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ABSTRACT  

An effective approach is presented for estimation of the ultimate deformation and load 

capacity of reinforced concrete columns based on principles of axial-shear-flexure interaction. 

Conventional section analysis techniques are employed for modeling the flexure mechanism, 

and the simplified Modified Compression Field Theory is implemented for modeling the 

shear behavior of elements. Average centroidal strains and average concrete compression 

strains derived from the flexural model are implemented in the shear model, and used to 

calculate shear deformation and concrete strength degradation. This approximate procedure 

can be easily implemented in a hand-calculation method in a few steps. The approach is 

employed for estimation of the ultimate deformation of shear- and flexure-dominated 

reinforced concrete columns previously tested. The analytical results are compared with the 

experimental data and consistent strong agreement is achieved.      

 

Keywords: column, ductility, ultimate deformation, axial-shear-flexure interaction, 

displacement-based evaluation, axial deformation, ultimate strength     

 

INTRODUCTION   

Although the behavior of reinforced concrete columns and beams has been studied for more 

than 100 years, the problem of estimating ultimate deformation at ultimate strength, or the 

lateral deformation at shear failure, remains unsolved. Experimental studies by various 

authors
1,2

 revealed that reinforced concrete columns subjected to axial load and lateral load 

with similar ultimate strength may fail in significantly different ultimate deformations. 

Although it is agreed that increasing the ratio of the transverse reinforcement will enhance the 

ductility of a column, determining the ultimate deformation at which the element fails in 

shear is still a major challenge for engineers. Based on newly introduced performance-based 
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design philosophies for response estimation of structures, one of the main performance 

properties in the design process is the ductility and deformability of the structure. The more 

ductility the structure possesses, the better the performance and the more economical the 

design. Therefore, it is essential to have and apply a suitable analytical tool to accurately 

estimate the ultimate deformation or ductility of reinforced concrete column elements.  

Recently, an attempt was made to include the effects of shear deformations in sectional 

analyses through the Axial-Shear-Flexure Interaction (ASFI) method
3,4

. The ASFI method 

was developed to improve not only the response simulation of reinforced concrete elements 

with dominant shear behavior, but also to improve the flexural response calculation 

capabilities of the fiber model approach. This was done by satisfying compatibility and 

equilibrium conditions for both the flexure and shear mechanisms employed in the ASFI 

method. In the approach, the flexure mechanism was modeled by applying traditional section 

analysis techniques, and shear behavior was modeled based on the Modified Compression 

Field Theory (MCFT)
5
. The approach was implemented and verified for a number of 

reinforced concrete columns tested with different axial loads, transverse reinforcement ratios, 

longitudinal reinforcement ratios, and scales ranging from one-third to full-scale specimens. 

However, the application of the MCFT, as a shear model within the ASFI method, requires 

relatively intensive computation; a calculation process involving inversion of a 3×3 matrix,   

and an iteration process, converging five different variables, which might not be suited to 

engineers in practice. In addition, the results of analyses by the ASFI approach suggested 

further studies on the onset of shear failure or ultimate deformation of reinforced concrete 

columns.   

Considering the fact that columns with either dominant flexure or shear response fail finally 

in shear, the main objective of this study is to provide a simple analytical model, applicable 

for design in practice, for determining the critical conditions that result in the shear failure of 
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reinforced concrete columns and the corresponding ultimate strength and deformation 

capacity. In the new analytical process, tension-shear failure across cracks, loss of concrete 

compression strength, and compression-shear failure are the main failure mechanisms 

considered at the ultimate state for both shear-and flexure dominant members. In addition, 

crushing of cover concrete, bond failure, buckling of compression bars, and rupture of 

reinforcement are other potential failure conditions and must be checked at the ultimate state.  

 

RESEARCH SIGNIFICANCE  

Accurate estimation of the ultimate deformation and ductility of reinforced concrete elements 

has long been a significant challenge and aim of researchers.  A new approach is developed 

to estimate both the ultimate deformation and load capacity of reinforced concrete columns 

and beams.  The proposed method can be used as an effective analytical tool for the purpose 

of displacement- and performance-based design.  

 

ASFI METHOD AND UNIAXIAL SHEAR-FLEXURE MODEL 

The Axial-Shear-Flexure Interaction (ASFI) Method is composed of two models: a flexure 

model based on traditional uniaxial section analysis principles, and a shear model based on a 

biaxial shear element approach. The total lateral drift of a column between two sections, γ, is 

the sum of shear strain, γs, and the flexural drift ratio, γf, between the two sections. 

