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We analyze the importance of exchange, polarization, and electron-electron correlation in high-order harmonic

generation in molecules interacting with intense laser fields. We find that electron exchange can become

particularly important for harmonic emission associated with intermediate excitations in the molecular ion.

In particular, for orbitals associated with two-hole one-particle excitations, exchange effects can eliminate

structure-related minima and maxima in the harmonic spectra. Laser-induced polarization of the neutral molecule

may also have major effects on orbital structure-related minima and maxima in the harmonic spectra. Finally,

we show how exchange terms in recombination can be viewed as a shakedownlike process induced by sudden

electronic excitation in the ion.

DOI: 10.1103/PhysRevA.82.043414 PACS number(s): 33.80.Rv, 32.80.Rm

I. INTRODUCTION

High-order harmonic generation (HHG) by molecules

interacting with intense laser fields is a unique process that

records information about molecular structure and dynamics,

potentially with subfemtosecond temporal and subangstrom

spatial resolution [1]. Intense experimental and theoretical

efforts are currently aimed at realizing this potential.

Applications of HHG spectroscopy to dynamic imaging

typically rely on the so-called three-step model [2]. Within this

physical picture, an electron (i) is liberated from the molecular

(or atomic) orbital, (ii) is accelerated by an intense laser field,

and (iii) emits a harmonic photon upon returning to the parent

ion and recombining to the initial bound state of the neutral

molecule. Recombination of the returning continuum electron

is described by the matrix element 〈ψb|r̂|χc〉. Here ψb is the

bound part of the wave function (usually the initial, ground,

state ψg), and the continuum wave function χc is usually writ-

ten in the single-active-electron (SAE) approximation. In the

simplest case of ψb ≈ ψg , the matrix element encodes struc-

tural information about the ground-state wave function ψg [1].

Accounting for nuclear motion shows that HHG spectra also

record information about nuclear dynamics between ionization

and recombination (see, e.g., [1,3,4]). Additional opportunities

for imaging arise in pump-probe-type experiments, with

HHG used as a probe of nuclear dynamics induced by an

ultrashort pump (see, e.g., [5,6]). The pump-probe setup in

harmonic generation can also be used to follow electronic

rearrangements induced by the underlying nuclear dynamics

at conical intersections [7].

While the SAE picture typically associated with the

simplest version of the three-step model can be satisfactory

for atoms (particularly noble gasses), in molecules multi-

electron effects start to play a significantly more prominent

role already at the level of what is commonly referred to

as “exchange terms” in recombination (see, e.g., [8–10]).

Radiative recombination exhibits the richness and complexity

*s.sukiasyan@imperial.ac.uk

of its counterpart, the one-photon ionization. Not surprisingly,

harmonic emission reflects this complexity (see, e.g., [11–14]),

for example, through the coupling of different recombination

channels via electron-electron interaction. Channel coupling

induced by the returning electron can play an important role in

significantly increasing the efficiency of harmonic generation

at frequencies ∼102 eV [14].

The participation of multiple ionic states not only during

recombination, but also at all steps of the harmonic generation

process [6,12,15–19], introduces additional opportunities for

dynamic imaging. For example, it opens a route to follow-

ing attosecond dynamics of holes between ionization and

recombination [15–18]. However, the drawback is the need

for accurate theoretical description of strong-field dynamics,

starting with strong-field ionization, for both single [20–28]

and multiple ionization channels [29–31]. Quantitative mod-

eling of harmonic generation requires one to consider not only

multiple ionization and recombination channels corresponding

to different states of the molecular ion, but also their coupling

during strong-field ionization and between ionization and

recombination [13,15,32].

Thus, from the theoretical perspective, the simplicity of the

three-step model hides a rich variety of effects demanding ade-

quate theoretical description. These include: (i) (multielectron)

polarization of the bound wave function in the neutral molecule

and in the ion by the laser field [13,33,34], (ii) laser-induced

electronic excitations on the subcycle time scale [32,33,35,36],

including excitations in the ion between ionization and recom-

bination, (iii) correlation-induced virtual and real excitations

of the ionic electrons by the returning continuum elec-

tron, immediately prior and during recombination [13,14,37],

(iv) excitations of collective modes (such as plasmons) in

highly polarizable molecules and clusters [38,39], by both

the laser field and the recolliding electron.

Therefore, qualitative and quantitative understanding of

various multielectron effects, such as exchange and correlation

between the continuum and the bound electrons, in the

presence of a strong laser field is paramount for using HHG as

a spectroscopic tool for dynamic imaging.
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The photorecombination step in harmonic generation is

often thought of as the inverse of photoionization. In pho-

toionization, the importance of electron exchange and virtual

and real excitations induced by the correlation between

the outgoing continuum electron and the electrons of the

core is well known. Thus, it is by no means surprising

that similar effects are important during photorecombination.

Quantitative theoretical analysis of several such effects in a

model molecular system is the focus of this article.

Specifically, we focus on the interplay of polarization,

recollision-induced excitations in the ion, and exchangelike

contributions during the photorecombination step of HHG.

Our approach allows us to include both the strong laser field

and the electron-electron interaction on an equal footing.

We also discuss the physical process that underlies ex-

changelike contributions to recombination. We show that these

contributions describe a shakedown-type process, which can

be viewed as follows. First, the dipole operator induces an

electronic transition in the ion, changing its state from, say,

n to m. This excitation changes the interaction between the

ion and the continuum electron and hence the structure of

the correlated continuum. Consequently, the continuum wave

packet describing the recolliding electron in channel n finds

itself in channel m, where it acquires a bound component.

More specifically, it has substantial overlap with the Dyson

orbital corresponding to channel m (the Dyson orbital is the

overlap of the ground state of the neutral molecule with the

ionic state |m〉). This overlap is nothing but the amplitude of

recombination of the continuum electron, forced by the sudden

change of the continuum.

The rest of the article is organized as follows. In Sec. II

we give a qualitative discussion of the photorecombination

step in HHG vs one-photon ionization in photoelectron

spectroscopy. Section III describes the general approach and

computational details. Section IV introduces the main tool

of our analysis: ionic eigenstate resolved (IER) expansion of

the multidimensional wave function. Section V discusses our

results. Section VI concludes the article.

II. PHOTOIONIZATION VS PHOTORECOMBINATION

IN HIGH HARMONIC GENERATION

In the time domain, quantum expressions for high harmonic

radiation can be written as a product of three amplitudes:

ionization, continuum propagation, and recombination [40].

This general structure is maintained in the frequency domain,

with the important caveat that one has to sum over the

contribution of several trajectories that correspond to the same

energy of the returning electron (see, e.g., [41]). Since (i) at

first glance the photo-recombination step looks like the inverse

of photoionization and (ii) one-photon ionization is a well-

studied process equipped with sophisticated theoretical tools,

it is tempting to complex-conjugate accurate photoionization

matrix elements 〈χc|r̂|ψg〉 and use them for the recombination

step of the HHG process. This is the key component of the so-

called “quantitative rescattering theory” [11], compared to the

standard approaches based on the strong-field approximation.

