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Abstract 

Soil corrosivity is not a directly measurable parameter and pipe corrosion is largely a random 

phenomenon. The literature is replete with methods and systems that attempts to predict soil corrosivity and 

resulting metallic pipe corrosion from soil properties (e.g., resistivity, pH, redox potential and others) 

surrounding the pipe.  

This paper describes research that endeavors to gain a thorough understanding of the geometry of external 

corrosion pits and the factors (e.g., soil properties, appurtenances, service connections, etc.) that influence 

this geometry. This understanding would lead to the ultimate objective of achieving a better ability to assess 

the remaining life of ductile iron pipes for a given set of circumstances. 

Varying lengths of ductile iron pipes were exhumed by several North American and Australian water 

utilities. The exhumed pipes were cut into sections, sandblasted and tagged. Soil samples extracted along 

the exhumed pipe were also provided. Pipe segments were scanned, using a specially developed laser 

scanner. Scanned data were processed using specially developed software. Statistical analyses were 

performed on three geometrical attributes, namely pit depth, pit area and pit volume. Various soil 

characteristics were investigated for their impact on the geometric properties of the corrosion pits. 

Preliminary findings indicate that the data not always support traditional conventions.  
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Corrosion pits, soil properties, corrosion pit geometry, probability distribution  

 

1. INTRODUCTION 

The literature is replete with methods and systems that endeavor to predict metallic pipe corrosion from the 

properties of the soil surrounding the pipe. Soil properties that have been implicated include soil electrical 

resistivity, pH value, redox potential, and sulfates in the soil solution, chloride concentration, moisture 

conditions, shrink/swell properties and others. However, soil corrosivity is not a directly measurable 

parameter and corrosion is largely a random phenomenon, hence, no explicit relationships exist between 

these soil properties and soil corrosivity as well as between soil corrosivity and pipe deterioration rate. 

Virtually all the models that endeavor to propose such relationships are empirical. Some of the more 

practical approaches found in the literature largely based on empirical observations, some or all of the 

aforementioned soil properties with soil corrosivity and potential pipe deterioration. The most widely 
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known of these approaches is the 10-point scoring method proposed by AWWA (Appendix A of 

ANSI/AWWA C105/A21.5), which classifies a soil as corrosive/noncorrosive based on the weighted 

aggregation of 5 soil properties. The 25-point scoring method of Spickelmire (2002) is similar scheme as 

the AWWA 10-point method except that many other factors are included. As the 10-point method yields a 

binary response (corrosive/noncorrosive), some attempts have been made to fine-tune it using soft 

computing techniques, e.g., Sadiq et al. (2004) and Najjaran et al. (2006).  

Among the researchers who investigated the usage of statistical/probabilistic tools to characterize the 

properties of corrosion pits, a few are noted: Logan and Koenig (1939) proposed some practical methods 

for pipe sampling. Aziz (1956) was among the first to use extreme value statistics (EVS), albeit not 

specifically for pipes but for aluminum samples immersed in water. He proposed the double exponential (or 

Gumbel) distribution for the analysis corrosion pit maxima. Hay (1984) also found that the Gumbel 

distribution fitted corrosion pit maxima well in buried cast iron pipes. He subsequently examined, using 

multiple regression, the impact of soil properties on pit maxima and found that the most significant factor in 

predicting corrosion rate was the logarithm of the reciprocal of the linear polarization resistance (LPR), 

followed by total soil acidity measures in the form of extractable aluminum and extractable cations (Ca, 

Mg, Na) in the soil.  

Sheikh et al. (1989) proposed a truncated exponential distribution as the underlying distribution for pit 

depth and Sheikh et al. (1990) proposed a probabilistic model to predict time to failure. Laycock et al. 

(1990) used the generalized extreme value statistic to analyze corrosion pit maxima and subsequently 

extrapolate sample data in time and space. Scarf et al. (1992) extended the work of Laycock et al. (1990) to 

consider the r deepest pits in a sample rather than just the single deepest pit. Katano et al. (1995) and 

Katano et al. (2003) found that the log-normal distribution best fitted their pit data and using regression 

analysis observed that the environmental factors that were found to be the most significant in determining 

pit depth (for a given exposure time) included soil type, pH, resistivity, redox potential and sulfate ion. 

