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Abstract. Severe cases of spinal deformities such as scoliosis are usually
treated by a surgery where instrumentation (hooks, screws and rods) is
installed to the spine to correct deformities. Even if the purpose is to ob-
tain a normal spine curve, the result is often straighter than normal. In
this paper, we propose a fast statistical reconstruction algorithm based
on a general model which can deal with such instrumented spines. To
this end, we present the concept of multilevel statistical model where
the data are decomposed into a within-group and a between-group com-
ponent. The reconstruction procedure is formulated as a second-order
cone program which can be solved very fast (few tenths of a second).
Reconstruction errors were evaluated on real patient data and results
showed that multilevel modeling allows better 3D reconstruction than
classical models.

Keywords: 3D reconstruction, spine, statistical shape model, multilevel
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1 Introduction

Three-dimensional reconstruction of the spine is a valuable process to study
spinal deformities such as scoliosis. It allows to determine clinical indices helping
diagnosis and treatment. It normally needs to be performed based on radiographs
to allow a natural standing position for the patient and to reduce as much as
possible the exposition of young patients to ionizing radiations.

Usual approaches to reconstruct the spine from two radiographs consists
in manually identifying corresponding landmarks on the views and matching
them in a three-dimensional space. These methods required to locate at least six
points per vertebra [1]. Other authors proposed to increase the number of points
to be located by considering landmarks that are only visible in one radiograph
[8]. These methods are very time-consuming and are hardly transposable to a
medical practice.
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In order to reduce the amount of manual intervention, statistical reconstruc-
tions methods later appeared. In those methods, a reduced set of input is pro-
vided by the user and the rest of the model is inferred with the help of a statistical
shape model. For example, Humbert et al. [5] proposed to evaluate a parametric
model based on the spinal centerline, Moura et al. [9] inferred an articulated
model of the spine based on splines, and Boisvert et al. [2] formulated the esti-
mation of the spine shape as a second-order cone program.

Patients with spinal deformities can be treated in various ways depending on
the severity of the deformation. For severe cases, surgery can be recommended.
All the methods we have just described are valuable, but are always focused
on patients who have not undergone any surgery. Surgical treatment of scoliosis
consists in applying instrumentation to the spine in order to redress the spine and
maintain the correction. Even if the purpose is to obtain a normal spine curve,
the result is often neither a normal spinal curve nor a scoliotic one (see Fig. 1
for instance). Therefore, it is difficult to capture these specific deformations with
a classical statistical model. In this context, we propose to use a more general
model adapted to hierarchical structures like the spine: a multilevel statistical
shape model. The advantage of such a model is to represent the dependency
between one vertebra and the others. As a result, several sub-models are built
and can be treated separately, each level characterizing one sub-model. In the
literature, the inter-vertebra dependence between pairs of vertebræ has already
been modeled in [3]. Our multilevel framework is however more generic since
various group structures can be selected. We can, for instance, represent the
dependence between individual vertebra, between duos of vertebræ, between
triplets, etc.

To the best of our knowledge, this paper is the first report of an interactive
and fast 3D reconstruction method of the spine when surgical instrumentation
is present. Furthermore, our approach introduces the use of the multilevel sta-
tistical shape modeling to the problem of 3D shape reconstruction. We will show
that our method provides better results than classical statistical models.

2 Method

2.1 Multilevel Statistical Shape Model

While principal component analysis (PCA) is usually required to build a statis-
tical shape model, multilevel component analysis (MCA) is the basis to design a
multilevel statistical shape model. The concept of MCA was introduced in [10]
as an extension of PCA for hierarchical structures. If we consider a model with 2
levels, the idea is to decompose the data into a within-individual and a between-
individual component. Let us assume a sample with N items, divided into K

groups of size Kk. An item i belonging to the group k according to the variable
j is denoted by: xijk, with i ∈ [1, . . . ,Kk], k ∈ [1, . . . ,K], and j ∈ [1, . . . , J ].
Based on the Cronbach and Webb’s model [4], xijk can be decomposed into a
within-group and a between-group term, such as:

xijk = x•j• + (x•jk − x•j•) + (xijk − x•jk), (1)
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Fig. 1. Radiographs of a postoperative patient and the associated reconstruction. Left:
Lateral view. Center: Postero-anterior view. Right: 3D reconstruction based on our
approach

where x•j• = 1

N

�K

k=1

�Kk

i=1
xijk, and x•jk = 1

Kk

�Kk

i=1
xijk. In the relation (1),

(x•jk − x•j•) is the between-group term, while (xijk − x•jk) is the within-group
one.

Based on the decomposition of the equation (1), a multilevel model is defined
as several sub-models that can be treated separately. Let us consider the spine
as a hierarchical structure such as in Fig. 2.

