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Pressure cells at ICPET 
the beginning…

• Polymer researchers were interested in the crystallization 
behaviour of bio-polymers under sub- and supercritical CO2.

• Decided to construct a cell for in-situ lab XRD

– rated for 125 bar (1800psi) dry CO2, 200ºC (recirculating)

– intended for use with MoK (17.5 keV) and PSD detector

• Existing literature design re-visited with finite element analysis 

– modifications made for compliance with the ASME pressure code

• 304SS pressure vessel (Nitronic 60 for other parts) 

• 1/8” thick coated beryllium windows

• Elastomer seals (started with Viton but changed to Aflas)



Polymer crystallization 
under CO2 pressure

• The cell took ~2 years from concept to delivery

• The cell worked very well but shortly after commissioning the 
polymer researcher left NRC and the project ended.

The Gen1 stage mounted on 
a Bruker D8 diffractometer

Cover held with a 
threaded collar

Viton gets the ‘bends’ with high 
pressure CO2. Aflas resists 
explosive decompression



Polylactic Acid

• Crystallization of PLA showed  
pressure dependence

• Phase changes with some 
samples…

Crystallization and phase evolution 
between  and -PLA in a polylactic 
acid–clay composite under dry CO2

Crystallization over a period of 3 hours of 
PLA-clay composites under dry CO2
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What next?

• Had unique expertise and equipment but needed a new 
direction…..

• Was suggested that such technology could be useful for 
studies relating to reaction kinetics in CO2 sequestration

– geochemical models rely on reaction kinetics data to make 
long term predictions on the fate of CO2 underground

– however, there is a serious lack of experimental data on 
possible reaction kinetics under down-hole conditions

• The big question – can a lab pressure cell give us anything 
useful?



Proof of concept using 
Gen1 cell

• Gen1 stage very limited 
– not designed for wet experiments – have to improvise

– 304SS susceptible to corrosion – high purity H2O needed

• Targets for a proof of concept
– synthetic calcium silicate hydrate – very reactive

– wollastonite – reactive and readily available in pure form

– calcined lizardite – more reactive than raw serpentine

• Samples had to be damp before heating
– water is necessary for gas transport and reaction

– limits upper temperature due to evaporation



Effect of water – synthetic 
C-S-H carbonation

• Calcium silicate hydrate 
(C-S-H) is the main 
binding phase of cement 
and very reactive with 
CO2

• Without water no reaction  
at 915psi over a full day

• A couple of drops of water 
and reaction almost 
instantaneous with flowing 
CO2

– struggled to get good 
enough time resolution

6.3 MPa (915psi) CO2

dry sample 
24 hours
30s snapshots

2 (MoK
10 12 14 16 18

Flowing 1atm CO2

damp sample
20 mins
3s snapshots

10 12 14 16 18



Wollastonite – CaSiO3
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60°C, 56 bar CO2

Time-resolved XRD data showing carbonation of damp wollastonite over 6 hours



Wollastonite – CaSiO3

Arrhenius plot for carbonation of CaSiO3

to give activation energy for reaction

Carbonation at 60ºC under different 
CO2 pressures. Reaction rate not 
affected when CO2 supercritical.
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Lizardite (the non-
chrysotile serpentine)

OHSiOMgCOCOOHOSiMg 22324523 2233)( 

Carbonation of damp, calcined lizardite over 30 hours (4 minute 
snapshots, 125 ºC, 35 bar CO2)

• Mg silicates much more sluggish reactions – had to calcine it 
to get reaction under these conditions



The Next Step…

• A custom-designed cell to simulate down-hole conditions

• Would still have to meet CSA regulations and ASME pressure 
code but working conditions much more severe
– 300ºC max

– 300 bar (4350 psi) max

– concentrated brine (e.g. Salton Sea)

– acidic conditions (pH3)

– sour conditions 

– possible impurity gases (e.g. SO2)

• CO2, H2S and CH4 can be supercritical in this range of 
conditions



Decision-tree for 
vessels 
containing lethal 
gases under CSA 
regulations

Due to small size and gas 
volume the cell classified 
as a fitting.

Note that in this tree car 
tires would be classed as 
pressure vessels! Tires 
are specifically exempted 
under the regulations….



Lab & Synchrotron as 
Complimentary Sources

• High pressure experiments usually done at synchrotrons

– brightness, tuneable wavelength, detector coverage, resolution…

• Very good for fast reactions

– e.g. reactions with impurities in the CO2 stream

• However…..

– many reactions in proposed CO2 reservoirs are very sluggish

– getting kinetic information could take weeks or even longer….

– synchrotron beamtime isn’t available on that timescale

• Lab-based systems are less powerful, slower but….

– if the reactions are slow then….

