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Interactive 3D Reconstruction of the Spine from Radiographs Using a

Statistical Shape Model and Second-Order Cone Programming

Jonathan Boisvert and Daniel C. Moura

Abstract— Three-dimensional models of the spine are com-
monly used to diagnose, to treat, and to study spinal de-
formities. Creating these models is however time-consuming
and, therefore, expensive. We propose in this paper a recon-
struction method that finds the most likely 3D reconstruction
given a maximal error bound on a limited set of landmark
locations supplied by the user. This problem can be solved
using second-order cone programming, leading to a globally
convergent method that is considerably faster than currently
available methods. A user can, with our current implementa-
tion, interactively modify the landmark locations and receive
instantaneous feedback on the effect of those changes on the
3D reconstruction instead of blindly selecting landmarks. The
proposed method was validated on a set of 53 patients who had
adolescent idiopathic scoliosis using real and synthetic tests. Test
results showed that the proposed method is considerably faster
than currents methods (about forty times faster), is extremely
flexible, and offers comparable accuracy.

I. INTRODUCTION

Three-dimensional models of the spine are now commonly

used to diagnose, study and plan appropriate treatment of

spinal deformities. These models are most commonly recon-

structed from radiographs since this image modality allows

patients to stand up during the examination, is inexpensive,

and is widely available. However, anatomical structures such

as lungs, ribs, pelvis, and vertebrae are superimposed, which

makes human intervention needed.

For almost twenty-years, the most common method to

reconstruct the spine was to manually identify landmarks in

two or more calibrated radiographs and to later triangulate

the position of those landmarks [1]. A qualified technician

had to typically identify between 136 and 850 landmarks.

The method was, of course, considered expensive and time-

consuming.

The time and effort needed to obtain good reconstructions

was indeed limiting clinical use of those models as well

as their prevalence in biomechanics research. It was thus

proposed to reduce the user-input to the four corners of

the vertebral bodies as seen on the radiographs [2]. The

remaining anatomical landmarks were then inferred based on

a statistical model of the shape of individual vertebrae. This

method speeded up the reconstruction process significantly,

but each vertebrae of interest had to be manually handled.

To alleviate this problem, Dumas et al. [3] proposed to

compute the position and scale of the vertebrae using an
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interpolation technique. This meant that not all vertebrae

needed to be manually adjusted. However, vertebral defor-

mations were left out.

A method based on statistical inference performed on an

articulated model representing the whole spine (including

both global and local deformations) was later proposed by

Boisvert et al. [4]. The method was able to successfully re-

construct complete spine models even when a limited number

of 3D landmarks were available. However, the execution time

associated with the method was incompatible with clinical

constraints.

Humbert et al. [5] combined simpler statistical models

of the vertebral shapes and inter-vertebrae shape depen-

dency with features such as spinal centerline and selected

landmarks. The authors report reconstruction times around

three minutes for severe cases of scoliosis. Moura et al. [6]

later proposed a method where interaction was reduced to

identifying the spinal centerline with splines, which were

then used to estimate the most likely articulated model

representing the spine.

A few methods were also designed to directly use the

information contained in the radiographs (see [7], [8], [9] for

example), which can increase the repeatability and accuracy

of the reconstructions. However, those methods all rely

heavily on user-supplied initialization, which is usually given

by one of the previously described methods.

Unfortunately, none of the current methods is fast enough

to provide instantaneous feedback as the user is working with

the reconstruction software. Most of the current methods take

from several seconds to a few minutes to run. The underlying

reason is that most reconstruction methods rely on non-linear

optimization methods. Those optimization methods are prone

to find local minimums instead of the global one and do not

(in general) have reliable execution times.

We propose in this manuscript a novel fast 3D reconstruc-

tion method that is based on a convex optimization problem.

More specifically, reconstructing the spine is formulated as

a second-order cone programming problem, which leads to

a method that is considerably faster than current methods.

The resulting 3D reconstruction is obtained with arbitrary

fixed precision in polynomial time without any initialization.

We also propose a new user-interaction model that takes

advantage of the performances of the proposed method to

provide real-time feedback to the user.

II. METHOD

The proposed method aims at minimizing the distance

from a reconstructed 3D spine model to a prior distribution of



3D spine models while constraining the differences between

the reconstructed model and the user input to remain within

an acceptable range (which can be specified by the user). The

next subsections provide more details about the statistical

modeling, the error computations, and the integration of these

two aspects into a second-order cone program (SOCP).