Furthermore, the total axial strain of the column between the two sections, εx, is the sum of 

axial strains due to axial, εxa, shear, εxs, and flexural, εxf, (Fig.1) mechanisms. 

fs γγγ +=                                                         (1) 

xfxsxax εεεε ++=                                                      (2) 

The centroidal axial strain, εxc, is derived from a section analysis or axial-flexure model, and 

is defined as the sum of the strains due to axial and flexural mechanisms, εxc = εxaf + εxf. On 
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the other hand, from the shear model for axial-shear elements, the sum of the axial strains due 

to axial and shear mechanisms is determined, εs= εxas+ εxs. As a result, to obtain εx in Eq. (2), 

εxf  must be extracted from εxc and added to εs, considering εxa = εxaf = εxas. 

Equilibrium of the shear and axial stresses from the axial-flexure model, τf and σxf, and from 

the axial-shear model, τs and σxs, respectively, must be satisfied simultaneously through the 

analysis. That is, 

oxsxf σσσ ==                                                                 (3) 

  τττ == sf                                                                   (4) 

where: σxf  = axial stress in the axial-flexure mechanism, σxs = axial stress in the axial-shear 

mechanism, σo = applied axial stress, τf = shear stress in the axial-flexure mechanism, τs = 

shear stress in the axial-shear mechanism, and τ  = applied shear stress. Stresses in axes 

perpendicular to the axial axis of the column, the clamping stresses σy and σz, are ignored due 

to equilibrium between confinement pressure and hoops stresses. 

0== zy σσ                                                              (5) 

Fig. 2 illustrates the two models for axial-shear and axial-flexure, and their interactions, by 

means of springs in series. Fig. 3 illustrates the ASFI method, for a reinforced concrete 

column with two end sections, including the equilibrium and compatibility conditions. The 

total axial deformations considered in the ASFI method are axial strains developed by axial, 

shear and flexural actions, and by pull-out mechanism.  

In a uniaxial shear-flexural model, applied in this study, compatibility is also satisfied for 

average concrete compression strains. Consider a reinforced concrete column of moderate 

height, fixed against rotation and translation at the bottom and free at the top, subjected to in-

plane lateral load and axial load as shown in Fig. 4. Given its pattern along the column (see 

Fig. 4-a), the concrete principal compression strain for an element between two sections,ε2, 
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may be determined based on average values of the concrete uniaxial compression strains 

corresponding to the resultant forces of the concrete stress blocks. 

)(5.0
1222 +

+=
ii

εεε                                                         (6) 

This is the main hypothesis of the new method proposed here; this assumption simplifies the 

shear model significantly from a biaxial to a uniaxial mechanism. For the column in Fig. 4, 

the compression strain obtained from the above equation is set equal to the average principal 

compression strain of the element between the two sections of i and i+1. 

 

MODIFIED COMPRESSION FIELD THEORY 

The shear mechanism in the ASFI method, as well as in this analytical process, is modeled 

according to the Modified Compression Field Theory (MCFT)
5
. It is a suitable displacement-

based evaluation approach for predicting the load-deformation response of reinforced 

concrete membrane elements subjected to shear and normal stresses. The MCFT is essentially 

a smeared rotating crack model. It includes compression softening effects, tension stiffening 

effects, and consideration of local conditions at cracks. The MCFT is based on orientations of 

the principal average strains in an element leading to the calculation of principal average 

stresses in concrete through concrete constitutive relationships. Transforming the average 

concrete principal stresses to the global coordinate axes and adding to the average stresses in 

the reinforcement gives the total average stresses in the element. There are two checks in the 

calculation process relating to the crack zones. The first is to ensure that tension in the 

concrete can be transferred across the crack. The second is to ensure that the shear stress on 

the surface of the crack dose not exceed the maximum shear resistance provided by aggregate 

interlock. A reinforced concrete element within the context of the MCFT can be illustrated by 

the free body diagram of the membrane element depicted in Fig. 5. 
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DERIVATION OF THE ANALYTICAL MODEL 

Considering the free body diagram of the membrane element in Fig. 6, equilibrium conditions 

in the MCFT require that: 

sxsxcxx ff ρσ +=                                                                       (7) 

sysycyy ff ρσ +=                                                                      (8) 

where, for beams and columns xσ   is the total normal stress in the x-direction (i.e., the 

applied axial stress),  yσ   is the total normal or clamping stress in the y-direction, taken to be 

zero,  and  are stresses in concrete in the x (axial) and y (transverse) directions, 

respectively, 

cxf cyf

sxρ  and syρ  are the reinforcement ratios in the x (axial) and y (transverse) 

direction, respectively, and  and  are the stresses in the main bars (axial direction) and 

in the transverse reinforcement (y direction), respectively.  

sxf syf

A Mohr’s circle for concrete stress yields the following equilibrium relationships: 

csccx ff θτ cot1 −=                                                                      (9) 

csccy ff θτ tan1 −=                                                                    (10) 

)tan/1(tan12 ccscc ff θθτ +−=                                                         (11) 

where   is the concrete principal tensile stress,   is the concrete principal compressive 

stress, 

1cf

s

2cf

τ   is the concrete shear stress, and cθ  is the crack angle. 