– the X-ray source can be tailored to the problem



Lab Systems - the 
energy problem…

• Lab systems are limited by the available X-ray tubes and 
generators

CO2 pressure (MPa)

0 2 4 6 8 10 12

F
ra

ct
io

n
a
l t

ra
n
sm

is
s
io

n

0.0

0.2

0.4

0.6

0.8

1.0
AgK (22.2keV)

MoK (17.5keV)

CuK (8keV)

• Density of CO2 can 
approach H2O at high 
pressures

• Even MoK won’t 
punch through – too 
much attenuation

• Highest practical 
energy is a silver 
anode X-ray tube but 

very rare

Theoretical room temperature X-ray transmission (Gen1) 
at increasing CO2 pressure with different X-ray tubes



• Have to satisfy pressure regulations and ASME code

– ASME boiler and pressure vessel code written for industry

– materials for a 10 ton boiler not exactly suitable

– have to get it right first time, on-the-fly modifications not allowed

• Space – we have to make the assembled stage small and light 
enough to fit on a lab diffractometer  goniometer

• Design for both reflection and transmission with same cell

• Have to find a TSSA-approved pressure-vessel company 
willing to work on an all-machined fitting

– TSSA is the Ontario regulatory body for pressure vessels

Challenges in Building 
the Gen2 Cell



Materials Selection

• Materials have to withstand extremely corrosive conditions

– candidates for vessel were alloys suitable for geothermal wells 

– NACE not enough, had to be ASME compliant

• Grade 20 titanium would be great but its not code-approved

• Settled on C-22 for best corrosion resistance rather than strength

– bar-stock >4” diameter acceptable under Section VIII, division II 
ASME but not acceptable under B31.3 piping code

• had to get a 4” forging made to be code compliant

• lack of consistency in different sections so gets very complicated…



Windows

• The windows were the biggest problem…

– Beryllium very sensitive to chloride corrosion but can get certified 
stress-strain behaviour for structural grade Be

• Would be great to use thinner diamond of sapphire windows but

– materials properties not certified so can’t use them

– tests to failure on windows not good enough…

• Brush-Wellman recommended Ta coating
– AgK can get through it 

– window assembly designed to avoid damaging 
this coating

– each window ¼” thick and costs $2500!

• Nickel alloy c-rings used for window and 
cover seals
– The seal with c-rings actually improves with 

pressure

Notched to 
stop window 
rotating when 
seal tightened

c-ring



What it looks like…

Cover held by 12 tapered pins seating into retaining bolts.  The Gen1 design using 
a locking collar warped during FEA analysis under the stress of Gen2 conditions.

• Complete redesign from the ground up

– little in common with Gen1 design

ceramic insulation



Other features

• Electrically heated

– 3 sets independently controlled for a more even temperature 
(reduce stress)

• Multipurpose internal slot 

– integrated Ta knife-edge for reflection

– sample holder for transmission experiments

wall-thickness versus 
cavity size

knifeedge/holder 
slot



The design process

• Basic design done at the NRC design and Fabrication 
Services – including full FEA and thermal modelling

– done to ASME section VIII division 2 (design by analysis)

– certified as process piping under ASME B31.3 (small volume)

• A prototype was built to test thermal behaviour of the cell

– checking for hot spots that would increase local stresses

Instrumented mock-up of the Gen2 stage 
made for testing thermal behaviour.  Inset 
is a infra-red image of the stage at an 
internal temperature of 300°C.



More Regulatory 
Headaches….

• As per Ontario regulations the design had to be fully reviewed, 
reanalyzed and signed off by professional engineers (in this 
case All-Weld)

• The design was then submitted to the Ontario regulator for yet 
another review (third time..) and final design registration

• Now All-Weld can go ahead and make one……

• Before delivery has to be hydrostatically tested to 1.5x 
maximum working pressure – 450 bar (6500 psi)



You have the cell…
Now what?

• The cell has to be part of an integrated system to get results

• Siemens don’t make silver anode X-ray tubes any more

– special order (Bruker persuaded them to make a small batch) 

• Standard high speed detectors for lab systems don’t work with 
AgK – need good efficiency make most of the weak signal

– special custom Si-strip detector required

– for transmission work a custom AgK focussing mirror is needed

• High pressure CO2 syringe pump

• Corrosion-resistant valves/fittings

The most expensive Swagelok relief valve 
you’ll ever see…
Ta-coated, special Kalrez o-ring for valve 
seating



Timeline

• The whole process has taken over 2 years from design concept to 
finish…….        again

• All-Weld due to complete construction by mid-March

• After testing delivery is expected end of March

• Commissioning and testing to follow on lab diffractometer

• Then we’re open for business!

• Integration of cell on a NSLS beamline will follow….



Conclusions

• The whole process is one very big headache

• Pressure regulations make life very difficult and ironically can 
be less safe with necessary compromises on materials

• Canada has the toughest pressure vessel regulations in the 
world
– the US is actually a bit easier…

• For CO2 sequestration work both synchrotron and lab-based 
studies will play a role

– some reactions are too slow for synchrotrons unless you have 
your own beamline to play with….



Questions?