The same suggestion is at the core of the analytical expressions

proposed in Ref. [14]. We note that the same concept was

originally developed and used in [42] for the quantitative

description of the recollision dynamics and correlated double

ionization.

Such an approach is a significant improvement compared

to the SAE theory with a plane-wave continuum. However,

the recombination matrix elements are calculated for the laser

field-free scattering problem. One should be cautious when

using the field-free cross sections for a strong-field process.

In principle, the laser field present during recombination can

affect both the scattering states of the continuum electron and

the bound states of the molecular ion, as well as modify the

coupling between different recombination channels.

Field-free scattering states are solutions of the stationary

scattering problem. In the language of electron trajectories,

these states include both small and large-angle scattering

events, as well as complex multiple scattering, which, from

the time-domain perspective, evolves over a longer time and

should be particularly sensitive to the strong external laser

field present during the interaction. Note that in typical HHG

experiments the strong driving laser field changes from zero to

several volts per angstrom in a quarter cycle, that is, in about

0.65 fs for near-infrared radiation at λ = 800 nm. Thus, the

scattering problem is far from stationary for complex scattering

events.

A particular property of HHG is its selectivity to specific

classes of “quantum trajectories” [43–45]. These “trajectories”

arise as a result of using the saddle point method for calculating

multidimensional integrals in the quantum description of

HHG. An alternative language developed by Kuchiev and

Ostrovsky [41,46,47], which describes HHG in terms of

multiple channels, leads to the same physical picture once the

saddle point method is applied [41]. The language of quantum

trajectories has been used extensively and successfully for an-

alyzing various aspects of strong-field dynamics, including the

properties of harmonic generation and other recollision-driven

physical processes (see, e.g., [48–60]). Particularly important

in harmonic generation are the so-called “short” trajectories,

which correspond to the simplest electron motion in the

continuum with the shortest time delay between ionization and

recombination. Phase-matching of high harmonic emission in

the macroscopic medium [61] typically favors these trajec-

tories while suppressing the contribution of longer and more

complex trajectories (see, e.g., review [43] or the pioneering

articles [44,45,62]; see also [63] for the role of phase-matching

in generating single attosecond pulses). Thus, the contribution

of continuum resonances (e.g., shape resonances) and complex

scattering trajectories to the recombination cross sections will

be vulnerable not only to the strong external field, but also to

the phase matching in the macroscopic response measured in

the experiments.

For simple short trajectories that experience single scat-

tering on the ionic core, Ref. [64] showed when and how

the effect of the laser field can be simplified, reducing the

recombination matrix element in the strong laser field to the

effectively field-free one. We stress, however, that the same

conclusion does not apply to multiple scattering and complex

trajectories that stay in the vicinity of the core for a time

comparable to a quarter of the laser cycle.

Finally, recombination in HHG involves a continuum wave

packet produced by strong-field ionization. The shape of this

wave packet does not always correspond to the asymptotic
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plane wave front at infinity, typically used in the stationary

scattering problem. Coherent preparation of the continuum

state |χc〉 in the recombination matrix element 〈ψg|r̂|χc〉 is

another important difference from the conventional, time-

independent scattering theory.

Consider, for example, experiments with aligned

molecules, which are typical for a HHG setup. Strong-field

ionization from a molecular orbital with nodal planes, for

example, ionization from the highest occupied molecular

orbital (HOMO) in O2 or CO2 along or perpendicular to the

molecular axis, will not only be suppressed, but it will also

produce a continuum wave packet with a nodal plane along

the direction of propagation. Such nodal plane in the returning

wave packet will affect its density near the ionic core during

the recombination step of the harmonic generation. It will also

change the symmetry of the populated continuum states and

the recombination matrix element.

This discussion outlines physical aspects that one has to

keep in mind developing quantitative theoretical description

of HHG. It shows why such description remains challeng-

ing decades after the discovery of HHG. The fundamental

difficulty is the need to address intense field multielectron

dynamics, keeping both the laser field and the electron-

ion interaction on equal footing. The solution of the time-

dependent multielectron Schrödinger equation is beyond

reach [65–67]. Approximate methods, such as the time-

dependent Hartree-Fock (HF) [68], frozen-core (FC) [69], and

time-dependent density functional theory [70], neglect all or

part of electron correlation; their accuracy is not controlled.

Even if the Schrödinger equation is solved, extracting the

underlying physics from the multidimensional wave function

is a formidable problem in its own right.

We solve the time-dependent Schrödinger equation for

a two-electron model diatomic molecule with two spatial

dimensions per electron. The numerical study uses the mul-

ticonfiguration time-dependent Hartree (MCTDH) method

(see review [71] and references therein), in which Hartree

orbitals form a time-dependent basis set for the expansion

of the properly antisymmetrized two-electron wave function.

Optimization of the multiconfiguration expansion brings

the computational costs down to a level comparable with

conventional one-electron calculations and opens the door

to a systematic analysis of multielectron effects in HHG.

For the analysis of the role of exchange and multielectron

correlation effects in HHG we use an IER expansion of the

multidimensional wave function [13]. This technique allows

us to quantify the physical mechanisms and the role of various

multielectron effects.

III. GENERAL APPROACH

We solve the time-dependent Schrödinger equation for a

model diatomic molecule containing two electrons, each in

two dimensions (2D). The system Hamiltonian is

H =
2

∑

i=1

[T̂i + ri · E + V (ri)] + Vee(r1,r2), (1)

where index i labels the electrons, r = (x,y) is the 2D space

vector, and T̂ is the kinetic-energy operator. Interaction with

the laser field E(t) is described in the dipole approximation

and length gauge. The laser field is polarized along the x axis,

which also coincides with the alignment of the molecular axis.

The nuclei are positioned at (±R/2,0), and their potential is

V (r) = −1/

√

(x ± R/2)2 + y2 + a2
ne. (2)

The two-electron interaction in Eq. (1) is given by

Vee = 1/

√

(r2 − r1)2 + a2
ee. (3)

Here ane and aee are the Coulomb softening parameters.

They are chosen to set the ionization potential of our model

molecule, Ip, to the ionization potential of a N2 molecule

Ip = 15.58 eV at the N2 equilibrium internuclear distance

R = 2.08 bohrs, yielding ane = aee = 0.64. The two-electron

binding energy in this case is 46.8 eV. The nuclei are held fixed

during the propagation.