Melchers (2003, 2004a, 2004b) applied multi-phase power models (as a function of time) to corrosion data 

collected from mild and low-alloy steel coupons subjected to “at-sea” conditions. Melchers (2005b,c) 

questioned the use of extreme value distribution such as Gumbel to represent the distribution of corrosion 

pit depth maxima and reasoned that corrosion pits form two populations, one of metastable pits (those pits 

that initiate but stop growing immediately or a short while after initiation) and stable pits (those pits that 

continue to grow).actually exist on the specimen.  

Restrepo et al. (2009) applied the proportionate stratified sampling method to establish “index of 

aggressiveness” (IA) of the soil, with contributors including soil moisture, pH, redox potential, soil–pipe 

potential , soil resistivity, and sulphide content. Caleyo et al. (2009) investigated the distributions of several 

soil properties along a 50-year old oil steel pipeline. They then proposed a Rossum-type multivariate power 

model to predict maximum pits depths as a function of soil properties and time of exposure and used the 

probability distributions of the soil properties to carry on a Monte-Carlo analysis to discern the distribution 

of corrosion pit growth. The found that the model was most sensitive to pH, pipe-to-soil potential, pipe 

coating type, bulk density, water content and the dissolved chloride content, in that order 

The National Research Council of Canada (NRC), with funding from the Water Research Foundation 

(WRF – formerly known as AwwaRF – American Water Works Association Research Foundation) has 

undertaken a research project to investigate the long term performance of ductile iron (DI) water mains. 

One of the sub-objectives of this research is to gain a thorough understanding of geometry of external 

corrosion pits and the factors (e.g., soil properties, appurtenances, service connections, etc.) that influence 

this geometry. This understanding would lead to the ultimate objective of achieving a better ability to assess 

the remaining life of ductile iron pipes for a given set of circumstances. 



Four North America and two Australian water utilities exhumed each about 300 ft (91.4 m) of DI pipes that 

were slated for replacement. The exhumed pipes were cut into sections, sandblasted and tagged. Soil 

samples extracted along the exhumed pipe were also provided. Pipe segments were scanned, using a laser 

scanner that was specially developed at the NRC for this purpose and scanned data processed using special 

software developed for this purpose. Statistical analyses were performed on three geometrical attributes, 

namely pit depth, pit area and pit volume. Various soil characteristics were investigated for their impact on 

the geometric properties of the corrosion pits. This is an on-going research and in this paper we describe the 

acquisition of the data and present some of preliminary results obtained so far. 

 

2. DATA COLLECTION, CLEANSING AND PREPARATION 

Of the data on exhumed DI pipe from the six water utilities, only three data sets have been processed to 

date. Table 5.1 provides the details on pipe sizes, length and year of installation. The water utilities were 

also requested to recover soil samples every 7.6 to 15.2 m (25 to 50 ft) along the exhumed pipe. These soil 

samples were sent to local testing laboratories to measure soil properties as suggested in AWWA 

C105/A21.5-99. The ranges of soil properties obtained from these tests are given in Table 2. 

Table 1. Exhumed pipes details 

City (Water utility) Diameter Depth length Installation year 

Kansas City (Water One) 300 mm (12”) 1.07 m (3.5 ft) 91.4 m (300 ft) 1989 

Louisville (Water Co.) 200 mm (8”) 1.07 m (3.5 ft) 91.4 m (300 ft) 1972 

Calgary (Water Dept.) 250 mm (10”) 3.05 m (10 ft) 91.4 m (300 ft) 1969 

 

Table 2. Range of soil properties along exhumed pipes 

City (Water utility) pH 
Resistivity 

 (Ω-cm) 

Chloride 

ion content 

(mg/kg) 

Sulfide 

ppm 

Redox 

potential 

(mV) 

Soil type 

Kansas City (Water One) 4.6 - 7.4 1055 - 7413 220 - 1130 trace - negative 405 - 620 Lean / fat clay 

Louisville (Water Co.) 6.9 - 8.6 1408 - 5000 6.4 - 61 3.8 - 16.4 210 - 250 Silt / clay / sand 

Calgary (Water Dept.) 8 - 8.4 2300 - 8300 40 - 310 0.1 - 0.3 110 - 160 Silt / sand / clay 

 

The water utilities were also asked to cut the individual pipe segments, which are typically 5.5 m or 6.1 m 

(18 or20 ft) long, into sections of about 1.1 m (3½ ft) long, to be scanned by a pipe laser scanner that was 

specially developed for this purpose (Figure 1). The water utilities were asked to tag each pipe segment 

sequentially as they were removed from the trench. After the pipe segments were cut into smaller sections, 

the exterior pipe surfaces were sandblasted to reveal 'corroded' or 'graphitized' ductile iron before carrying 

out the pipe scans. The contractor/sand blasters were instructed to use low nozzle velocities and avoid 

excessive blast times to prevent metal abrasion as well as to immediately cut back on both if “blistering” or 

“slivering” occurred. This resulted normally in dull light gray pipe surfaces. 
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Figure 1.  Pipe Scanner (left: pipe mounted ready for scanning; right: laser finder mounted on track). 
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Figure 2. Schematic representation of pipe scanner data. 