On the other hand, the compatibility equation based on the Mohr’s circle for strain requires 

that: 

     
2

22tan
εε
εεθ

−
−

=
y

x
c                                                          (12) 

yx εεεε +=+ 21                                                         (13) 

where xε  is the axial strain, yε  is the strain in the transverse reinforcement, 1ε  is the 
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concrete principal tensile strain and 2ε  is the concrete principal compression strain. 

With xε  obtained from section analysis, combining Eqs. (9), (10), (12) and (13) yields two 

useful equations for estimation of yε  and 1ε . 

yyyy bcb εεε <−+= 2                                                         (14) 

where yyε  is the yield strain, and  

ssy

ccxcx

ssy

c

E

fff2 )(
c

E

f
b

ρ
εεεε

ρ
21121 )(

,
22

+−−
=−=  

where, Es is modulus of elasticity of transverse reinforcement. When strain in the transverse 

reinforcement is greater than the yield strain yyε , Eq. (15) can be applied:  

yyyx

syysyc

cxcx

ff

ff
εεε

ρ
ε

+
)(

1

2ε
ε ≥+

−−
=

)(

)( 1
1                              (15) 

where  is yield stress of transverse reinforcement,  is determined based on Eqs. (7). At 

the ultimate states, Eq. (15) is usually the governing equation. Given 

syyf cxf

β  as the concrete 

compression softening factor, an average initial value of tc ff ′= 44.01  can be considered for 

Eqs. (14) and (15), by assuming a tension stiffening model and an average tensile strain ε1 

which can be derived from Eq. (16) based on an upper bound of 1≤β  and lower bound of 

2.0≥β .  

0.1

34.08.0

1

1

≤

′
−

                                                (16) =β

cε
ε

where, cε ′  is concrete peak strain. The MCFT limits the shear stress transferred by aggregate 

interlock across a crack surface, τi, to the value given by Walraven’s equation: 

                                           

16

24
31.0

18.0

+
+

′
≤i

g

c

a

w

f
τ  (MPa, mm)                                      (17) 

 8 

 



with 1εθsw = , and 

y

c

x

c

ss

s θθθ cossin

1

+
= ,  where  and  are the average crack spacings in 

the x- and y-directions, respectively and ag is the maximum aggregate size. 

xs ys

Equilibrium in the y-direction, at the crack, requires that:  

                                                    sycicsysycrf ρθτθτσ /)tantan( −+=                                  (18) 

where  is the transverse reinforcement stress at the crack, and sycrf yσ  is the clamping stress 

which is equal to zero. Hence for syysycr ff =  Eq. (18) yields: 

                                                       csysyyi f θρττ cotmax +≤                                                (19) 

 

FLEXURE MECHANISM 

The traditional section analysis method is a handy and convenient approach for the evaluation 

of the flexural performance of a reinforced concrete column or beam. Since the analysis is 

implemented assuming a uniaxial stress field, material modeling and analytical computation 

are simple and a solution can be achieved with adequate convergence in a few steps. Fig. 7 

shows a flexural section for a column. The force-strain relationship for a section, under 

uniaxial bending, can be derived from axial load equilibrium as following: 

PxAEAE iiiiio =+ ∑∑ φε                                               (20) 

where P is the applied axial load. Other components are: 

cssssii abEEAEAAE +′′+=∑                                           (21-a) 

)(5.0)(5.0)(5.0 haabEddEAddEAXAE cssssiii −+−′′′+′−=∑                    (21-b) 

where 
s

s
s

f
E

ε
= , 

s

s
s

f
E

ε ′
′

=′ , 
c

c
c

f
E

ε
=  and ca 1β= , and where β1 is the rectangular stress block 

coefficient which is equal to 0.85 for cf ′ <28 MPa; β1 is reduced continuously by 0.05 for 
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each 7 MPa above 28MPa. The main assumption of plane sections yields the following 

relationships: 

cddcchc

ssoc

−
=

′−
′−

=
−

=
−
−

=
εεε

β
ε

φ
5.0)5.01( 1

                                 (22) 

Solving Eq. (20) for oε  and 85.01 =β  gives: 

c

cssss

ccssss

o
abEEdAEAd

abEEAEAhhP
ε

ε
ε 7391.1

]5.0[2

][7391.1
2

+
++′′′

++′′−
=                              (23) 

By determining , , and , the bending moment within the section is obtained by 

applying moment equilibrium for the section. 

sf ′
sf cf

cssss bafhafAddfAddM )(5.0)(5.0)(5.0 −+′−+′′−′=                      (24) 

If M is the end-moment of a column, as in Fig. 3, then flexural shear stress, fτ ,  is 

determined based on Eq. (25).  

inf

f
Lbd

M
=τ                                                                   (25) 

where  is assumed based on the failure mode described later. hdd f ≤≤

 