For our numerical analysis we employ the multiconfigu-

ration time-dependent Hartree (MCTDH) method (see [71]

and references therein). MCTDH uses the expansion of the

wave function in variationally optimized lower-dimensional

time-dependent basis functions,

�(X1, . . . ,Xm,t) =
n1

∑

j1=1

· · ·
nm
∑

jm=1

Aj1,...,jm
(t)

m
∏

κ=1

ϕ
(κ)
jκ

(Xκ ,t),

(4)

where X1, . . . ,Xm are one- or multidimensional coordinates,

representing m single particles, in which the multidimensional

system is split, AJ (t) are the time-dependent expansion coeffi-

cients (J ≡ j1, . . . ,jm), and the ϕ
(κ)
jκ

(Xκ ,t) represent the time-

dependent expansion functions (orbitals) for single-particle

κ (see [71] Secs. 3.1 and 4.5). Computational efficiency

of the MCTDH method stems from the time dependence

of single-particle basis functions (orbitals), which adapt to

dynamics “on the fly” and hence describe it better than

time-independent functions. Hence, the desired accuracy is

achieved with fewer orbitals. Increasing the number nκ of

expansion orbitals converges the MCTDH wave function (4)

toward the exact one.

The equations of motion for AJ (t) and ϕ
(κ)
j (Xκ ,t) are

derived from the Dirac-Frenkel variational principle [72,73]

(see [71] Secs. 2.2 and 3.1):

〈δ�|H − i∂t |�〉 = 0. (5)

The time-dependent form of both the expansion coefficients

and the single-particle functions requires one to impose

additional constraints to ensure their uniqueness. One such

constraint is the orthonormality of the single-particle func-

tions, ϕ
(κ)
j (t),

〈

ϕ
(κ)
j (0)

∣

∣ϕ
(κ)
l (0)

〉

= δj l, (6)

which can be preserved during time propagation using the

constraints
〈

ϕ
(κ)
j (t)

∣

∣ϕ̇
(κ)
l (t)

〉

= −i
〈

ϕ
(κ)
j (t)

∣

∣g(κ)
∣

∣ϕ
(κ)
l (t)

〉

, (7)

where g(κ) is an arbitrary Hermitian operator acting exclusively

on the single-particle κ (see Ref. [71], Secs. 3.1–3.3).

043414-3



SUREN SUKIASYAN et al. PHYSICAL REVIEW A 82, 043414 (2010)

Coupled equations of motion for the coefficients and the

single-particle orbitals can be written as (here for the simplicity

we set g(κ) = 0 for all single particles) (see Ref. [71], Sec. 3.2)

iȦJ =
∑

L

〈	J |H |	L〉AL (8)

iϕ̇(κ) = (1 − P (κ))(ρ(κ))−1〈H〉(κ)ϕ(κ), (9)

where

	J =
m

∏

κ=1

ϕ
(κ)
jκ

(10)

and

ϕ(κ) =
(

ϕ
(κ)
1 , . . . ,ϕ(κ)

nκ

)T
. (11)

P (κ) is the projector on the space spanned by the basis functions

for the single-particle κ ,

P (κ) =
nκ

∑

j=1

∣

∣ϕ
(κ)
j

〉〈

ϕ
(κ)
j

∣

∣, (12)

〈H〉(κ) and ρ(κ) are the mean-field and density matrices,

respectively, with corresponding elements

〈H 〉(κ)
j l =

〈

�
(κ)
j

∣

∣H
∣

∣�
(κ)
l

〉

, (13)

ρ
(κ)
j l =

〈

�
(κ)
j

∣

∣�
(κ)
l

〉

. (14)

In these definitions �
(κ)
l ’s are the so-called single-hole func-

tions,

�
(κ)
l =

∑

J

κ

AJ κ
l
ϕ

(1)
j1

· · · ϕ(κ−1)
jκ−1

ϕ
(κ+1)
jκ+1

· · · ϕ(m)
jm

. (15)

where the sum does not include the single-particle κ and J κ
l =

j1, . . . ,jκ−1ljκ+1, . . . ,jm.

Since the Hamiltonian in our problem does not contain

spin-mixing operators, the initial spin state is conserved and

for two electrons can be easily factored out. Therefore, we only

need to deal with the spatial part of the wave function. Our

initial state is singlet (ground state), leading to the symmetric

spatial part. Symmetry of the spatial part of the wave function

is preserved during the propagation.

In contrast with the conventional Hartree or Hartree-Fock

(HF) methods, a MCTDH single-particle is a mathematical

object that does not necessarily represent a real particle. The

choice of the MCTDH single particles is rather a matter

of numerical efficiency in the integration of the MCTDH

equations of motions in Eqs. (8) and (9), and is usually dictated

by the total number of dimensions, dynamics of the system,

and the form of the Hamiltonian. This choice influences the

efficiency of the method significantly.

For our system with a total of four spatial degrees of

freedom, we find that it is computationally efficient to choose

one-dimensional expansion orbitals, ϕj (x,t). An alternative

choice for the MCTDH single particles is to correspond to

real particles (electron). This would also be the case for the

multiconfiguration time-dependent Hartree-Fock (MCTDHF)

approach [74]. Given that we explicitly antisymmetrize our

total wave function, with this latter choice of single-particle

orbitals the two approaches would be identical. The latter

choice of single-particle orbitals, which forces one to deal with

higher-dimensional expansion functions and hence higher-

dimensional coupled time-dependent Schroedinger equations,

increases the overall computational cost.

For our total 4D wave function � the MCTDH expansion

yields

�(x1,y1; x2,y2,t) =
n1

∑

j1=1

· · ·
n4

∑

j4=1

Aj1j2j3j4
(t)ϕ

(1)
j1

(x1,t)

×ϕ
(2)
j2

(y1,t)ϕ
(3)
j3

(x2,t)ϕ
(4)
j4

(y2,t). (16)

Here ni for i = 1, . . . ,4 denotes the number of expansion

functions along the coordinates (x1,y1,x2,y2) respectively.

The Cartesian coordinates (x1,y1) and (x2,y2) characterize the

positions of the first and the second electrons, r1 = (x1,y1) and

r2 = (x2,y2), respectively.

The choice of one-dimensional single-particle orbitals as

our basis brings computational benefits only if one can effec-

tively deal with the multidimensional integrals that describe

the interaction of real physical particles. To solve this problem,

the Hamiltonian must be represented with the same type of

expansion as the system wave function, that is, as a sum of

products of 1D potentials. For the nuclear potential, V (r), this

can be done easily using expansion in the basis of natural

potentials [see [71,75] (Sec. 6.1)]: V (r) =
∑

i vi(x)ui(y).

High accuracy of expansion is achieved typically with several

terms.