Pipe scanning involves the back and forth movement of a laser range finder mounted on a track that is 

placed parallel to the longitudinal pipe axis. When the laser range finder reaches either end of the pipe, the 

pipe rotates a specified amount, depending on the desired scan resolution and the pipe diameter. For every 

data point the scanner records the longitudinal distance x along the pipe, the rotation θ, and the distance ρ 
from the laser range finder to the pipe surface, (Figure 2). The pipe scanning process terminates when θ  

reached 360 degrees. The scanning resolution was set to provide data points spaced at 1.5 mm grid (i,e., 

1.5 mm spacing along both longitudinal and circumferential directions). 

Raw data obtained from the scanner can typically suffer from a number of problems. For example, if the 

pipe was not perfectly aligned in the Scanner, the scan data will show a pipe surface that looks warped or 

bent. Also, under some conditions (oily pipe surfaces, asphaltic residue on the pipe, especially near repairs 

and service connections) the laser sometimes had accuracy problems reading the pipe surface, often 

indicating through-holes where there were none. Using software specially developed for this purpose, a 

six-step process was used to record the data and remove these undesired effects: (a) read in raw data and 

apply a raw data filter; (b) rearrange the data into a grid; (c) establish the ‘correct’ pipe surface; (d) apply 

2-D grid-level filter; (e) apply 3-D grid-level filter; and (g) for statistical analysis remove unusable data. 

The nature of the various filters applied to the data is beyond the scope of this paper. The results of this data 

cleansing process can be visualized as demonstrated in Figure 3. 

 

 



 

 

 

 

 

 

 

 

 

Figure 3: Data visualization: 3-D foldout (left) and pit contour (right). 

 

STATISTICAL ANALYSIS OF RING POPULATIONS 

Each of the exhumed pipes was virtually sliced into segments (or rings) of x length, where x = 25, 50, 100, 

150, 300, 450 and 600 mm (approx. 1, 2, 4, 6, 12, 18 and 24 inch). Thus for example, an exhumed pipe of 

10 m (10,000 mm) length would produce a population of 400 rings 25 mm long, or a population of 200 

rings 50 mm long, and so on. This means that data for each exhumed pipe was exmainded seven different 

times with seven different ring populations. For each population, three pit properties were investigated, 

namely, the distribution of maximum pit depth in a ring, the distribution of the corroded surface area in the 

rings and the distribution of pit volume in the rings. 

Three different types of fundamental probability distributions and three right-truncated versions of these 

distributions were examined as candidates to describe pit-depth population. The right-truncated versions 

were explored because the properties of the pit populations are (or can be) right-truncated. For example, the 

value of pit depth is limited by the pipe wall-thickness, which in this case would serve as the upper 

boundary of the truncated probability distribution. The fundamental distributions explored included 

Weibull (2-parameter), Gumbel (or double-exponential) and exponential. Distribution parameters were 

discerned using the maximum likelihood method. The chi-square test was used to ascertain ‘goodness of fit’ 

(in all cases there were sufficient data to warrant chi-square test).  

Each ring population was fitted with six different probability distributions. Discerned distribution 

parameters are shown, as well as the P-value of the chi-square test. It should be remembered that the null 

hypothesis in the chi-square test is that the observed and modeled frequencies come from the same 

probability distribution. The P-value can be loosely interpreted as “what is the probability of observing such 

quality of fit (between observed and modeled frequencies) without these frequencies actually belonging to 

the same probability distribution”. Therefore, the lower the P-value the better the fit. Typically, at P-value 

of 0.95 (equivalent to 5% confidence level) the null hypothesis is not rejected. For the maximum pit depth 

distribution, among all the cases tested, the truncated Gumbel distribution was the most consistent in 

yielding low (often the lowest) P-values. This bodes well with theoretical expectations because it is an 

extreme value distribution and the population at hand is indeed truncated. 