PROCEDURES FOR ESTIMATION OF ULTIMATE DEFORMATION 

The main failure mechanism for both shear- and flexure-dominated beams and columns is 

shear failure. Fig. 8 shows specimen No.12 and No.15, from Table 1, with shear and flexure 

responses, respectively; however both failed in shear at the ultimate deformation. Bond 

failure, buckling of compression bars, rupture of the tensile bars, and crushing of cover 

concrete are other failure criteria for reinforced concrete columns and beams. The analytical 

procedure presented here is based on assuming shear failure as the main failure mechanism, 

and checking for the other failure criteria. 
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Three shear failure conditions are defined based on the MCFT as: shear failure at a crack 

(Failure Mode 1); failure due to loss of compression strength (Failure Mode 2); and shear-

compression failure (Failure Mode 3). Shear failure at a crack, which is typically the 

governing case for columns with low transverse reinforcement ratios, is determined using Eq. 

(19) and Eq. (25). Shear failure occurs when: 

              csysyyi

inf

f f
Lbd

M θρττ cot+≥=                                            (26) 

where, . Columns under high shear force, such as short columns, if not failing via 

Mode 1, will lose compression strength, f2, due to shear deformation and fail before the peak, 

dd f =

cεε ′≤2 . This failure condition, Mode 2, is defined by Eqs. (11) and (25) when: 

)tan/1(tan

)( 21

cc

cc

inf

f

ff

Lbd

M

θθ
τ

+
−

≥=                                                 (27) 

where  for short columns with span-to-depth ratios less than 1.0 and  for 

columns with span-to-depth ratio more than 1.5;  for ratios between 1.0 and 1.5,   is 

determined by interpolation.                       

hd f = dd f =

fd

Columns and beams with a ductile flexure performance, when having sufficient transverse 

reinforcement and relatively low shear stress, will fail in shear when cεε ′=2   via Mode 3. 

inf

f
Lbd

M
=τ                                                         (28) 

where, cεε ′=2

15

 and . Finally for flexure beams and columns with very low shear stress, 

especially under heavy cyclic loadings, the compression softening factor may be limited to 

hd f =

.0≥β . In other words, if β  reduces to 0.15 then that will signal the ultimate state. None 

of the columns in Table 1 reached this limit within the range cεε ′≤2 , hence further study is 

required in regards to this condition.    
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Based on the shear failure criteria described above, an analytical procedure can be 

constructed for the estimation of the ultimate deformation of a reinforced concrete column 

with a flexure section at the section with maximum moment, such as the column shown in 

Fig.3. In step-by-step fashion, the procedure is as follows: 

1. Assume an initial value for concrete compression strain of the flexure section, cε  ; for 

example, cc εε ′= .  

2. Employ Eqs. (21), (22), and (23) to determine the centroidal strain of the section, oε , 

through one or two iterations. Assume an initial value for oε ; for example 001.0=oε . 

3. Determine the axial strain at the inflection point with zero moment, xaε  , using basic 

sectional analysis principles. 

4. Compute the average concrete principal compression strain 2ε  and axial strain xε  for the 

shear model. 

2
2

xac εε
ε

+
=                                                         (29) 

2

xao

x

εε
ε

+
=                                                        (30) 

5. Using Eqs. (13), (14) and (15) determine 1ε  and yε . Since the problem is being solved for 

conditions at the ultimate state, usually the transverse reinforcement has yielded and only Eq. 

(15) need be applied.  

6. Employ Eq. (12) to obtain cθtan  . 

7. Using Eqs. (26) (27), and (28), check for shear failure. If no failure has occurred, then 

increase cε  and repeat the above steps. If, for example, Eq. (26) shows shear failure at crack, 

then cε  must be reduced until all three equations provide greater or equal values. 

8. Check for crushing of the cover concrete. This is not a failure model but the axial load 
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capacity will decline; strain hardening sometimes will help mitigate the decline. Check for 

buckling of the compression bars, bond failure, rupture of tensile bars, and compression 

softening factor 15.0≥β .  

9. Determine the ultimate deformation using Eq. (1) where, ∫==
Lin

inin

f dxx
LL

0

1 φδγ , and  

c

x
s θ

εεγ
tan

)(2 2−
=   

10. Finally, the ultimate lateral load capacity is obtained by 

bhV fu τ=                                                                   (31) 

If the column or beam has sufficient transverse reinforcement then the initial value for cε  can 

be selected as xacc εεε −′= 2 , which is the limit for Failure Mode 3. Then check for other 

failure modes. If this is the dominant failure mode, then determine the ultimate drift.   

Confinement effects can be taken into account for both shear and flexure models based on 

equations provided by Park, Priestley and Gill
2
. Note that both the confinement factor and the 

compression softening factor, β , are applied in the constitutive law of compression concrete 

of the shear model. However, for the flexure model, only the confinement factor is 

considered and employed in the concrete stress-strain relationship. 