The most critical issue is treatment of electron-electron

interaction, Vee in Eq. (3), which couples all four degrees of

freedom. The same expansion in natural potentials for Vee

yields two-dimensional potentials:

Vee(x1,y1; x2,y2) =
∑

i

vi(x1 − x2)ui(y1 − y2). (17)

We avoid further expansion of vi(x1 − x2) and ui(y1 − y2)

natural potentials in 1D potential basis since it requires too

many terms. Instead, we efficiently calculate matrix elements

of the potentials vi(x1 − x2) and ui(y1 − y2) using the fact

that these 2D potentials depend on the differences x1 − x2 and

y1 − y2 only. Therefore, calculation of integrals can be done

using the convolution theorem combined with fast Fourier

transform. For example, for vi(x1 − x2) we have to deal with

matrix elements
〈

ϕ
(1)
j1

(x1)ϕ
(2)
j2

(x2)
∣

∣vi(x1 − x2)
∣

∣ϕ
(1)
l1

(x1)ϕ
(2)
l2

(x2)
〉

, (18)

where ϕ
(κ)
j (x)’s are the time-dependent basis functions. The

treatment of the two-dimensional integral as a convolution

allows one to replace its calculation with two Fourier trans-

forms, where the fast Fourier transform can be utilized. The

final numerical cost is proportional to 4N logN , instead of

N2, where N is the number of grid points. The numerical

cost is further lowered by employing the so-called constant

mean-field integration scheme, where the mean fields and

density matrices in Eq. (9), as well as the Hamiltonian matrix

in Eq. (8), are calculated at larger time intervals and are kept

constant in between [see [71,76] (Chapter 5)].

The ground state of the system, which determines the initial

condition for the time-dependent problem, is found by imagi-

nary time propagation of the properly symmetrized initial con-

dition [71,77]. Unless mentioned otherwise, atomic units (a.u.)
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are used. A spatial grid spacing of 0.4 a.u. is found to

be sufficient to obtain converged results. The laser field

is linearly polarized along the direction of the nuclear

axis, E(t) = E0 sin2(πt/T ) cos(ωt), with a peak intensity of

1014 W/cm2 and a wavelength of 800 nm. A laser pulse

includes 10 cycles “base-to-base”; that is, the total duration

is set to T = 26 fs.

In each coordinate, we add complex absorbing potentials

of the form W (x) = −iη(|x| − xc)3 for |x| � xc and η =
0.0005 to the system Hamiltonian. Their aim is to absorb the

“multiple return” trajectories and partially absorb the so-called

“long” trajectories while keeping short trajectories intact. This

approach allows us to approximate spectra for HHG in gases

in typical experimental conditions, in which focusing of the

laser pulse and the positioning of the gas jet favors short

trajectories [43] via phase matching. For our laser parameters,

we use xc = 18. Moving the onset of the absorbing boundary

further out to leave all trajectories intact has virtually no

influence on the key multielectron effects observed in our

HHG calculations. Due to absorption the propagated wave

function is not exact anymore. We use the term total for this

wave function and all results obtained using it.

An important aspect of absorbing the “far-away” part of the

continuum wave function is its impact on convergence. Indeed,

on the one hand, a very large number of expansion functions is

required to describe detailed interference patterns in the total

wave function at very large distances from the core. On the

other hand, these patterns give no contribution the high-order

harmonic emission. Absorption of the distant continuum part

of wave function naturally reduces the complexity of the total

wave function and thus reduces the total number of expansion

functions, ni , in Eq. (16) required to reach convergence. The

numerical efficiency improves crucially, since computational

cost scales exponentially with ni . Using 15 basis functions

per degree of freedom (n1 = n2 = n3 = n4 = 15), we assure

a convergence of the total wave function with accuracy

better than 10−7. A single propagation takes only several

hours on a single-core CPU. In contrast, calculation of

converged correlated two-electron spectra, angle and energy-

resolved, required more than 25 functions per degree of

freedom [78].

IV. IONIC EIGENSTATE RESOLVED APPROACH

To analyze the role of multielectron dynamics, we use

the ionic eigenstate resolved (IER) expansion of the wave

function [13]. First, we solve full time-dependent Schrödinger

equation to find multielectron wave function. Then, we expand

this wave function over a basis of bound electronic eigenstates

of the ion, ψ(r2), indentifying r2 as the “bound” ionic electron.

This expansion allows one to identify different harmonic

generation channels [13,15], that is, different participating

ionic states and hence different orbitals and different electronic

configurations participating in the process.

Had the expansion basis over r2 been complete, such

expansion would have been exact, and the bound r2 electron

would have been also found in the continuum states, while the

correlated functions of the r1 electron would have automati-

cally included bound ionic states. However, in our expansion

we only include several bound ionic states, restricting the basis

set. Therefore, the expanded wave function is approximate

and must be additionally antisymmetrized with respect to the

bound r2 and continuum r1 electrons.

For the singlet initial state, the spatial part of the IER wave

function should have the symmetric form

�M (r1,r2,t) =
M

∑

k=1

[χk(r1,t)ψk(r2) + ψk(r1)χk(r2,t)]. (19)

Here �M is the IER wave function, M is the number of

bound ionic eigenstates included in the expansion. The time-

dependent wave packets χk(r,t) are correlated to the ionic

eigenstates ψk(r). These wave packets may include not only

continuum, but also excited electronic (e.g., Rydberg) states.

To extract the wave packets χk from the total wave function

�(r1,r2,t), we introduce projections φk(r1) of the total wave

function �(r1,r2,t) onto the ionic eigenstates, ψk(r2),

φk(r1,t) = 〈ψk(r2)|�(r1,r2,t)〉. (20)

Substituting the ansatz Eq. (19) into Eq. (20), we obtain a set

of integral equations for χk(r1,t):

χk(r1,t) = φk(r1,t) −
M

∑

j=1

〈ψk(r2)|χj (r2,t)〉ψj (r1,t). (21)

One of the solutions of these integral equations is

χk(r1,t) =

⎡

⎣1 −
1

2

M
∑

j=1

|ψj (r1)〉〈ψj (r1)|

⎤

⎦φk(r1,t). (22)

The physical meaning of this result is as follows. If we were

doing our expansion in a natural way, that is, by approximating

χk ≈ φk = 〈ψk|�〉, we would have obtained

�M (r1,r2,t) ≈
M

∑

k=1

[φk(r1,t)ψk(r2) + ψk(r1)φk(r2,t)]. (23)

Since the wave packets φk can overlap with ionic eigen-

functions ψj , the terms 〈ψj |φk〉ψkψj with j = 1, . . . ,M are

counted twice. Therefore, we apply the projector

P̂ = 1 −
1

2

M
∑

j=1

|ψj (r)〉〈ψj (r)| (24)

to remove the double-counted contributions. In the limit of

M → ∞ �M converges to the exact wave function, excluding

the part describing the double ionization. The IER wave

function �M is invariant to the choice of the initial phase

of ionic eigenstates ψi .

The �M describes the cumulative content of the first M

ionic eigenstates in the total wave function. For M = 1, �M

describes the part of the total wave function, where one electron

remains in the ionic ground state. Within our approach, it is

the closest possible wave function to the SAE approximation.