For the total pit area as well as for the total pit volume distributions, among all the cases tested, the Weibull 

distribution was the most consistent in yielding low (often the lowest) P-values. In most cases examined, 

the fundamental distribution results did not differ much from their truncated counterparts. This is expected 

because none of the rings in any of the cities had its entire surface covered with corrosion pits. Table 3 

provides results of the analysis of maximum pit depth, pit area and pit volume in the various ring sizes from 

the exhumed pipes of three cities. Only those distributions that emerged as having consistently good fits are 

shown in Table 3. Figure 4 provides some samples to demonstrate the quality of fit. 

Table 3. Statistical analysis results of pit geometries in ring populations 

Kansas City* 

Ring Max. pit depth: trunc-Gumbel Pit area: Weibull Pit volume: Weibull 

Length (mm) Count Scale Location P-value Scale Shape P-value Scale Shape P-value 

25 2718 1.11 1.12 0.000 67 0.27 0.000 89 0.26 0.000 

50 1380 1.16 1.33 0.000 169 0.32 0.000 226 0.31 0.000 

100 645 1.23 1.61 0.000 451 0.38 0.000 607 0.36 0.000 

150 456 1.29 1.85 0.000 862 0.44 0.000 1178 0.42 0.000 

300 181 1.43 2.23 0.050 2215 0.53 0.000 3091 0.51 0.000 

450 95 1.56 2.56 0.003 4013 0.61 0.000 5766 0.57 0.000 

600 84 1.71 2.62 0.006 4519 0.59 0.001 6252 0.56 0.001 

Louisville** 

Ring Max. pit depth: trunc-Gumbel Pit area: Weibull Pit volume: Weibull 

Length (mm) Count Scale Location P-value Scale Shape P-value Scale Shape P-value 

25 2738 1.04 0.94 0.000 38 0.24 0.000 50 0.23 0.000 

50 1440 1.14 1.19 0.000 111 0.27 0.000 148 0.26 0.000 

100 684 1.28 1.49 0.000 313 0.32 0.000 432 0.30 0.000 

150 455 1.37 1.74 0.000 596 0.35 0.000 844 0.33 0.000 

300 220 1.62 2.38 0.000 1965 0.47 0.000 2959 0.44 0.000 

450 141 1.83 2.80 0.000 3615 0.55 0.000 5608 0.50 0.000 

600 78 1.68 2.99 0.003 4480 0.60 0.000 6916 0.55 0.000 

Calgary*** 

Ring Max. pit depth: trunc-Gumbel Pit area: Weibull Pit volume: Weibull 

Length (mm) Count Scale Location P-value Scale Shape P-value Scale Shape P-value 

25 2297 1.45 1.41 0.000 13 0.29 0.000 21 0.27 0.000 

50 1192 1.56 1.99 0.000 41 0.37 0.000 69 0.34 0.000 

100 585 1.69 2.71 0.000 117 0.43 0.000 207 0.40 0.000 

150 388 1.87 3.19 0.000 205 0.45 0.000 370 0.41 0.000 

300 189 2.09 4.22 0.000 532 0.48 0.000 1008 0.44 0.000 

450 83 2.06 4.59 0.007 824 0.47 0.001 1651 0.42 0.002 

600 83 2.64 5.70 0.014 1289 0.51 0.002 2609 0.46 0.002 

   *mean wall thickness (upper boundary) 10.89 mm   

 ** mean wall thickness (upper boundary) 8.89 mm 

*** mean wall thickness (upper boundary) 8.44 mm 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Sample distribution plots. 
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STATISTICAL ANALYSIS OF THE IMPACT OF SOIL PROPERTIES 

Based on the results detailed in the previous section, regarding the probability distributions that were found 

to fit well the statistical properties of maximum pit depth, pit surface area and pit volume in ring population, 

the following models were examined to evaluate the impact of soil properties on these statistical properties. 

The probability distribution of maximum pit depth in rings was assumed to follow a multi-covariate 

truncated Gumbel distribution, where the location parameter λ is a function of soil properties, as follows: 
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(1) 

where xo is the upper bound of the truncated distribution, α is the scale parameter, λ(s) is the location 

parameter, which is a function of soil properties s, z is a row vector of soil properties (e.g., soil resistivity, 

redox potential, etc.) and β is a column vector of soil property coefficients to be discerned by the maximum 

likelihood method. 

