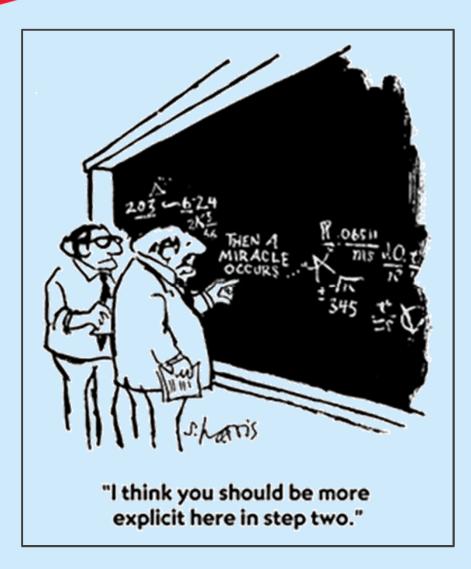
- The cell has to be part of an integrated system to get results
- Siemens don't make silver anode X-ray tubes any more
 - special order (Bruker persuaded them to make a small batch)
- Standard high speed detectors for lab systems don't work with $AgK\alpha$ need good efficiency make most of the weak signal
 - special custom Si-strip detector required
 - for transmission work a custom $\mbox{AgK}\alpha$ focussing mirror is needed
- High pressure CO₂ syringe pump
- Corrosion-resistant valves/fittings

The most expensive Swagelok relief valve you'll ever see...

Ta-coated, special Kalrez o-ring for valve seating

- The whole process has taken over 2 years from design concept to finish......
- All-Weld due to complete construction by mid-March
- After testing delivery is expected end of March
- Commissioning and testing to follow on lab diffractometer

- Then we're open for business!
- Integration of cell on a NSLS beamline will follow....



- The whole process is one very big headache
- Pressure regulations make life very difficult and ironically can be less safe with necessary compromises on materials
- Canada has the toughest pressure vessel regulations in the world
 - the US is actually a bit easier...
- For CO₂ sequestration work both synchrotron and lab-based studies will play a role
 - some reactions are too slow for synchrotrons unless you have your own beamline to play with....

NRC CNRC

Institute for Chemical Process and Environmental Technology

Questions?