However, both exchange and electron-electron correlation are

still present in the wave function �M=1, since χk=1 is obtained

from the exact wave function and therefore includes the effect

of coupling to all excited states during and after ionization.

For the same reason, �M=1 goes beyond the HF ansatz.

Since we employ absorbing potentials in our propagation,

the harmonic spectra are calculated using the expectation
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value of the acceleration operator. For the harmonic spectrum

including first M ionic eigenstates we obtain

IM (�) =
∣

∣

∣

∣

∫

〈�M |â1 + â2|�M〉ei�tdt

∣

∣

∣

∣

2

, (25)

where â1,2 is the acceleration operator of corresponding first

and second electron. Taking into account electron exchange

symmetry, Eq. (25) can be rewritten as

IM (�) = 4

∣

∣

∣

∣

∫

〈�M |âr1
|�M〉ei�tdt

∣

∣

∣

∣

2

, (26)

where âr1
is the acceleration operator excluding the electron-

electron interaction, which can be expressed as [79]

âr1
= −

∂V

∂r1

− E(t). (27)

Here V is the potential of the nuclei and E(t) is the laser

electric field. For molecules aligned parallel or perpendicular

to the polarization vector of the linearly polarized laser pulse

we can substitute âr1
with

âx1
= −

∂V

∂x1

− E(t) (28)

and we denote the corresponding spectrum IM (�). For

arbitrary alignment angle, IM (�) corresponds to measuring

only the component of harmonic emission with polarization

parallel to that of the laser field.

To isolate the role of electronic polarization induced by

the laser field in the neutral molecule, we also calculate the

approximate spectrum:

IG
M (�) = 4

∣

∣

∣

∣

∫

α(t)〈�g|âx1
|�M〉ei�tdt

∣

∣

∣

∣

2

. (29)

Here �g is the two-electron ground state and α(t) =
〈�(t)|�g〉. The IER ansatz �M , especially for lower M ,

describes well the part of the wave function with one electron

bound and one in the continuum. Thus, it is well suited

for analyzing harmonics with photon energies above Ip

created via free-bound transitions, that is, above the 11th

harmonic order in our case. Finally, replacing �M with � in

Eqs. (26) and (29) yields the total spectrum, I (�) and IG(�),

respectively.

V. RESULTS AND DISCUSSION

A. Role of polarization in the HHG

Comparison of total harmonic yields, I (�) and IG(�),

demonstrates the role of polarization of the neutral molecule

in harmonic emission. For our model molecule, this difference

can be found in Figs. 1(a) and 1(b). A comparison shows

that neglecting laser-induced electronic polarization of the

neutral molecule can yield order-of-magnitude difference

(see also [80]). For high harmonics, the signal strengths

are rather close—but with one important qualitative difference:

including polarization of the neutral molecule [panel (b)]

suppresses the minimum in the harmonic spectrum near

H19–H23. The minimum, described in [68], is associated

with the structure of the molecular orbitals and results from

3 11 19 27 35
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10
-4

10
-2

3 11 19 27 35

Harmonic order
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-8

10
-6

10
-4

10
-2
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(b)

FIG. 1. Total harmonic yields, I and IG, calculated by (a) Eq. (29)

and (b) Eq. (26), with total wave function � instead of �M .

the destructive two-center interference in the recombination

to the two atoms of the diatomic molecule. The fact that

destructive interference is more pronounced for the field-free

final state is clear: Polarization displaces electron density in

the neutral molecule toward one of the nuclei, breaking perfect

spatial symmetry of the ground state and making destructive

interference incomplete.

The formal analysis is as follows. The polarized ground

state of the neutral molecule can be written as �g(t) =
∑

m〈	m|�g(t)〉	m, where 	m’s are the field-free two-electron

bound states. Recombination into the polarized state can

therefore be schematically represented as an interplay of

recombination into different field-free channels. These chan-

nels will have different minima and maxima structure: As

noted in [81] (for one-electron systems), the interference

minimum for even-symmetry (gerade) final states turns into

the interference maximum for odd-symmetry (ungerade)

states. The interplay of different channels will therefore

smooth the structural minimum associated with the two-center

interference in the recombination to the field-free ground

state.

In the limit of large internuclear distances, the effect of laser

field on the bound electron can become even more dramatic

due to the field-induced electron localization in the neutral,

molecule which may completely alter positions of destructive

and constructive interference [33].

B. Role of exchange symmetry

Our model system represents a type of tightly bound

two-electron system. The binding energies of the first four

ionic eigenstates are −31 eV, −20.4 eV, −15 eV, and −10.9 eV,

respectively. The ionic eigenstates are shown in Fig. 2. Taking

into account these four ionic state channels in Eq. (26)

describes the harmonic yield almost exactly. Including the
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FIG. 2. (Color online) Wave functions for the first four ionic

bound states of our model system. The corresponding energies are

(a) −31 eV, (b) −20.4 eV, (c) −15 eV, and (d) −10.9 eV, respectively.

The color coding shows the sign of the wave function, red for positive

and blue for negative.

first two ionic states already yields 80%–90% accuracy in the

harmonic spectra. The third eigenstate has almost negligible

contribution for molecules aligned parallel to the laser field

polarization due to its symmetry [13]. Thus, our study is

focused on the ionic ground and the first excited states and

the role of exchange symmetry and exchange terms for each

corresponding channel.

We note that terms usually referred to as exchange in

recombination (see, e.g., [8–10]) appear already for purely

Hartree-type wave function, since the total dipole operator

includes the sum of all single-particle dipoles. This is also the

reason why exchange terms have been referred to as “cradle”

in [29], but here we keep the usual terminology.

1. Ground-state channel

The IER wave function for the ionic ground-state channel

is [see Eq. (23)]

�1(r1,r2,t) = χ1(r1,t)ψ1(r2) + χ1(r2,t)ψ1(r1) (30)

or, using the definition of χ1,

�1(r1,r2,t) = φ1(r1,t)ψ1(r2) + ψ1(r1)φ1(r2,t)

−〈ψ1(r1)|φ1(r1,t)〉ψ1(r1)ψ1(r2). (31)

For the analysis of direct versus exchange contribution, we

exclude the polarization of the ground state of the neutral

molecule; that is, we use Eq. (29) for harmonic yield. Then the

7 15 23 31

10
-8

10
-6

10
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17 19 21 23 25 27
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-4×10
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FIG. 3. (Color online) Harmonic spectrum of direct and exchange

channels associated with the ground ionic state. Panel (a) shows direct

(solid black line) and exchange (dashed red line) harmonic yields, in

panel (b) the interference part between two channels is added (blue

dot-dashed line) on the linear scale.

matrix elements for the direct and exchange contributions are

M
(1)
dir (t) = α(t)〈�g(r1,r2)|âx1

|ψ1(r2)φ1(r1,t)〉, (32)

M (1)
ex (t) = α(t)〈�g(r1,r2)|âx1

|ψ1(r1)φ1(r2,t)〉. (33)

The total harmonic intensity associated with the ionic ground

state includes the sum of direct and exchange terms and

their interference. Even when the exchange term is small

compared to the direct contribution, the interference term is

significant.