A. Statistical Model

There are many ways to build a statistical model of the

spine. It could be done using an ad hoc parametric model [5],

using articulated modeling [4] or even with the help of a non-

linear dimension reduction technique such as locally linear

embedding [9]. These methods allow compact representation

of the anatomical variability seen in patients. However, the

reconstruction of a 3D spine model from a lower-dimension

space then becomes a non-linear operation that cannot be

addressed by SOCP. We therefore selected a simpler multi-

variate approach.

Let N be the number of points considered per vertebrae

and M be the number of vertebrae. A spine model X can

thus be represented either as a set of NM points xi ∈ ℜ3

with 1 ≤ i ≤ NM or as a single column-vector X ∈ ℜ3NM .

Given a set of k previously reconstructed models, one

can compute the associated mean µ = 1
k

∑

j=1...k Xj and

covariance matrix Σ = 1
k

∑

j=1...k (Xj − µ) (Xj − µ)
T

.

To reduce the dimensionality of the model, it is possible

to apply principal components analysis (PCA). This type

of analysis successively decomposes the original space into

orthogonal dimensions (or components) along which the

remaining projected variance is maximized. It yields a matrix

A(X) that can be used to compute a new spine model

Xnew based on a vector of PCA weights α(X) as Xnew =
A(X)α(X) + µ and a vector σ which contains the variances

of these weights. The same matrix A(X) can also be used

to compute the PCA weights of a new shape Xnew as

α(X) = A(X)T (Xnew − µ). To reduce the dimensionality

one simply needs to consider the first n components of α(X)

and treat the remaining weights as being equal to zero (the

components are ordered by decreasing variance).

The Mahalanobis distance is a widely used metric to

determine the level of similarity of a multivariate sample to a

known distribution. It only requires the mean and covariance

matrix of the prior distribution and is given by:

DM =

√

(X − µ)
T
Σ−1 (X − µ).

This distance will be used to ensure that the reconstruction

that is the most similar to the prior distribution will be

returned when more than one could explain the user input.

This happens, for example, when the user identifies a few

points to reconstruct a complete spine model.

Second-order cone programming solvers do, however,

expect to operate with linear expressions or their norm. We

therefore need to express the Mahalanobis distance as:

D2
M = (X − µ)

T
Σ−1 (X − µ)

=
(

LT (X − µ)
)T

LT (X − µ)

= ‖LT (X − µ)‖22

(1)

where L is the result of a Cholesky decomposition of Σ−1.

B. Landmarks Projection Error

X-ray image formation process can be modeled using a

pinhole camera. The projection of a 3D point (xi) to image

coordinates (uj
i ) is thus given by the standard equation:

(

uj
i

1

)

∝ P j

(

xi

1

)

where P j is the projection matrix associated with the jth

radiograph. The squared error between the projection of a

3D point xi and its empirical measure on the radiograph ũj
i

can then be written as:

‖uj
i − ũj

i‖2 =
1

P j
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It has been demonstrated that limiting this error to emax

while optimizing for the point position is a second-order

cone constraint [10]. Provided that P j
3

(

xi 1
)T

≥ 0 (i.e.

the point is in front of the X-ray source and not behind it),

this constraint can be expressed in standard form as:
∥

∥
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3

(

xi 1
)T

(2)

C. Optimization Programs

We minimize the Mahalanobis distance while constraining

the solution to result in a projection error smaller than emax

using the following program:

minimize
X,t

t

subject to
∥

∥LT (X − µ)
∥

∥

2
≤ t

∥

∥

∥

∥

∥

(

P j
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3 ũ
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P j
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3 ũ
j
i,y

)

(

xi

1

)

∥

∥

∥
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2

≤ emaxP
j
3

(

xi 1
)T

,

which is a standard SOCP problem constructed by combining

Eq. 1, Eq. 2, and the auxiliary variable t. This formulation

leads to a rather large number of variables. To further

improve computational performance, it is possible to reduce

the number of variable by optimizing PCA weights instead of

point’s coordinates. The optimization program then becomes:

minimize
α,t

t

subject to
∥

∥diag(1/σ)α
∥

∥

2
≤ t

∥

∥

∥

∥

∥

(

P j
1 − P j

3 ũ
j
i,x

P j
2 − P j

3 ũ
j
i,y

)

(

Aiα+ µi

1

)

∥

∥

∥

∥

∥

2

≤ emaxP
j
3

(

Aiα+ µi 1
)T

,

where Ai and µi designate the lines of A and µ associated

with point xi.

Several SOCP solvers are currently available on the market

(both free and commercial). We choose to use SeDuMi [11],

which is available as Matlab sub-routines and is sufficiently

efficient for providing real-time reconstructions with the

proposed method.