 

NUMERICAL EXAMPLES 

The analytical procedure is employed for Specimen No.12, described in Table 1, with a 

shear-dominant response. Units are in mm, kN, and MPa. For the secondary units, use 1 in = 

25.4 mm, 1 ksi = 6.89 MPa, and 1 kip = 4.45 kN.  

 1. As an initial value assume 002.0−=cε .  

2. To satisfy Eq. (23), an iteration procedure can be applied with few steps. First 

consider 002.0=oε  and ; hence:  ca 85.0=
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)353.1353.2( oc

ch
a

εε
ε
−

=  or mma 81
)002.0(353.1)002.0(353.2

)002.0(300
=

−−
−×

=  

From Eq. (22) 006.0=sε  and 002.0−=′
sε ; thus Eq. (23) gives 00265.0=oε . After three or 

four iterations, oε  converges to .  00296.0

3. The axial strain at the inflection point with zero moment can be determined as:   

00019.0
)/2(

)/(
−=

+
=

sxspp

xa
Ef

bhP

ρε
ε  

with ppf ε/2

p

 as average concrete modulus of elasticity of section at the inflection point, 

where, ε  and  are confined concrete peak strain and stress, respectively, which are 

determined based the confinement model, by Park, Priestley and Gill
2
. For simplicity they 

might be considered equal to 

pf

cε ′  and cf ′ , respectively.      

4. The average concrete principal compression strain 2ε  and axial strain xε  for the shear 

model are then obtained: 00101.0
2

2 −=
+

= xac εε
ε  and 0014.0

2
=

+
=x

xao εε
ε . 

5. Assuming yielding of the transverse bars, Eq. (15) can be employed to obtain 1ε   

x

syysyc

xssxxcx

ff

Ef ε
ρ

ερσεεε +
+

+−−
=

)(

))((

1

12
1  

where, bhPox /== σσ , MPafff ctc 77.02833.0*44.033.0*44.044.01 ==′=′=  

hence, 024.01 =ε  

6. Eq. (12) is employed, producing the result of 33.0tan =cθ    

7. Checking for shear failure at a crack using Eq. (26), the moment is obtained by Eq. (24). 

17.2cot59.3
450260300

1026.1 8

=+≥=
××

×
= θρτ sysyyi

in

f
bdL

M
where, iτ  is computed using Eq. (17). 

The result indicates that a shear failure at crack has occurred, hence cε  must be reduced. 

Selecting 001.0−=cε  and repeating the above steps results in: 
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   MPaf
bhL

M
csysyyi

in

f 97.2cot89.2 =+≅== θρττ  

Therefore shear failure at a crack (i.e., Failure Mode 1) is defined as the governing failure 

mechanism of this specimen at the ultimate state. 

8. From the test, there is no sign of cover concrete crushing or other failure criteria governing. 

Usually, Mode 1 failure gives the lowest ultimate drift ratio.   

9. Based on the curvature distribution shown in Fig. 9, the shear and flexural deformations 

are determined  

002.0
1

0

=== ∫
Lin

inin

f dxx
LL

φδγ , and  0029.0
tan

)(2 2 =
−

=
c

x
s θ

εεγ   

0049.0=+= sf γγγ  

10. Finally, calculation of the ultimate lateral load capacity results in 

kNbhV fu 260== τ (58kips).                                                                    

The ultimate load and deformation obtained for this sample problem are compared in Fig. 10 

to the experimental result, exhibiting good correlation. A photograph of the specimen at the 

ultimate state is shown in Fig. 8, depicting a pronounced shear failure on the face of the 

column.      

As a second example, the ultimate deformation and load are determined for Specimen No.16 

in Table 1.   

The iteration for this example results in 00135.0−=cε  with Mode 2 governing, where, 

MPa
ff

bhL

M

cc

cc

in

f 17.4
)tan/1(tan

)(
05.4 21 =

+
−

≅==
θθ

τ  

while the other failure conditions are satisfied. As the result, the ultimate deformation is 

determined as: 009.0=+= sf γγγ  with a lateral force of kNbhV fu 364== τ (82 kips), both 

values nearly perfectly correlated to the experimental result as seen in Fig. 11. Note that few 
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iterations are required for step 2 of the analytical procedure. For all the column specimens 

studied in this investigation, only two or three iterations were required to achieve 

convergence. To avoid the iteration process, it is also possible to solve Eq. (23) by deriving 

different equations dependent only on the yield states of the compressive and tensile bars. 

However, the authors found Eq. (23) more efficient to apply as a general equation and 

applicable for all the stress-strain conditions.   

The ultimate deformation estimation approach was employed for all specimens in Table 1. 

Comparisons between the experimental and analysis are plotted in Fig. 11, indicating 

consistently accurate correlations. Since the shear capacity, obtained from the analysis, is 

based on the section moment capacity without consideration of geometrical nonlinearity, the 

P-Δ effect due to drift is determined and employed for the flexural columns, which reduces 

the calculated shear capacity. Failure modes are determined and given in Table 1 for all the 

reinforced concrete columns specimens.    