Figure 3(a) shows two separate harmonic yields, corre-

sponding to the direct and the exchange contributions asso-

ciated with the ionic ground-state channel. The contributions

are calculated using the matrix elements in Eqs. (32) and (33).

The direct contribution exceeds the exchange contribution by

between half and two orders of magnitude. As expected, the

direct contribution shows an interference minimum. However,

such a minimum is absent in the exchange channel. This

result is general: It is related to different spatial symmetries

of the direct and exchange contributions, as discussed in what

follows.

Interference of direct and exchange terms is shown in

Fig. 3(b). First, the interference term is significant. Its

amplitude varies between 20% and 100% (in the vicinity of the

structural minimum) of the direct emission amplitude. Second,

the destructive interference of direct and exchange contribu-

tions before the structural minimum (in the direct yield) turns

into constructive interference after the structural minimum.

Taking into account that the phase of the direct contribution

changes by π while passing the structural minimum [68],

we infer that the interference has a generally destructive

character.
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This result is related to the opposite spatial symmetry of

the direct and exchange matrix elements [Eqs. (32) and (33)]

discussed in what follows. Let us expand the ground state of

the neutral molecule in the basis of ionic states,

�g(r1,r2) =
n

∑

i=1

ψD
i (r1)ψi(r2). (34)

Here

ψD
i (r1) = 〈ψi(r2)|�g(r1,r2)〉 (35)

are the Dyson orbitals for the ground state of the neu-

tral molecule. Note that our two-electron wave function is

normalized to unity, and thus we do not need the factor√
N =

√
2 for the definition of the Dyson orbitals (N = 2

is the number of electrons). For the first four states of the

ion in our model system (n = 4), their norms are ‖ψD
i ‖2 =

0.94,0.027,0.004,0.022, for i = 1,2,3,4. With these four

states, �g is reproduced with 99.4% accuracy.

We now note the following two properties of the ground

state �g(r1,r2). First, it has gerade symmetry, �g(r1,r2) =
�g(−r1,−r2). Therefore, the gerade symmetry of the ionic

ground state ψ1(r1) dictates that ψD
1 (r2) is also gerade.

Ungerade symmetry of ψ2(r1) dictates that ψD
2 (r2) is also

ungerade.

Second, electron-electron repulsion dictates that the elec-

tron density is higher when r1 = −r2, as compared to r1 = r2.

Given gerade symmetry of the first term in the sum Eq. (34),

it falls upon the second term to reduce the electron density

when both electrons are on the same side of the nuclei.

Therefore, for ψ2(−x2,y2) < 0 and ψ2(x2,y2) > 0 (where x2

is positive and y2 is arbitrary), we obtain that ψD
2 (−x1,y1) > 0

and ψD
2 (x1,y1) < 0 (x1 is positive, y1 is arbitrary). That is, the

phase of the wave function for first excited ionic state and the

phase of the corresponding Dyson orbital ψD
2 are flipped, as

seen by comparing Fig. 4(b) with Fig. 2(b).

We can use the expansion Eq. (34) to analyze the interplay

of direct and exchange terms. For analytical analysis we use

length rather than acceleration gauge, where the analysis of

arising integrals is much simpler. Substituting Eq. (34) into

Eq. (32) for the direct contribution and into Eq. (33) for the

FIG. 4. (Color online) Dyson orbitals ψD
i for the first two ionic

bound states of our model system. (a) i = 1, (b) i = 2. The color

coding shows the sign of the wave function, red for positive and blue

for negative.

exchange contribution, we find

M
(1)
dir (t) = α(t)

〈

ψD
1 (r1)

∣

∣x̂1|φ1(r1,t)〉, (36)

M (1)
ex (t) =α(t)

4
∑

i=1

〈

ψD
i (r1)

∣

∣φ1(r1,t)
〉

〈ψi(r2)|x̂2|ψ1(r2)〉. (37)

The physics behind the exchange contribution is as follows:

The dipole operator induces transition in the ion from the state

ψ1 to a state ψi>1, and the returning electron recombines into

the hole described by the corresponding Dyson orbital ψD
i .

In our case, only the term i = 2 contributes to the exchange

part.

The additional symmetry property imposed by electron-

electron repulsion, which requires that if ψ2(−x2,y2) < 0

then ψD
2 (−x1,y1) > 0 (for positive x1 and x2), is responsible

for opposite signs of the direct and exchange contributions

before the structural minimum. For the given orbital shapes,

shown in Fig. 2, the transition matrix element in the ion

〈ψ2(r2)|x2|ψ1(r2)〉 is positive and the functions ψD
2 (r1) and

ψD
1 (r1) × x1 have opposite signs. Hence, the phases of direct

and exchange terms are shifted by π , and their interference

reduces direct contribution.

The norms of the Dyson orbitals are crucial in defining

the magnitudes of the direct and exchange harmonic yields.

Since ‖ψD
1 ‖2 ≫ ‖ψD

2 ‖2, direct contribution dominates for the

ground-state channel, see Fig. 3(a). However, the situation is

quite different for the excited ionic state.

2. Excited-state channel

The key role of excited states in HHG has now been rec-

ognized theoretically and experimentally. There is, however,

an important qualitative aspect of HHG channels associated

with excited ionic states in our system. Indeed, our system has

only two electrons and hence only a single initially occupied

orbital in the HF picture. Therefore, population of excited

ionic states cannot be viewed as a removal of an electron

from a deeper orbital. In our case, excited states of the ion

correspond to two-hole one-particle configurations. Therefore,

direct one-photon recombination is suppressed: Removal of a

two-hole excitation with a single dipole operator requires help

from an electron-electron correlation. In what follows, we see

that exchange terms become particularly important under such

circumstances.

The importance of two-hole one-particle configuration is

by no means an artifact of our system. Such states are

ubiquitous in polyatomic molecules and can even lie below

the first ionization threshold. They can be multiphoton excited

during the laser pulse before ionization, leading to ions in

two-hole one-particle configurations. Depending on the field

strength, laser wavelength, and excitation energy in the ion,

such states can also be excited by the laser field between

ionization and recombination. Finally, they can be excited by

the recolliding electron during recombination [13]. Naturally,

similar recollision-induced excitations can also contribute

to the excited ionic channels associated with single-hole

configurations.

Importance of laser-field assisted recollision-induced ex-

citation during recombination has generally been underesti-

mated in HHG. However, our calculations show that it should
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FIG. 5. (Color online) Ratio of the harmonic intensities calculated

for a finite number of the ionic channels to the total yield, IG
M/IG,

for M = 1 (black squares), M = 2 (red circles), and M = 4 (blue

diamonds).

not be ignored. Figure 5 shows the ratio of the harmonic

spectra (29) calculated with the total wave function and with

the wave function �M for M = 1,2,4.