Fig. 1. Example of typical use of the proposed method. Left: User interface showing a posterior-anterior and a lateral radiograph, as well as landmarks
identified by the user in red, and projections of anatomical landmarks from the reconstructed 3D model to the radiographs in green. Right: Corresponding
three-dimensional reconstruction of the spine.

D. User Interface

The user is first presented with the two radiographs of the

patient and then identifies anatomical landmarks by clicking

on them. A new 3D reconstruction is produced each time a

landmark is added or modified (see Figure 1). By default, the

first landmark is labeled as the center of the inferior end-plate

of the last lumbar vertebrae (although the user can easily

specify any landmark). Subsequent landmarks are labeled

according to the closest landmark in the current projection of

the 3D reconstruction. Because the reconstruction process is

very efficient, the user can also modify landmarks’ positions

by dragging them with the mouse. Three-dimensional recon-

structions are then produced and displayed as the landmark

is moved. The user therefore has full interactive control on

the three-dimensional reconstruction as he adds or adjusts

the control points.

III. RESULTS

A database of 307 scoliotic patients was utilized to vali-

dated the proposed method; 254 were used to compute the

mean, covariance, and PCA decomposition while the remain-

ing 53 cases were used to assess the method’s performances.

Six landmarks per vertebrae were used and all the pa-

tients’ exams were previously reconstructed using a reference

method [1]. Typical radiographs’ image size was 1190 by

1959 pixels. All the experiments reported in this section were

performed on a desktop computer equipped with 6 GB of

RAM and an Intel Core(TM) i7 CPU cadenced at 3 GHz.

A total of 40 principal components were used in the op-

timization programs. Those components account for 99.9%

of the observed variance, which is more than what would

be reasonable to use if a non-linear optimization method

was used instead of a SOCP solver (for instance, Moura

et al. [6] used between 95% and 99%). A higher number

of components allows more details to be represented in the

statistical model, but also slows down the reconstruction

process. We thus selected the highest possible number of

components while maintaining sufficient performances to

offer a real-time reconstruction experience to the user.
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Fig. 2. Execution time as a function of the number of control points.

In a series of experiments, we evaluated the 3D recon-

struction error and execution time as function of the number

of landmarks used as input. The anatomical landmarks used

were the center of the inferior end-plate of the vertebrae

and were evenly distributed along the spine. Furthermore,

emax was set to six pixels and a uniform noise of six

pixels was applied to all landmarks coordinates. Figure 2 and

3 summarizes the results of the experiment. As expected,

the time needed to reconstruct a spine increases and the

error decreases as input points are added. Reconstruction

error decreases quite rapidly as the first few landmarks are

added but improvements become small after approximatively

six control points per radiographs. Execution time increase

almost linearly and the 95th percentile is approximatively

25% worse than the average reconstruction, which means

the variations in the execution times are small enough not to

affect the user’s experience.

Table I compares the execution time of the proposed

method (for seven control points in each radiograph) to other

methods (as reported in the literature). The proposed method

appears to be about forty to sixty times faster. However, the

execution times were compiled from the literature and were

thus not measured on the same computer, which means the

actual speed-up may be slightly different.

We also performed an experiment with landmark coor-
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Fig. 3. Mean 3D error obtained with respect to a ground truth as a function
of the number of control points.

TABLE I

COMPARISON OF THE EXECUTION TIMES WITH PREVIOUS METHODS.

Method Execution time

Humbert et al. [5] 4000ms
Moura et al. [6] 3000ms
Proposed method 70ms

dinates provided by a qualified technician. For a total of

15 patients, we used seven inferior end-plates coordinates

(on the two radiographs) to reconstruct a spine model using

the proposed method and compared it with a spine model

reconstructed with a reference model [1] (which needs 102

manually identified landmarks for each radiograph). The

parameter emax was set to 6 pixels for PA radiographs and

12 pixels for lateral radiographs. A mean absolute difference

of 3.9mm for the end-plates and 4.6mm for the pedicles

was obtained. These numbers are slightly higher than what

was presented in Figure 3, however in this case there is

no ground truth. These differences are a combination of

the error associated with the reference method and the

error associated with the proposed method. Moreover, the

landmark identification error is in all likelihood not strictly

uniformly distributed.

IV. DISCUSSION AND CONCLUSION

The proposed method is fast, provides good accuracy,

and is intuitive for the user. However, the user needs to

select an acceptable value for the maximum allowable error

(emax). If this value is too low, then the optimization may

not be feasible and no 3D reconstruction will be generated.