Fig. 2. Multilevel representation of the spine for a sample of patients

Let us assume a sample of I patients characterized by K vertebræ. In [7], the
authors proposed a multilevel modelization of the vertebræ. Here, we develop
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a deformable model that can represent all the spine. As a consequence, in the
proposed modelization, each patient of the hierarchical structure can be viewed
as a group at the first level. As a consequence, the within-group part of the
model represents the variability between vertebræ while the between-group part
concerns the inter-patient variability. If we assume that a patient (a spine) is
represented according to J variables, a deformable model of a given vertebra xi

with i ∈ [1, . . . ,K] is defined by:

xi = x̄+ φW,idW + φBdB , (2)

where x̄ is a column-vector of size J standing for the mean computed over all the
objects in the sample, φW,i denotes the lines of φW , a J×RW matrix containing
the within-group principal components, dW is a RW × 1 vector representing the
weights controlling the deformation of the within-group term, φB stands for the
J ×RB matrix representing the between-group principal components, dB is the
RB×1 vector of weights controlling the deformation of the between-group term.

The interest of MCA is that the parameters of the equation (2) can be de-
termined separately (the demonstration can be found in [10]).

Let X, be a N×J matrix including all the vertebræ of the sample (N = KI).
First, the within-group parameters are obtained after a particular decomposition
of the matrix X. This decomposition consists in mean-centering all the sub-
matrices Xi of size K × J , where Xi is the partition of the matrix X belonging
to the group i. Let Xc,i be the resulting matrix. Xc,i actually represents the
within-patient variability. Therefore, each line of the matrix defines a vertebra.
To obtain a global representation of the spine, matrices Xc,i are transformed
in a column-vector by concatenating the lines of Xc,i. Let Xc be the matrix
built from the vertical concatenation of the resulting column-vectors. The matrix
φW is composed of the eigenvectors of the covariance matrix related to Xc.
Furthermore, the variance of the weight dW , which limits the deformation of
the within-group sub-model, is determined by the eigenvalues of the covariance
matrix related to Xc.

In order to determine the between-group parameters of the model, let us
subtract the overall mean of the matrix X. Let X̃ be this matrix. Let us note
X̃i, the partition of the matrix X̃ belonging to the group i. Moreover, let us
consider the I vectors m̃i, each of them representing the mean of the associated
matrix X̃i. In fact, these vectors characterize the between-patient differences.
Therefore, we note M , the matrix resulting from the vertical concatenation of
the vectors m̃i. As a consequence, the matrix φB of the between-group principal
components is built by the eigenvectors of the covariance matrix related to M .
In addition, the deformation limits of the between-group sub-model are given by
the eigenvalues of the covariance matrix related to M .

These concepts can naturally be extended to a greater number of hierarchical
levels. Since we want to represent the variability between the vertebræ (i.e.
within-patient), the extra levels are within-group terms. We can generalize the
relation (2) in accordance with:
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xi = x̄+

L−1
�

l=1

φWl,idWl
+ φBdB , (3)

where L is the number of levels and il is the index of the group to which the
object belongs at the level l.

2.2 Reconstruction Algorithm

The principle of the reconstruction algorithm is to deform a 3D shape of the
spine so that it matches the multiple views of the object to be reconstructed.
In our case, two views are available: a posteroanterior (PA) and a lateral (LAT)
radiograph. However, the final solution needs to be in conform to the model
defined in section 2.1. In other words, the model constitutes a statistical a priori

that the reconstruction algorithm has to take advantage of. A common metric
to determine the degree of similarity between a shape and a shape model is the
Mahalanobis distance.

The minimization of the Mahalanobis distance during the reconstruction pro-
cess allows that the final shape fits the statistical distribution of the model. An-
other constraint needs to be met in the optimization problem. In order to match
the 3D shape with the PA and LAT views, the Euclidean distance between the
projection of a 3D point xi and its theoretical location on the radiograph has to
be minimized. Authors showed [2] that this distance can be computed given:
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where P
j

i is the ith line of the matrix P
j

and u
j
i is the projection of the point xi.

These authors also proposed to limit this error to a given constant emax while
optimizing for the point position. They formulated the problem as a second-order
cone optimization program, just as it is demonstrated in [6]. Since second-order
cone programming expects to operate with the norm of expressions, the Maha-
lanobis distance requires to be formulated with L, a Cholesky decomposition of
Σ−1, the inverse covariance matrix of the sample [2].