When only the ground ionic state is included in the

calculation (squares), in the range of the structural minimum

total and approximate results differ by more than a factor of

4. The agreement is better for the rest of the spectrum, with a

difference up to 40%. The expansion converges quickly with

increasing M . When HHG from the first ionic excited state

is added (circles), the agreement is within 20% of the total

result. The contribution of ψ3 is negligible due to symmetry.

Adding ψ4 (diamonds) yields an agreement better than 10%

with the total result. The polarization of the ground state of the

neutral molecule does not eliminate the contribution of ionic

excited states: For I1/I we have a difference up to factor 2,

and for I2/I we have agreement better than 20% with the total

harmonic yield.

This effect is a result of excitations of the parent ion by the

recolliding electron [13]. Discussion regarding the dynamics

of the ionic excitations will be published separately [82]. The

key factor demonstrating that ionic excitations are induced

by the recolliding electron and not by the laser field is the

unshifted harmonic cutoff. Laser-induced excitation would

have added the energy to the system, shifting the cutoff by

about 11 eV in our case. The conclusion regarding the origin

of the excitation is supported by monitoring the population

of excited ionic states while increasing the ellipticity of the

driving laser field. The population of the first excited ionic

state is a few percent of the ionic ground-state population for

linear polarization and quickly drops to zero with increasing

ellipticity.

Analysis of exchange contribution for the first excited ionic

state is similar to the preceding analysis for the ground-state

channel. Using the expansion of the neutral-molecule ground

state into the ionic states Eq. (34), we obtain

M
(2)
dir (t) = α(t)

〈

ψD
2 (r1)

∣

∣x̂1|φ2(r1,t)〉, (38)

M (2)
ex (t) = α(t)

4
∑

i=1

〈

ψD
i (r1)

∣

∣φ2(r1,t)
〉

〈ψi(r2)|x̂2|ψ2(r2)〉. (39)
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FIG. 6. (Color online) Harmonic spectrum of direct and exchange

channels associated with the first excited ionic state. Panel (a) shows

direct (solid black line) and exchange (dashed red line) harmonic

yields; in panel (b) the interference part between two channels is

added (dot-dashed blue line) on the linear scale.

Direct and exchange contributions to the harmonic yield are

shown in Fig. 6(a). The structural (two-center interference)

maximum appears at harmonic H19 in the direct contri-

bution. Its origin is the ungerade symmetry of the Dyson

orbital ψD
2 . The behavior of the relative phase of direct

and exchange emissions is shown by the interference term

plotted in Fig. 6(b). Similar to the ground state, and for

the same reasons, the interference between the two terms is

destructive. Since passing through the structural maximum

does not lead to the phase jump in the direct contribution, the

direct-exchange interference remains destructive across the

spectrum.

In contrast to the ionic ground-state channel, for the first

ionic excited state channel the exchange contribution domi-

nates. Indeed, the direct contribution is now proportional to

‖ψD
2 ‖2, while the exchange contribution is proportional

to ‖ψD
1 ‖2 [in Eq. (39) the member i = 1 clearly dominates]. As

a result, the structural maximum is washed out. Thus, exchange

contributions may make experimental observation of structural

features associated with excited ionic states problematic, at

least when it comes to two-hole one-particle configurations,

with the correspondingly small norms of the Dyson orbitals

for the direct channel.

Destructive interference between the direct and exchange

terms makes the situation even more interesting. Indeed, if the

direct and exchange contributions are close to each other, their

destructive interference can create additional minimum(a) in

the total harmonic yield. Position(s) of these new minimum(a)

may distort reconstruction of orbital structure [68] or dy-

namics [15]. Structural minima in the direct contribution to

the ground-state channel are one obvious place where other

contributions play significant role, and where the destructive

interference of the direct and exchange terms from various
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FIG. 7. (Color online) Total harmonic yield IG (solid black

line) and IG
1 (dashed red line). The minima in IG

1 at H19–23 are

associated with the structure, while the minimum in IG at H21

is a result of interference between ionic ground- and excited-state

channels.

channels is important. As demonstrated in [83], structural

minima in the recombination matrix elements associated

with the ground-state channel serve as windows into the

other channels, making their contributions more important.

The same applies to exchange contributions. An example

is seen in Fig. 7, which shows the total harmonic yield.

In this figure, the minimum at H23 is associated with

the structure. The additional deeper minimum at H21 is

induced by the destructive interference between direct and

exchange channels associated with ionic ground and excited

states.

C. General case

The importance of exchange contribution in HHG spectra

has been stressed in [9,37]. Here, we generalize the discussion

presented in the previous subsections to the case of a general

multielectron system.

Using the same expansion of the multielectron ground state

of the neutral molecule into the ionic basis, we find that direct

and exchange contributions to the recombination dipole in the

channel j can be written as (in the length gauge)

M
(j )

dir (t) = α(t)
〈

ψD
j (r)

∣

∣r̂|φj (r,t)〉, (40)

M(j )
ex (t) = α(t)

∑

i

〈

ψD
i (r)

∣

∣φj (r,t)
〉

〈ψi |d̂N−1|ψj 〉. (41)

Here the dipole operator d̂N−1 acts on all ionic electrons, and

the channel j is associated with an ion in the state ψj before

the recollision.

Structural features associated with the Dyson orbital of

interest ψD
i (r) are encoded in the direct contribution to the

recombination dipole, 〈ψD
i (r)|r|φi(r)〉. However, they can be

masked by the structural features of other Dyson orbitals,

ψD
i (r), which are encoded in the exchange contributions.

Interference of the direct and exchange terms adds further

complexity.

As an example, consider the N2 molecule aligned perpen-

dicular to the laser polarization. The two channels dominating
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FIG. 8. (Color online) Recombination dipoles calculated with

(solid line) and without (dashed line) exchange contributions. Black

and red curves show the real and imaginary parts of the recombination

dipole, respectively.

ionization and recombination in HHG are associated with the

ground (X) and first excited (A) ionic states of N+
2 , the X 2�g

and A2�u.

The norms of both Dyson orbitals are close to unity (with

total N -electron wave function normalized to N ), suggesting

that one-electron dipole recombination with both ionic states

is possible already in the HF approximation, in contrast with

the case of H2. Thus, we expect that the contribution of the

exchange term to the excited state channel will be much less

significant than in the previous case.

Figure 8 shows the recombination dipole for the A channel,

calculated with and without exchange contributions. We show

separately the real (black) and imaginary (red) parts of the

recombination dipole. Overall, the exchange contribution

increases the recombination dipole, consistent with the general

expression Eqs. (40) and (41) and the choice of signs of the

Dyson orbitals, which uniquely determines the sign of the

transition dipole between X and A states.