On the other hand, if the value is too large, then the

reconstruction method does not take full advantage of the

user input. It would be possible to integrate emax in the

optimization process by applying a bisection procedure [10].

The execution time would, however, increase significantly.

Nevertheless, experimenting with different values of emax

is easy (it only implies selecting a different value in a drop-

down menu); so different values can be tried by the user. We

currently use one global emax value for all the landmarks in

a radiograph. One possible improvement to the method might

be to allow the user to adjust emax for each point (perhaps

by dragging a circular target sign around the landmark). This

would acknowledge the fact that certain landmarks are easy

to locate accurately while others are more challenging.

In summary, we proposed a novel reconstruction method

that creates 3D spine models from radiographs. The re-

construction problem was expressed as a convex problem

that could be solved using second-order cone programming,

which leads to a large improvement in execution time. This

improvement then allowed for a different user interaction

paradigm where 3D spine reconstructions are generated in

real-time while the users adds information. A preliminary

validation of the method was performed and indicates that

its accuracy is at least comparable to current reconstruction

methods. Experiments performed also lead us to believe that

the flexibility, the efficiency and the user-friendliness of the

proposed reconstruction method are a step toward a more

pervasive use of 3D reconstructions in spinal deformity care.

V. ACKNOWLEDGMENTS

The authors would like to express their gratitude to Dr.

Hubert Labelle and Montreal’s St.-Justine Hospital personnel

for providing access to existing 3D reconstructions.

REFERENCES

[1] B. Andre, J. Dansereau, and H. Labelle, “Effect of radiographic
landmark identification errors on the accuracy of three-dimensional re-
construction of the human spine,” Medical and Biological Engineering

and Computing, vol. 30, no. 6, pp. 569–575, 1992.
[2] V. Pomero, D. Mitton, S. Laporte, J. A. de Guise, and W. Skalli,

“Fast accurate stereoradiographic 3D-reconstruction of the spine using
a combined geometric and statistic model,” Clinical Biomechanics,
vol. 19, no. 3, pp. 240–247, Mar. 2004.

[3] R. Dumas, B. Blanchard, R. Carlier, C. de Loubresse, J. Le Huec,
C. Marty, M. Moinard, and J. Vital, “A semi-automated method using
interpolation and optimisation for the 3D reconstruction of the spine
from bi-planar radiography: a precision and accuracy study,” Medical

and Biological Engineering and Computing, vol. 46, no. 1, pp. 85–92,
2008.

[4] J. Boisvert, F. Cheriet, X. Pennec, H. Labelle, and N. Ayache, “Artic-
ulated spine models for 3-D reconstruction from partial radiographic
data,” IEEE Trans. Biomed. Eng., vol. 55, no. 11, pp. 2565–2574, Nov.
2008.

[5] L. Humbert, J. D. Guise, B. Aubert, B. Godbout, and W. Skalli,
“3D reconstruction of the spine from biplanar x-rays using parametric
models based on transversal and longitudinal inferences,” Medical

Engineering & Physics, vol. 31, no. 6, pp. 681–687, 2009.
[6] D. C. Moura, J. Boisvert, J. G. Barbosa, H. Labelle, and J. M.

R. S. Tavares, “Fast 3D reconstruction of the spine using deformable
articulated model,” Medical Engineering & Physics, 2011 (in press).

[7] T. Cresson, R. Chav, D. Branchaud, L. Humbert, B. Godbout,
B. Aubert, W. Skalli, and J. De Guise, “Coupling 2D/3D registration
method and statistical model to perform 3D reconstruction from partial
x-rays images data,” in IEEE Engineering in Medicine and Biology

Society, 2009, pp. 1008–1011.
[8] S. Benameur, M. Mignotte, S. Parent, H. Labelle, W. Skalli, and

J. de Guise, “3D/2D registration and segmentation of scoliotic ver-
tebrae using statistical models,” Computerized Medical Imaging and

Graphics, vol. 27, no. 5, pp. 321–337, 2003.
[9] S. Kadoury, F. Cheriet, and H. Labelle, “Personalized X-Ray 3D

Reconstruction of the Scoliotic Spine From Hybrid Statistical and
Image-Based Models.” IEEE Trans. Med. Imaging, vol. 28, no. 9,
pp. 1422–1435, 2009.

[10] F. Kahl and R. Hartley, “Multiple-view geometry under the L∞-norm,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 30,
no. 9, pp. 1603–1617, 2008.

[11] J. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones,” Optimization methods and software, vol. 11,
no. 1, pp. 625–653, 1999.