The probability distribution of corroded surface area in rings as well as for corrosion pit volume in rings 

was assumed to follow a multi-covariate Weibull distribution, where the scale parameter α is a function of 

soil properties, as follows: 
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(2) 

where, β is the shape parameter, α(s) is the scale parameter, which is a function of soil properties, z is a row 

vector of soil properties and β is a column vector of soil property coefficients to be discerned by the 

maximum likelihood method. 

The essence of analyzing the impact of soil properties on corrosion pits is to determine whether, and by how 

much do soil property data, through multi-covariate probability distributions, improve the ability to predict 

(or ‘explain’) observed variations in pit properties (maximum pit depth, pit area, pit volume) beyond the 

single-variate probability distributions that were fitted to these properties as described in the previous 

section. The determination whether an additional covariate(s) actually improves the predictive ability of a 

model in a statistically significant manner is done using the likelihood ratio test (e.g., Ansel and Phillips, 

1994), 
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where ML = maximum likelihood and MLL = maximum log-likelihood. If the full model is reduced by a 

single covariate then LR would be asymptotically chi-square distributed with one degree of freedom. At a 

confidence level of (1 - α =; and α = 0.05) 95%,             consequently,  

if [MLL(full model) - MLL(reduced model)] > 1.92 then the null hypothesis is rejected (at 95% confidence) 

and the coefficient is not zero, meaning that the covariate is significant. The notion of P-value can also be 

used to express the confidence level at which the null hypothesis would be rejected, given a certain LR: 

P-value(LR, df) =                          (read: “the inverse of the chi-square distribution, given an LR 

value and degrees of freedom”). Hence, the P-value(3.84, 1) = 0.05. It is clear that the lower the P-value, the 

higher the confidence that the null hypothesis can be rejected, which means that the higher the confidence 

that the tested covariate is statistically significant.  
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As examples Figure 5 illustrates the relationships between maximum pit depth and soil resistivity for 

various ring length populations in Calgary. The small dots represent maximum pit depth in each ring (left 

axis) and the curve represents soil resistivity measure along the pipe (the markers on the curve are actual 

measured values in the soil samples and the curve represents interpolated (quadratic interpolation) values. It 

can be seen that such a relationship is not visually apparent, and a statistical analysis is indeed required to 

investigate to possibility and nature of such relationship. 

Soil properties considered for the Calgary analysis included soil resistivity, redox potential, chloride and 

sodium concentration, percent fines and soil pH. In Kansas City the same soil properties were considered 

except that sulphide concentration was available instead of sodium. Each of these properties was considered 

in two ways, absolute values and rate of change (derivative) values, where rate of change value is calculated 

between two adjacent soil sample locations as the difference in the soil property values divided by the 

distance (m) between these two points. Consequently, the analyses considered 12 soil property covariates. 

In addition, the distance of a ring (m) from an appurtenance was considered as well, for a total of 13 

covariates. 

Tables 4 and 5 provide the results of soil property/corrosion pit relationship analysis in Calgary and Kansas 

City data, respectively. Equation 1 was used to model soil properties impact on maximum pit depths and 

equation 2 was used to model soil properties impact on pit area and pit volume. The likelihood ratio (LR) 

test was used to determine the statistical significance of these covariates. An exhaustive examination 

requires the LR computation of all combinations of covariates (i.e., each covariate on its own (single) – 13 

cases; all possible combinations of two covariates (pair) - = 78 cases; all possible combinations of three 

covariates (triplet) -  = 286 cases and so forth) totaling many thousands of cases, applied to three 

corrosion pit properties (maximum depth, area and volume), each with 4 possible ring lengths (50, 100, 300 

and 600 mm). However, careful observation can often reduce the number of combinations requiring 

examination to a manageable number of a few hundred (for each of the exhumed pipes from the respective 

cities). A few comments, explanation and observations are warranted: 

• Tables 4 and 5 show P-values. P-value of 0.05 or smaller implies that the covariate(s) is (are) 

statistically significant at the 5% level. P-value of 0.01 or smaller implies that the covariate(s) is (are) 

statistically significant at the 1% level. The smaller the P-value the higher the statistical significance of 

the covariate(s). The P-values in both tables are rounded off to 3 decimal places. Only those that are 

significant at the 5% level (i.e., P-value ≤ 0.05) are presented. 