      

CONCLUSIONS  

An analytical approach was developed to estimate the ultimate deformation and load capacity 

of reinforced concrete columns based on a simplified axial-shear-flexure interaction approach. 

Shear failure was the main failure criteria for both flexure- and shear-dominant specimens. In 

this approach, the concrete compression softening factor was employed only within the 

MCFT-based shear model. Axial strain and concrete compression strain were the two main 

parameters common to both the shear and axial models. Three failure modes were defined as 

the main ultimate state conditions; shear failure at the cracks, loss of concrete compression 

strength before the peak, and finally shear-compression failure when cεε ′=2   The ultimate 

deformation and load capacity results obtained by the new approach were verified against 
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experimental data, consistent correlations between the analytical and experimental results for 

a series of reinforced concrete columns were attained.  
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Table 1 Material properties of test specimens 

Specimen Type 

b 

mm 

(in) 

h 

mm 

(in) 

2Lin 

mm 

(in) 

Sh 

mm 

(in) 

ρg 

% 

ρw 

% 

fsyx 

MPa 

(ksi) 

fsyy 

MPa 

(ksi) 

f′c 

MPa 

(ksi) 

P 

kN 

(kips) 

Failure 
mode 

No.126 DC 
300 

(11.8) 

300 

(11.8) 

900 

(35.4) 

150 

(5.9) 
2.26 0.14 

415 

(60) 

410 

(59) 

28 

(4.1) 

540 

(121) 
1 

No.146 DC 
300 

(11.8) 

300 

(11.8) 

900 

(35.4) 

50 

(2.0) 
2.26 0.4 

415 

(60) 

410 

(59) 

26 

(3.8) 

540 

(121) 
2 

No.156 DC 
300 

(11.8) 

300 

(11.8) 

900 

(35.4) 

50 

(2.0) 
2.26 0.85 

415 

(60) 

410 

(59) 

26 

(3.8) 

540 

(121) 
2 

No.166 DC 
300 

(11.8) 

300 

(11.8) 

600 

(23.6) 

50 

(2.0) 
1.8 0.43 

450 

(65) 

410 

(59) 

27 

(3.9) 

540 

(121) 
2 

A17 DC 
150 

(5.9) 

420 

(16.5) 

1260 

(49.6) 

200 

(7.9) 
0.9 0.13 

350 

(51) 

290 

(42) 

18.3 

(2.7) 

328 

(74) 
1 

B17 DC 
300 

(11.8) 

300 

(11.8) 

900 

(35.4) 

160 

(6.3) 
1.69 0.08 

336 

(49) 

290 

(42) 

18.3 

(2.7) 

477 

(107) 
1 

2CLH188 DC 
457 

(18) 

457 

(18) 

2946 

(116) 

457 

(18) 
2 0.1 

330 

(48) 

400 

(58) 

33 

(4.8) 

500 

(112) 
2 

3CLH188 DC 
457 

(18) 

457 

(18) 

2946 

(116) 

457 

(18) 
3 0.1 

330 

(48) 

400 

(58) 

25.6 

(3.7) 

500 

(112) 
1 

No.29 DC 
457 

(18) 

457 

(18) 

2946 

(116) 

305 

(12) 
2.5 0.17 

434 

(63) 

476 

(69) 

21.1 

(3.1) 

2650 

(596) 
3 

No.49 DC 
457 

(18) 

457 

 (18) 

2946 

(116) 

305 

(12) 
2.5 0.17 

447 

(65) 

469 

(68) 

21.8 

(3.1) 

667 

(150) 
2 

N18M10 DC 
300 

(11.8) 

300 

(11.8) 

900 

(35.4) 

100 

(3.9) 
2.7 0.19 

380 

(55) 

375 

(54) 

26.5 

(3.8) 

429 

(96) 
1 

No.111 DC 
200 

(7.9) 

400 

(15.7) 

1000 

(39) 

128 

(5) 
2.53 1 

360 

(52) 

345 

(50) 

45 

(6.5) 
0 2 

C5-00S12 SC 
203 

(8) 

203 

(8) 

1220 

(48) 

76.2 

(3) 
1.93 1 

573 

(83) 

515 

(75) 

37.9 

(5.5) 
0 3 

C10-05S12 SC 
203 

(8) 

203 

(8) 

1220 

(48) 

76.2 

(3) 
1.93 1 

586 

(85) 

407 

(59) 

69.6 

(10) 

142 

(32) 
3 

C10-10S12 SC 
203 

(8) 

203 

(8) 

1220 

(48) 

76.2 

(3) 
1.93 1 

574 

(83) 

515 

(75) 

67.8 

(9.8) 

285 

(64) 
3 

C10-20N12 SC 
203 

(8) 