The second-order cone program is expressed by minimizing the Mahalanobis
distance while constraining the solution to result in a projection error smaller
than emax using:
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To reduce the number of variables, it is possible to optimize MCA weights
instead of point coordinates. To this end, let us define some specific notations.
Let xik be a point k belonging to the vertebra xi. Equation (3) allows to express:
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xik = x̄k +

L−1
�

l=1

φWl,ikdWl
+ φB,kdB , (6)

where x̄k, φWl,ik and φB,k are respectively the lines of x̄, φWl,i, and φB , associ-
ated to the point xik. Let us also consider σ2

Wl
and σ2

B , the variances associated
to, respectively, the within-group and the between-group sub-models. Moreover,
for simplicity of writing, let us define:

ψ(dWl
, dB)k = x̄k +

L−1
�

l=1

φWl,ikdWl
+ φB,kdB . (7)

Finally, the second-order cone programming optimization problem to match a
multilevel statistical model with radiographic views is formulated as:
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3 Results

In order to process a reconstruction, two radiographs are presented to the user.
He then has to point out some anatomical landmarks on the images to initiate
the optimization of the problem (8). To validate our approach, we used a sample
of 307 scoliotic patients for building the multilevel model. We considered 17
vertebræ of the spine: T1 to L5. Each vertebra is represented by 6 points of
reference, i.e. the center of inferior and superior endplates, and the inferior and
superior extremities of pedicles. 3D reconstructions based on a 2-level and a 3-
level model have been performed for 25 post-operative patients whose spine was
previously reconstructed following a reference method [1]. Let us note that tests
were performed on an Intel Core 2 Duo 2.53 GHz.

We first present at Table 1 the decomposition of the total variability for a 2-
level and a 3-level model. These values are computed in the same way as for the
variance decomposition in ANOVA. Results of Table 1 show that the magnitude
of the within-group and the between-group variability is sufficient to use a 2-level
and a 3-level model in the reconstruction algorithm.

Mean RMS reconstruction error has been evaluated as a function of the num-
ber of points per radiograph (see Fig. 3). The parameter emax was set to 8 pixels.
The reconstruction of pedicles and plates are distinguished. One can remark that
plates reconstruction is better than pedicles reconstruction. This observation is
actually similar in the case of reconstruction of the spine with no instrumenta-
tion [9]. Moreover, the reconstruction error decreases as the number of points
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Levels Var. With. (%) Var. Between (%)

2 88.83 11.17

3 23.12 65.71 11.17
Table 1. Decomposition of the total variability

per radiograph increases. However, this effect is reduced after approximatively
6 to 7 points per radiograph. Finally, Fig. 3 indicates that, both for plates and
pedicles, the 3-level model converges more slowly than the 2-level model or the
1-level model. Adding extra levels in the model requires more constraints in the
optimization problem. As a consequence, more control points per radiograph
are needed. We have also compared the mean reconstruction error based on
the 2-level model with a classical statistical model (with only one level) for 17
control points. A mean error of 2.12mm for endplates and 4.02mm for pedicles
was obtained. For the 2-level model, these values are, respectively, 2.05mm and
3.70mm. A paired t-test shows that these differences are significant (at level
α = 0.05). Actually, when a few control points are considered, the difference
between the mean error of the 2-level model and the 1-level model is low. This
difference increases with the number of control points. Furthermore, if we only
consider instrumented vertebræ, the difference between the 2-level model and
the classical model is increased. In this context, the 2-level model shows a mean
error of 2.09mm for endplates and of 3.64mm for pedicles. The classical model
is characterized by a mean error of 2.19mm for endplates and of 4.37mm for
pedicles. This demonstrates that our approach based on a multilevel model is to
be preferred in the case of 3D reconstruction of the post-operative patient spine.

Fig. 3. Left: Evolution of the mean RMS 3D reconstruction error as a function of the
number of points per radiograph. Right: Evolution of the elapsed time as a function of
the number of points per radiograph

Finally, we propose at Fig. 3 the execution times for a reconstruction based on
a PCAmodel, a 2-level and a 3-level model. Since more constraints are considered
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for the 3-level model, computing times are logically higher. Nevertheless, the
results are an order of magnitude fast than most current methods, for example
Humbert et al. [5] take about 4000ms to generate a reconstruction and Moura
et al. [9] about 3000ms. These results tend to show that our approach could be
used interactively in the clinic.

4 Conclusion

In this manuscript, we proposed an algorithm to perform 3D reconstructions of
the spine from bi-planar radiographs when surgical instrumentation is present.
Our approach is based on a multilevel statistical model. Results showed that
this model allows better reconstruction than classical models. The separation
into several levels allows to deal with discontinuities characterizing the spine
of post-operative patients. Since 3D spine reconstructions are obtained in real-
time, preliminary results tend to show that our approach could be transposable
to medical practice.
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