• Three columns, 1, 2 and 3 are provided for each ring length. Column 1 shows the P-value for the single 

most statistically significant covariate. Column 2 shows the P-value for the most statistically significant 

pair of covariates and column 3 shows the P-value for the most statistically significant triplet. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5  Impact of soil resistivity on maximum pit depth (various ring lengths) in Calgary data.
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• If generic covariate A is the single most statistically significant covariate and generic covariates A and 

B are the most statistically significant pair of covariates, then A’s P-value is provided in column 1, and 

in column 2 covariate A is represented by an asterisk. Covariate B will have a P-value in column 2, 

indicating its marginal contribution to the LR of the covariate pair A and B is beyond the contribution 

of covariate A alone. The same logic is extended to the case of three covariates. 

• If covariate A is the single most statistically significant covariate and covariates B and C are the most 

statistically significant pair of covariates, then A’s P-value is provided in column 1, and the P-value of 

covariates B and C is provided in column 2. This latter P-value indicates the contribution to the LR of 

the covariate pair of B and C beyond the baseline, i.e., beyond the maximum likelihood value of the 

model with no covariates (where the LR is computed with two degrees of freedom). The same logic is 

extended to the case with three covariates. 

• In all cases examined, except one, the marginal contribution to LR of more than three covariates was 

insignificant. Three columns were therefore deemed sufficient in the tables. 

• In Calgary:  

o Soil sodium concentration in appears to be the most consistently significant. It emerged as the 

single most significant covariate in 6 out of 9 cases shown in Table 4. Out of these 6 cases, it also 

emerged 5 times as one of the two covariates in the most significant pair, and 1 time as one of the 

three covariates in the most significant triplet. Unfortunately, Calgary was the only utility that 

measured sodium concentration in soil samples, therefore this relatively high significance of 

sodium could not be compared to analyses of other cities. 

o The derivative of chloride concentration also showed consistent significance. In 1 of 9 cases, it was 

the single most significant covariate. In 6 out of 9 cases, it was one of the two covariates in the most 

significant pair. In 3 out of 9 cases, it was one of the three covariates in the most significant. 

o Proximity to appurtenance emerged as somewhat significant covariate. In 1 of 9 cases, it was the 

single most significant covariate. In 2 out of 9 cases, proximity to appurtenance was one of the two 

covariates in the most significant pair. In 2 of 9 cases, proximity to appurtenance was one of the 

three covariates in the most significant triplet. 

o Redox potential was significant in 2 cases and resistivity in one case. 

• In Kansas City:  

o The derivative of sulphide concentration appears to be the most consistently significant covariate. 

It emerged as the single most significant covariate in all of the 12 cases shown in Table 5. It also 

emerged 2 times as one of the two covariates in the most significant pair, and 2 times as one of the 

three covariates in the most significant triplet. 

o % fines emerged 9 times out of 12 cases as one of the two covariates in the most significant pair, 

and 6 times as one of the three covariates in the most significant triplet. 



o Redox potential emerged 7 times out of 12 cases as one of the two covariates in the most significant 

pair, and 4 times as one of the three covariates in the most significant triplet. 

o pH emerged 2 times out of 12 cases as one of the two covariates in the most significant pair, and 4 

times as one of the three covariates in the most significant triplet. 

• It interesting to note that soil resistivity, which in the literature is often considered as the single most 

significant factor in pipe corrosion, showed no significance in either city.  

• Another point of interest is that there is almost no overlap between the two datasets from Calgary and 

Kansas City with respect to the soil properties that emerged as significant covariates. 

CONCLUDING COMMENTS 

The methodology presented in this paper differs from others reported on in the literature in that it samples 

corrosion geometry in a population of equal rings rather than integral corrosion pits. Also, while pit depth or 

pit depth maxima were investigated in most other reports, here corrosion area and volume were investigated 

as well. It appears that while the truncated Gumbel (or double exponential or type I extreme value) 

distribution was well suited to model the histograms of pit depth maxima, the Weibull distribution was 

appropriate for pit area and volume, in all cities, regardless of ring length. 

Examination of the impact of soil properties on corrosion pit geometries was carried out so far for two cities 

only. In both cities a few soil properties emerged as consistent contributors to the observed corrosion (as is 

reflected in their ability to increase the log likelihood of the model), but different soil properties had 

different contributions in Calgary and in Kansas City. This may be attributed in part to the fact that while 

Calgary measured sodium, Kansas City measured sulphide concentration, and both emerged as significant 

in the respective cities. Another explanation might be that the same soil properties impact corrosion 

differently in different local conditions.  

It should be noted that this type of analysis investigates strictly the cases where covariates are assumed to be 

statistically independent. It is possible that covariate interdependencies also play a role in the impact on 

corrosion, which will be investigated in the future. 
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