203 

(8) 

1220 

(48) 

76.2 

(3) 
1.93 1 

572 

(83) 

514 

(75) 

65 

(9.4) 

569 

(128) 
3 

No.413 DC 
400 

(15.7) 

400 

(15.7) 

3200 

(126) 

80 

(3.1) 
1.57 1.1 

474 

(69) 

333 

(48) 

25.6 

(3.7) 

819 

(184) 
3 

No.713 SC 
550 

(21.6) 

550 

(21.6) 

3300 

(130) 

90 

(3.5) 
1.25 1 

511 

(74) 

325 

(47) 

32.1 

(4.6) 

2913 

(655) 
3 

B214 DC 
250 

(9.8) 

250 

(9.8) 

1000 

(39.4) 

40 

(1.6) 
2.43 0.4 

379 

(55) 

774 

 (112) 

99.5 

(14.4) 

2176 

(449) 
3 

D1N315 SC 
242 

(9.5) 

242 

(9.5) 

1250 

(49.2) 

40 

(1.6) 
2.43 0.8 

461 

(67) 

486 

(71) 

37.6 

(5.5) 

705 

(158) 
3 

D1N615 SC 
242 

(9.5) 

242 

(9.5) 

1250 

(49.2) 

40 

(1.6) 
2.43 0.8 

461 

(67) 

486 

(71) 

37.6 

(5.5) 

1410 

(317) 
3 

Footnotes: DC= double curvature, or with two fixed ends, SC=single curvature, or cantilever, b=width of the section, h= 

Depth of the section, Lin= length of the column from the inflection point to the end section, Sh= hoop spacing, 

ρg=longitudinal reinforcement ratio, ρw= transverse reinforcement ratio, fsyx= longitudinal reinforcement yield stress, fsyy= 

transverse reinforcement yield stress, f′
c= concrete compression strength , P=axial load, Failure mode 1: shear failure at crack 

ε2 < ε’c , Failure mode 2: loss of compression strength ε2 < ε’c , and Failure mode 3: shear-compression failure ε2 = ε’c  
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FIG. 1. Average centroidal strain due to flexure 
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FIG. 2. Spring model of ASFI method 

 

 

 

 

 

 

 

 

 

FIG. 3. Axial-shear-flexure interactions in ASFI method 
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FIG. 4. A reinforced concrete column subjected to shear and axial Loads; a) Concrete 

principal compression stress pattern, b) Cross section, and c) Stress blocks and strains 

at two adjacent sections 
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FIG. 5. A reinforced concrete membrane element subject to in-plane stresses 
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FIG. 6. A reinforced concrete in-plane shear element showing average stresses 
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FIG. 7. Stresses and strains relations at the critical flexural section, e.g. bottom end-

section in Fig. 4 
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Specimen No.15 Specimen No.12 

FIG. 8. Shear failure at the ultimate deformation for both shear- and flexure-dominated 

columns  
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FIG 9. Presumed curvature distribution for a reinforced concrete column 
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FIG 10. Comparison of experimental result for specimen No.12
6
 and the ultimate 

deformation and load obtained from the analytical model 

 

0

100

200

300

400

0.000 0.050 0.100

Drift ratio

L
a
te

ra
l 

lo
a
d

 (
k

N
) 

  

0

20

40

60

80

L
a
te

ra
l 

L
o

a
d

 (
k

ip
s)

  Test Results

 

0

100

200

300

400

0.000 0.050 0.100 0.150 0.200 0.250

Drift ratio

L
a
te

ra
l 

lo
a
d

 (
k

N
) 

  

0

20

40

60

80

L
a
te

ra
l 

L
o

a
d

 (
k

ip
s)

  

Test Results

 
Specimen No.14

6
 Specimen No.15

6
 

0

100

200

300

400

0.00 0.01 0.02 0.03 0.04 0.05

Drift ratio

L
a
te

ra
l 

lo
a
d

 (
k

N
) 

 

0

20

40

60

80

L
a
te

ra
l 

L
o

a
d

 (
k

ip
s)

  
 

Test Results

 

0

100

200

300

400

0.000 0.020 0.040 0.060 0.080 0.100

Drift ratio

L
a
te

ra
l 

lo
a
d

 (
k

N
)  

 .

0

20

40

60

80

L
a
te

ra
l 

L
o

a
d

 (
k

ip
s)

  Test Results

 
Specimen No.16

6
 Specimen N18M

10
 

 25 

 



0

50

100

150

200

0.000 0.005 0.010 0.015 0.020

Drift ratio

L
at

er
al

 l
o

ad
 (

k
N

) 
  .

0

10

20

30

40

L
at

er
al

 L
o

ad
 (

k
ip

s)
  

 .

Test Results

 

0

100

200

300

400

0.000 0.005 0.010 0.015 0.020

Drift ratio

L
at

er
al

 l
o

ad
 (

k
N

)  
 .