Calculations of the bound states used complete active

space self-consistent field (CASSCF) method with correlation-

consistent valence triple-ζ basis-set expansion, while the

strong-field eikonal-Volkov approximation [84] was used for

the continuum states. The role of the exchange contributions is

significantly less than in the case of the 2-hole 1-particle state

discussed earlier.

In general, the preceding analysis shows that the importance

of exchange (cradle) terms can be quickly assessed by

looking at the norm of the corresponding Dyson orbital.

If this norm is close to unity, as is the case for both

channels of interest in N2, the direct term would likely

dominate.

VI. CONCLUSION

Our analysis shows that electron exchange can significantly

alter structural features in the high harmonic spectra, as-

sociated with direct photorecombination. Electron exchange

during recombination can be viewed as a dipole transition

that changes the electronic state of the ion, followed by

the recombination of the continuum electron into the new

hole. This second step is determined by the overlap of
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the continuum wave packet with the Dyson orbital for the

new ionic state. This overlap encodes structural properties

of the new Dyson orbital, different from that for direct

recombination.

In our model system, electron-electron repulsion leads

to the destructive interference of direct and exchange con-

tributions. In general, destructive interference of direct and

exchange contributions to HHG may create additional minima

in the harmonic spectra, unrelated to orbital structures. Further,

polarization of the neutral molecule can also strongly mask

structural minima and maxima.

The role of two-electron excitations in HHG has largely

been underestimated so far. Our calculations show the im-

portance of this channel, which becomes excited not by

strong-field ionization, but by the returning electron prior to

recombination.

The general expression Eq. (40), which associates exchange

with the dipole transition in the ion, suggests that the

exchange terms will likely dominate in the case of two-electron

excitation (two-hole one-particle states in the HF picture).

Indeed, the dipole operator acting on the ionic states can

change the electronic excitation in the ion from the two-hole

to one-hole configuration. The latter is naturally suited for the

recombination of the continuum electron.
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[52] D. B. Milošević and W. Becker, Phys. Rev. A 66, 063417 (2002).

[53] R. Kopold, W. Becker, and D. B. Milošević, Phys. Scr. 68, C76
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[54] D. B. Milošević, G. G. Paulus, and W. Becker, Phys. Rev. A 71,

061404(R) (2005).
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[71] M. H. Beck, A.-Jäckle, G. A. Worth, and H.-D. Meyer, Phys.

Rep. 324, 1 (2000).

[72] J. Frenkel, Wave Mechanics (Oxford University Press, 1934).

[73] P. A. M. Dirac, Proc. Cambridge Philos. Soc. 26, 376 (1930).

[74] J. Zanghellini, M. Kitzler, T. Brabec, and A. Scrinzi, J. Phys. B

37, 763 (2004).

[75] E. Schmidt, Math. Ann. 63, 433 (1906).

[76] M. H. Beck and H.-D. Meyer, Z. Phys. D 42, 113 (1997).

[77] R. Kosloff and T. Tal-Ezer, Chem. Phys. Lett. 127, 223 (1986).

[78] S. Sukiasyan, C. McDonald, C. VanVlack, C. Destefani,

T. Fennel, M. Ivanov, and T. Brabec, Phys. Rev. A 80, 013412

(2009).

[79] K. Burnett, V. C. Reed, and P. L. Knight, J. Phys. B 26, 561

(1993).

[80] G. Jordan and A. Scrinzi, New J. Phys. 10, 025035 (2008).

[81] M. Lein, N. Hay, R. Velotta, J. P. Marangos, and P. L. Knight,

Phys. Rev. A 66, 023805 (2002).

[82] S. Sukiasyan et al. (unpublished).

[83] R. Torres et al., Phys. Rev. A (to be published).

[84] O. Smirnova, M. Spanner, and M. Ivanov, Phys. Rev. A 77,

033407 (2008).

043414-12

http://dx.doi.org/10.1103/PhysRevLett.84.3831
http://dx.doi.org/10.1103/PhysRevLett.84.3831
http://dx.doi.org/10.1103/PhysRevA.63.011403
http://dx.doi.org/10.1103/PhysRevA.63.011403
http://dx.doi.org/10.1016/S1049-250X(02)80006-4
http://dx.doi.org/10.1103/PhysRevA.66.063417
http://dx.doi.org/10.1238/Physica.Regular.068aC0076
http://dx.doi.org/10.1238/Physica.Regular.068aC0076
http://dx.doi.org/10.1103/PhysRevA.71.061404
http://dx.doi.org/10.1103/PhysRevA.71.061404
http://dx.doi.org/10.1080/09500340500186099
http://dx.doi.org/10.1080/09500340500186099
http://dx.doi.org/10.1103/PhysRevA.66.043413
http://dx.doi.org/10.1103/PhysRevA.69.021402
http://dx.doi.org/10.1103/PhysRevLett.92.133006
http://dx.doi.org/10.1103/PhysRevLett.92.133006
http://dx.doi.org/10.1103/PhysRevA.69.043405
http://dx.doi.org/10.1088/0953-4075/24/15/004
http://dx.doi.org/10.1103/PhysRevLett.89.213901
http://dx.doi.org/10.1103/PhysRevLett.89.213901
http://dx.doi.org/10.1103/PhysRevA.74.053401
http://dx.doi.org/10.1103/PhysRevA.74.053401
http://dx.doi.org/10.1088/0953-4075/40/13/F01
http://dx.doi.org/10.1088/0953-4075/35/2/101
http://dx.doi.org/10.1103/PhysRevA.66.043403
http://dx.doi.org/10.1088/0953-4075/33/7/101
http://dx.doi.org/10.1103/PhysRevLett.88.183903
http://dx.doi.org/10.1103/PhysRevLett.62.524
http://dx.doi.org/10.1103/PhysRevA.64.063404
http://dx.doi.org/10.1016/S0370-1573(99)00047-2
http://dx.doi.org/10.1016/S0370-1573(99)00047-2
http://dx.doi.org/10.1017/S0305004100016108
http://dx.doi.org/10.1088/0953-4075/37/4/004
http://dx.doi.org/10.1088/0953-4075/37/4/004
http://dx.doi.org/10.1007/BF01449770
http://dx.doi.org/10.1007/s004600050342
http://dx.doi.org/10.1016/0009-2614(86)80262-7
http://dx.doi.org/10.1103/PhysRevA.80.013412
http://dx.doi.org/10.1103/PhysRevA.80.013412
http://dx.doi.org/10.1088/0953-4075/26/4/003
http://dx.doi.org/10.1088/0953-4075/26/4/003
http://dx.doi.org/10.1088/1367-2630/10/2/025035
http://dx.doi.org/10.1103/PhysRevA.66.023805
http://dx.doi.org/10.1103/PhysRevA.77.033407
http://dx.doi.org/10.1103/PhysRevA.77.033407