0

20

40

60

80

L
at

er
al

 L
o

ad
 (

k
ip

s)
  .Test Results

 
Specimen A1

7
 Specimen B1

7
 

0

100

200

300

400

0.00 0.01 0.02 0.03 0.04 0.05

Drift ratio

L
at

er
al

 l
o

ad
 (

k
N

)  
 .

0

20

40

60

80

L
at

er
al

 L
o

ad
 (

k
ip

s)
  

 .

Test Results

0

100

200

300

400

0.000 0.010 0.020 0.030

Drift ratio

L
a
te

ra
l 

lo
a
d

 (
k

N
) 

  
0

20

40

60

80

L
a
te

ra
l 

L
o

a
d

 (
k

ip
s)

  
 .Test Results

 
Specimen 2CLH18

8
 Specimen 3CLH18

8
 

0

100

200

300

400

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Drift ratio

L
a
te

ra
l 

lo
a
d

 (
k

N
) 

 

0

20

40

60

80

L
a
te

ra
l 

L
o

a
d

 (
k

ip
s)

  
 .

Test Results

 

 

0

100

200

300

400

0.000 0.010 0.020 0.030 0.040 0.050

Drift ratio

L
at

er
al

 l
o

ad
 (

k
N

) 
  

.

0

25

50

75

L
at

er
al

 L
o

ad
 (

k
ip

s)
  

 .

Test Results

 
Specimen No.2

9
 Specimen No.4

9
 

0

200

400

600

800

0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070

Deflection Ratio

L
o

a
d

 (
k

N
)

0

40

80

120

160

L
a
te

ra
l 

 L
o

a
d

 (
k

ip
s)

  .

Test Results

0

100

200

300

400

500

600

0.000 0.010 0.020 0.030 0.040 0.050 0.060

Drift ratio

L
at

er
al

 l
o
ad

 (
k

N
) 

  
.

0

25

50

75

100

125
L

at
er

al
 L

o
ad

 (
k

ip
s)

  
 .

Test Results

 
Specimen No.1

11 
Specimen B2

14
 

 26 

 



0

25

50

75

100

0.000 0.020 0.040 0.060 0.080 0.100 0.120

Drift ratio

L
at

er
al

 l
o

ad
 (

k
N

) 
  

.

0

5

10

15

20

L
at

er
al

 L
o

ad
 (

k
ip

s)
  

 .

Test Results

 

0

25

50

75

100

125

0.000 0.020 0.040 0.060 0.080 0.100

Drift ratio

L
at

er
al

 l
o

ad
 (

k
N

) 
  

.

0

8

16

24

L
at

er
al

 L
o

ad
 (

k
ip

s)
  

 .

Test Results

Specimen C5-00S
12 

Specimen C10-05S
12

 

0

25

50

75

100

125

0.000 0.020 0.040 0.060 0.080 0.100

Drift ratio

L
at

er
al

 l
o

ad
 (

k
N

) 
  

.

0

8

16

24

L
at

er
al

 L
o

ad
 (

k
ip

s)
  

 .

Test Results

 

0

50

100

150

0.000 0.020 0.040 0.060 0.080 0.100

Drift ratio

L
at

er
al

 l
o

ad
 (

k
N

) 
  

.
0

8

16

24

32

L
at

er
al

 L
o

ad
 (

k
ip

s)
  

 .

Test Results

 
Specimen C10-10S

12
 Specimen C10-20N

12
 

0

50

100

150

200

250

0.000 0.020 0.040 0.060 0.080 0.100

Drift ratio

L
at

er
al

 l
o
ad

 (
k

N
) 

  
.

0

10

20

30

40

50

L
at

er
al

 L
o
ad

 (
k

ip
s)

  
 .

Test Results

 

0

200

400

600

800

0.000 0.020 0.040 0.060 0.080

Drift ratio

L
at

er
al

 l
o

ad
 (

k
N

) 
  

.

0

50

100

150

L
at

er
al

 L
o

ad
 (

k
ip

s)
  

 .

Test Results

Specimen No.4
13

 Specimen No.7
13

 

0

50

100

150

200

250

300

0.000 0.010 0.020 0.030 0.040 0.050

Drift ratio

L
at

er
al

 l
o
ad

 (
k

N
) 

  
.

0

20

40

60

L
at

er
al

 L
o
ad

 (
k

ip
s)

  
 .

Test Results

 

0

50

100

150

200

250

300

0.000 0.010 0.020 0.030 0.040 0.050

Drift ratio

L
at

er
al

 l
o

ad
 (

k
N

) 
  

.

0

20

40

60

L
at

er
al

 L
o
ad

 (
k
ip

s)
  

 .

Test Results

 
Specimen D1N3

15
 Specimen D1N6

15
 

  

FIG 11. Comparison of experimental and analytical results  
Ultimate drift result of analysis is depicted by   
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